Mg-Al LDH的水热合成及其分散体系液晶相行为的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状双氢氧化物(Layered double hydroxides,简称LDHs),是由二价和三价金属离子组成的具有类水滑石层状结构的混合金属氢氧化物,是一类具有广阔应用前景的典型的新型无机材料。由于同晶置换使得LDH层片带永久正电荷,层间可交换的阴离子和水分子补偿其正电性,层间距因阴离子不同而变化。LDH独特的结构特征和电性质,使得这类材料在催化,吸附,纳米复合材料,药物载体,以及生物传感等众多领域都具有广泛的应用。LDH插层纳米复合材料的应用更是引起了众多研究者的兴趣,因为,LDH层间插入功能性分子,不仅可以改变LDH的层间距,同时还可以得到具备特殊性能的新材料。近年来,LDH胶体分散体系在制备薄膜,细胞基因/药物传输,稳定乳液,形成液晶等方面又有许多新应用。这些新应用反过来又要求得到颗粒分散度低,稳定的LDH胶体分散体系。制备LDH使用最普遍的方法是共沉淀法,有研究者认为,采用非稳态液相共沉淀法制备LDH时,其晶体结构在共沉淀初期已经形成,之后的胶溶过程只是起到了使粒子逐渐长大以及改善其结晶度的作用。传统结晶理论认为,晶体生长是原子,分子或离子以特定方式在晶核上沉积的过程。近年来,研究者发现生物有机体中存在的非经典结晶过程(Non-classical crystallization),其中纳米粒子(而非原子,分子或离子)作为基本构筑单元进行晶体生长。这一概念已成功用于无机纳米材料制备中,促使我们对LDH晶体的形成机理进行深一步的探索,并为我们得到具有可控粒径及形貌的LDH粒子及其稳定的胶体分散体系提供新方法。本课题组已经发现片状LDH粒子胶体分散体系可以形成液晶相,这无疑是对无机溶致液晶领域的一个很大的贡献,对LDH液晶相变的研究更是会不断验证和丰富Onsager液晶相变理论。调节胶体分散体系中粒子间的相互作用,可以有效的控制体系的相行为。可控的液晶相行为则有利于提高液晶的理论及实际应用价值。我们知道,液晶在显示工业中的巨大应用价值仍然是液晶领域研究的主要推动力,但目前液晶显示器中使用的大部分都是有机小分子液晶。与有机分子相比,无机物质具有稳定,价格低廉,以及富电子等特点,如果能使无机溶致液晶应用于显示器件上,液晶显示工业将会产生新的飞跃。为了检测无机溶致液晶是否能应用于显示技术上,其电光效应的测定就显得十分必要。本文系统研究了粒子间有效吸引力的引入以及电场的作用对LDH胶体分散体系液晶相行为的影响,以求实现液晶相变的人工调控,为无机溶致液晶的应用奠定基础。
     本文通过一步快速沉淀,充分洗涤沉淀,以及随后的水热处理过程,得到了稳定的LDH胶体分散体系。该方法具有简单易操作,所得样品数量多,以及得到的分散体系稳定性高等优点。采用XRD,SEM,TEM和HRTEM,以及AFM等对样品进行了表征。结果表明,在共沉淀过程中形成了无定形纳米粒子,而不是晶体LDH粒子。之后的水热处理过程,促进了无定形沉淀的结晶。晶体生长的初期,观察到无定形纳米粒子通过界面成核相互结合。我们为晶体LDH纳米片状粒子提出了新的结晶机理,即,晶体LDH粒子的形成包括基于粒子的非经典晶体生长以及基于离子的奥氏熟化两种机制。LDH粒子的尺寸可以被有效的调节。延长水热处理的时间以及提高水热处理的温度,都能使LDH粒子的直径增大。粒子的厚度在特定温度下几乎不受水热处理时间的影响,而当升高温度时粒子的厚度会有轻微的增大。电解质NaCl的加入,则不利于LDH粒子的晶体生长。
     LDH胶体分散体系中,当粒子浓度足够大时会出现各向同性相到向列相液晶相转变。本文研究了LDH/PEG混合体系的液晶相行为。通过AFM观察,红外吸收光谱测定,以及晶体结构分析对比了纯LDH体系和PEG/LDH混合体系。结果表明,加入PEG分子以后,体系中LDH粒子的形貌,粒径,厚度,红外吸收光谱,以及晶体结构都基本没有发生变化。PEG分子在颗粒表面没有发生吸附,并且也没有改变颗粒的性质,只是改变了体系溶剂的性质,诱导颗粒间产生了一种有效的吸引力。与纯LDH胶体分散体系相比,PEG/LDH混合体系发生了更为复杂的相行为,出现了四相甚至五相共存。包括一个各向同性的上相,一个底部沉积相,以及中部两个或三个双折射相。其中必定有一相是向列相,且其形成机理为成核与生长。五相共存的体系中由底部沉积相之上长出的液晶相,具有一定的位置有序性,可能是柱型相。二元体系中出现多相共存,看似与吉布斯相律相矛盾,而粒子的多分散性以及在重力场作用下粒子将寻求更大的密度范围很好的解释了其合理性。PEG/LDH混合体系中的多相共存现象,是PEG分子诱导LDH颗粒之间产生的一种十分有效的吸引力,颗粒多分散度,以及粒子在重力场中的沉降共同作用的结果。
     本文采用偏光显微镜以及光学检测系统研究了外施加电场对LDH胶体分散体系液晶相行为的影响。研究表明,LDH的向列相及各向同性相分散体系都表现出很强的电光效应。向列相体系中,在电场的作用下,粒子排列更加有序,体系表现出更强的双折射性,使粒子重新定向排列的最小电压值为1V,当电压值低于1V时,电场对样品不起作用。而各向同性相的体系中,电场则诱导了液晶相的形成。两种体系对电场的最初响应时间均在1s之内,随着电场的移除,样品双折射性迅速减弱,之后逐渐恢复到样品的初始状态,这是一个可逆的过程,可以对样品顺序施加方波电场,几十秒之内就可以完成一个周期。而向列相凝胶以及浓度非常小的各向同性相体系则对外施加电场没有响应。
     此外,本文采用不同于传统插层方法的新方法合成了LDH插层纳米复合材料。首先用共沉淀法制备了无定形纳米粒子沉淀,然后使新鲜沉淀在SDS,SDBS,柠檬酸钠,硬脂酸钠等溶液中生长,水热条件下处理一定时间,即可得到LDH纳米复合材料。对样品进行了XRD,TEM和TGA表征。结果表明,SDS,柠檬酸根,硬脂酸根离子都成功插入了LDH的层间,形成了与水中生长得到的六角片状结构的LDH形貌不同的LDH复合纳米粒子。在SDBS溶液中生长的无定形纳米粒子得到的是针状的纳米粒子,不过未能发生插层反应。由无定形纳米粒子生长成LDH复合纳米粒子的生长机理涉及粒子接触和奥氏熟化。另外还采用传统的离子交换法合成了LDH插层纳米复合材料。首先制备出稳定的LDH胶体分散体系,再用SDBS进行改性,使SDBS的阴离子置换出LDH层间的cl离子,增大层间距。然后在改性的LDH层间插入较常用的若丹明,香豆素等荧光染料分子,形成了形貌为不规则多边形的LDH复合纳米粒子。
     总之,本文的研究实现了以无定形纳米粒子为前驱体水热合成稳定的LDH胶体分散体系,以及水热合成LDH插层纳米复合材料。并通过向LDH胶体分散体系中引入有效的吸引力,以及通过对体系施加外电场,实现了体系液晶相行为的有效调控。
Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of inorganic materials with potential applications in wide areas. They are structurally related to brucite Mg(OH)_2 with some certain divalent ions replaced by trivalent ones, and the net positive charges in the layers due to the replacement are compensated by exchangeable anions and water molecules in the interlayer. The distance between the layers is changeable with different anions. LDHs can be used in catalysis, adsorption, nanocomposites, drug carriers and biosensors due to their unique structural and electrical properties. More and more researchers have interests in the application of LDHs nanocomposites. By intercalating functional molecules into the gallery between the sheets, the distance between the layers can be changed and in the meantime we can obtain new materials with special capabilities. Recently, efforts have been focused on preparation of stable colloidal dispersions of monodispersed LDHs for their merits in preparation of thin films, delivery of cellar genes/drugs, stabilization of Pickering emulsions and formation of mineral liquid crystals. A typical and widely used method for preparing LDHs is coprecipitaion. It has been reported in literatures that when using non-steady coprecipitaion method to prepare LDHs, the crystalline structure of LDHs has formed at an early stage of the coprecipitaion and the following process of peptization only was used to make the particles grow up and develop their crystallinity. For a long time, crystal growth has been considered a process involving deposition of individual atoms or ions onto an existing crystal. However, a different picture about the growth of crystalline structures has emerged, in which nanoparticles serve as building blocks for construction of single crystals. This is referred as non-classical crystallization. Non-classical crystallization in organism has recently been found in crystallization of inorganic materials, which promotes us anew realizing the crystallization mechanism of LDHs and provides a new method for us to obtain stable dispersions of LDHs particles with controlled size and shapes.
     In our group, it has been found that it can form mineral liquid crystalline phases in colloidal dispersions of LDH plates, which has largely contributed to the field of mineral lyotropic liquid crystals. Any researches for liquid crystalline properties of colloidal LDH dispersions can contribute to the typical Onsager's theory of liquid crystalline phase transition, and eventually it can well validate and enrich the Onsager's theory. As we all known that the phase behavior of colloidal dispersions can be well controlled through adjusting the interactions between colloidal particles in the dispersions. In turn, the controlled liquid crystalline phase behavior can well develop the liquid crystalline phase transition theory and improve the application values of mineral liquid crystal materials. It has been known that, the application of liquid crystals in display techniques is still the major impetus of the researches in the liquid crystal field. However, what now have been used in displays mostly are small organic molecule liquid crystals. In comparison to organic molecules, the inorganic substances may have enhanced optical, electrical, and magnetic properties, and they are probably more stable and cheaper. If the mineral liquid crystals can be used in displays, a great revolution would be induced in the liquid crystal display industries. In order to examine the practicability of their application in display techniques, it is very important to investigate the electrooptic effects of these mineral liquid crystal materials. In this thesis, the effects of the introduction of an effective attraction between the colloidal LDH particles and the application of an electric field on the liquid crystalline phase behavior of LDH dispersions have been explored. I hope that it can provide an effective theoretical fundamental for the potential applications of mineral lyotropic liquid crystals and achive artificial adjustment of liquid crystalline phase transition.
     In this thesis, stable colloidal LDH dispersions have been prepared by a fast coprecipitaion, thoroughly washing precipitates, and a following hydrothermal treatment of the filter cake. This is a simple method which can be easily manipulated in laboratories and can obtain LDH products in large amount. The XRD, SEM, TEM, HRTEM, and AFM characterization results demonstrated that amorphous nanoparticles instead of crystalline LDH particles formed in the coprecipitation process, and the following hydrothermal treatment resulted in crystallization of the amorphous precipitates. Attachment of amorphous nanoparticles with interface nucleation was observed in the early stage of crystal growth. Thus, we propose a new crystallization mechanism for LDH nanoplates, in which both particle-mediated non-classical crystal growth and ion-mediated Ostwald ripening are involved in formation of crystalline LDH particles. The size of LDH particles can be effectively adjusted. Increasing hydrothermal treatment time and temperature resulted in increase of LDH particle diameters. The particle thicknesses were not influenced by treatment time at a certain temperature and increased slightly by treatment at higher temperature. Addition of electrolyte NaCl is unfavorable for crystal growth of LDH particles.
     In colloidal LDH dispersions, liquid crystalline phase transition will occur when the particles exceed a certain concentration. In this thesis, the liquid crystalline phase behavior of mixed LDH/PEG dispersions has been explored. The AFM, IR, and XRD characterization results indicated that the addition of PEG molecules has not changed the shape, diameter, thickness, IR spectroscopy, and crystalline structure of the LDH particles. PEG molecules were not adsorbed on the LDH particles, and they only changed the property of the solvent which induced an effective attraction among the LDH particles. In comparison to the pure LDH dispersions, more complicated phase behavior in the mixed PEG/LDH dispersions was observed. At certain concentrations of LDH and PEG, a four-phase equilibrium and even a five-phase equilibrium appeared, including an isotropic upper phase, a sedimentation bottom phase, and two or three birefringent middle phases. One of the liquid crystalline phases must be nematic, and the phase separation proceeds via nucleation and growth. In the five-phase coexistence system, the new phase grown upon the sedimentation phase has a positional order, and it may be a columnar phase due to the Bragg reflections. It seems paradoxical with the Gibbs' phase rule for the multiphase coexistence in a binary system. The particles polydispersity and gravity reconcile the contradiction. We explain the experimental phenomena by the interplay between a PEG-induced effective attraction, LDH particles polydispersity, and the sedimentation in the gravitational field.
     The effects of an electric field on the liquid crystalline phase behavior of the colloidal nematic and isotropic LDH dispersions were studied with polarized light microscopy and optical detection system observations. The results demonstrated that these dispersions showed strong electrooptic effects. In the nematic dispersions, the LDH plates can align more orderly and show stronger birefringence by the action of an electric field. In a nematic dispersion with concentration of 20 wt%, we observed a threshold voltage 1 V, below which there was no optical response. Electric field can induce forming liquid crystalline phase in the isotropic dispersions with concentration lower than the I-N phase transition threshold. The initial response times of these dispersions are all less than 1 s. The induced birefringence rapidly decreases after removing the electric field, and then gradually decreases to the original state of these dispersions. The process is reversible. A square-pulse electric field can be successively applied on these dispersions, and the reversible switching can proceed in a few tens of seconds. There is no optical response in very dilute LDH dispersions and gel samples. The results of the electrooptic effects in LDH dispersions clearly demonstrated that this family of mineral liquid crystals may have the potential applications in simple on-off switching and low-frequency display technology.
     Moreover, in this thesis, intercalated LDH nanocomposites have been prepared using a new method different from the traditional ones. Amorphous precipitates were first synthesized by a non-steady coprecipitation method, and then the fresh precipitates were separately added into the aqueous solutions of SDS, SDBS, citrate sodium, and stearate sodium. We can eventually obtain LDH nanocomposites after some certain hydrothermal treatment time. The XRD, TEM and TGA characterization results demonstrated that the anions of SDS, citrate sodium, and stearate sodium have successfully intercalated into the interlayer of the LDH, which produced LDH nanocomposite particles with shapes different from the regular hexagonal plate-like LDH particles grown up in water. Needle-like LDH nanocomposite particles were obtained from the amorphous particles hydrothermal treated in the SDBS solution, but the anions have not intercalated into the interlayer of the LDH. The growth mechanism of the LDH nanocomposite particles from amorphous particles involved particle attachment and Ostwald ripening. Furthermore, intercalated LDH nanocomposites have also been prepared using a traditional ion-exchange method. We first synthesized stable LDH dispersions, and then modified the LDH particles with SDBS. The distance between the layers of the LDH increased because the chlorine anions have been replaced by the long SDBS ones. The increased distance between the layers was favorable for intercalating fluorescent dye molecules such as rhodamine and coumarin.
     In summary, stable LDH dispersions in large amount and intercalated LDH nanocomposites have been successfully synthesized from amorphous precursors using hydrothermal treatment method; and the liquid crystalline phase behavior of the LDH dispersions has been successfully adjusted through the introduction of an effective attraction and the application of an electric field.
引文
[1] J. Perrin, Mouvement Brownien et Realite Moleculaire, Ann. De Chim. et de Phys., 1909, 18,5.
    
    [2] J. Perrin, Les Atomes, Libr. Felix Alcan, Paris, 1920.
    
    [3] B. J. Alder, T. A. Wainwright, Phase transition for a hard sphere system, J. Chem. Phys., 1957,27,1208.
    
    [4] W. W. Wood, J. D. Jacobson, Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres, J. Chem. Phys., 1957, 27, 1207.
    
    [5] S. Asakura, F. Oosawa, On interaction between two bodies immersed in a solution of macromolecules, J. Chem. Phys., 1954, 22,1255.
    
    [6] A. Vrij, Pure and Applied Chemistry, 1976,48,471.
    
    [7] V. Rives (Editor), Layered double hydroxides: present and future, Nova Science Publishers, 2001.
    
    [8] Z. P. Xu, G S. Stevenson, C. Lu, G Q. Lu, P. F. Bartlett, P. P. Gray, Stable suspension of layered double hydroxide nanoparticles in aqueous solution, J. Am. Chem. Soc., 2006, 128, 36.
    
    [9] Z. P. Xu, G. S. Stevenson, C. Lu, G Q. Lu, Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions, J. Phys. Chem. B., 2006, 110,16923.
    
    [10] E. Gardner, K. M. Huntoon, T. J. Pinnavaia, Direct synthesis of Alkoxide-intercalated derivatives of hydrotalcite-like layered double hydroxides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films, Adv. Mater., 2001, 13,1263.
    
    [11] K. M. Tyner, M. S. Roberson, K. A. Berghorn, L. Li, R. F. Gilmour, C. A. Bart, E. P. Giannelis, Intercalation, delivery, and expression of the gene encoding green fluorescence protein utilizing nanobiohybrids, J. Controlled Release, 2004,100, 399.
    [12] F. Yang, S. Y. Liu, J. Xu, Q. Lan, F. Wei, D. J. Sun, Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability, J. Colloid Interface Sci., 2006,302,159.
    
    [13] F. Yang, Q. Niu, Q. Lan, D. J. Sun, Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles, J. Colloid Interface Sci., 2007,306,285.
    
    [14] S. Y. Liu, J. Zhang, N. Wang, W. R. Liu, C. G Zhang, D. J. Sun, Liquid-crystalline phases of colloidal dispersions of layered double hydroxides, Chem. Mater., 2003,15,3240.
    
    [15] N. Wang, S. Y. Liu, J. Zhang, Z. H. Wu, J. Chen, D. J. Sun, Lamellar phase in colloidal suspensions of positively charged LDHs platelets, Soft Matter, 2005, 1, 428.
    
    [16] W. X. Zhu, D. J. Sun, S. Y. Liu, N. Wang, J. Zhang, L. Y. Luan, Multiphase coexistence in colloidal dispersions of positively charged layered double hydroxides, Colloids Surf. A, 2007,301,106.
    
    [17] J. Zhang, L. Y. Luan, W. X. Zhu, S. Y. Liu, D. J. Sun, Phase behavior of aqueous suspensions of Mg_2Al layered double hydroxide: the competition among nematic ordering, sedimentation and gelation, Langmuir, 2007,23,5331.
    
    [18] A. S. Sonin, Inorganic lyotropic liquid crystals, J. Mater. Chem., 1998, 8, 2557.
    
    [19] J. -C. P. Gabriel, P. Davidson, New trends in colloidal liquid crystals based on mineral moieties, Adv. Mater., 2000,12, 9.
    
    [20] J. -C. P. Gabriel, P. Davidson, Mineral liquid crystals from self-assembly of anisotropic nanosystems, Top Curr. Chem., 2003,226,119.
    
    [21] P. Davidson, J. -C. P. Gabriel, Mineral liquid crystals, Curr. Opin. Colloid Interface Sci., 2005,9,377.
    
    [22] P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon, Oxford, 1993.
    
    [23] I. Langmuir, The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates, J. Chem. Phys., 1938, 6, 873.
    
    [24] H. Zocher, Uber freiwillige strukturbildung in solen, Z. Anorg. Chem., 1925, 147,91.
    [25] F. C. Bawden, N. W. Pine, J. D. Bemal, I. Fankuchen, Liquid crystalline substances from virus infected plants, Nature, 1936, 138, 1051.
    
    [26] L. Onsager, Anisotropic solutions of colloids, Phys. Rev., 1942, 62, 558.
    
    [27] L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N.Y.Acad.Sci., 1949,51,627.
    
    [28] D. Frenkel, R. Eppenga, Monte Carlo study of the isotropic-nematic transition in a fluid of thin hard disks, Phys. Rev. Lett., 1982,49, 1089.
    
    [29] J. A. C. Veerman, D. Frenkel, Phase behavior of disklike hard-core mesogens, Phys. Rev. A, 1992,45,5632.
    
    [30] M. A. Bates, D. Frenkel, Nematic-isotropic transition in polydisperse systems of infinitely thin hard platelets, J. Chem. Phys., 1999, 110, 6553.
    
    [31] J. Vieillard-Baron, The equation of state of a system of hard spherocylinders, Mol. Phys., 1974,28,809.
    
    [32] D. Frenkel, B. M. Mulder, The hard ellipsoid-of-revolution fluid-I. Monte Carlo simulations, Mol. Phys., 1985, 55, 1171.
    
    [33] R. H. Marchessault, F. F. Morehead, N. M. Walter, Liquid crystal systems from fibrillar polysaccharides, Nature, 1959,184, 632.
    
    [34] J. Bugosh, Colloidal alumina-the chemistry and morphology of colloidal boehmite, J. Phys. Chem., 1961, 65, 1789.
    
    [35] J. Lapointe, D. A. Marvin, Filamentous bacterial viruses VIII. Liquid crystals of fd, Mol. Cryst. Liq. Cryst, 1973, 19, 269.
    
    [36] T. Folda, H. Hoffmann, H. Chanzy, P. Smith, Liquid crystalline suspensions of poly (tetrafluoroethylene) 'whiskers', Nature, 1988, 333, 55.
    
    [37] J. Tang, S. Fraden, Isotropic-cholesteric phase transition in colloidal dispersions of filamentous bacteriophage fd, Liq. Cryst., 1995,19,459.
    
    [38] F. M. van der Kooij, H. N. W. Lekkerkerker, Formation of nematic liquid crystals in suspensions of hard colloidal platelets, J. Phys. Chem. B, 1998, 102, 7829.
    
    [39] M. P. B. van Bruggen, M. Donker, H. N. W. Lekkerkerker, T. L. Hughes, Anomalous stability of aqueous boehmite dispersions induced by hydrolyzed aluminium poly-cations, Colloids Surf. A, 1999,150, 115.
    [40] M. P. B. van Bruggen, J. K. G. Dhont, H. N. W. Lekkerkerker, Morphology and kinetics of the isotropic-nematic phase transition in dispersions of hard rods, Macromolecules, 1999,32,2256.
    
    [41] B. J. Lemaire, P. Davidson, J. Ferre, J. P. Jamet, P. Panine, I. Dozov, J. P. Jolivet, Outstanding magnetic properties of nematic suspensions of Goethite (α-FeOOH) nanorods, Phys. Rev. Lett., 2002, 88,125507.
    
    [42] D. van der Beek, H. N. W. Lekkerkerker, Nematic ordering vs. Gelation in suspensions of charged colloidal platelets, Europhys. Lett., 2003, 61, 702.
    
    [43] B. J. Lemaire, P. Davidson, J. Ferre, J. P. Jamet, D. Petermann, P. Panine, I. Dozov, D. Stoenescu, J. P. Jolivet, The complex phase behaviour of suspensions of goethite (α-FeOOH) nanorods in a magnetic field, Faraday Discuss., 2005, 128,271.
    
    [44] G. Oster, Two-phase formation in solutions of tobacco mosaic virus and the problem of long-range forces, J. Gen. Physiol, 1950, 33,445.
    
    [45] U. Kreibig, C. Wetter, Light diffraction of in vitro crystals of six tobacco mosaic viruses, Z. Naturforsch., 1980, 35c, 750.
    
    [46] F. P. Booy, A. G. Fowler, Cryo-electron microscopy reveals macromolecular organization within biological liquid crystals seen in the polarizing microscope, Int. J.Biol. Macromol., 1985, 7, 327.
    
    [47] Z. Dogic, S. Fraden, Smectic phase in a colloidal suspension of semiflexible virus particles, Phys. Rev. Lett., 1997, 78, 2417.
    
    [48] Y. Maeda, S. Hachisu, Schiller layers in p-ferric oxyhydroxide sol as an order-disorder phase separating system, Colloids Surf., 1983, 6,1.
    
    [49] M. Wadati, A. Isihara, Theory of liquid crystals, Mol. Cryst. Liq. Cryst., 1972, 17,95.
    
    [50] M. Hosino, H. Nakano, H. Kimura, Nematic-smectic transition in an aligned rod system, J. Phys. Soc. Jpn., 1979,46,1709.
    
    [51] M. Hosino, H. Nakano, H. Kimura, Effect of orientational fluctuation on nematic-smectic A transition in the system of hard rod molecules, J. Phys. Soc. Jpn., 1979,47,740.
    
    [52] M. Hosino, H. Nakano, H. Kimura, Phase transitions in the systems of identical rigid molecules in perfect alignment-relations of the smectic A and columnar orderings in liquid crystals and the crystalline ordering to the molecular shape,J.Phys.Soc.Jpn.,1982,51,741.
    [53]B.Mulder,Density-functional approach to smectic order in an aligned hard-rod fluid,Phys.Rev.A,1987,35,3095.
    [54]X.Wen,R.B.Meyer,Model for smectic-a ordering of parallel hard rods,Phys.Rev.Lett.,1987,59,1325.
    [55]A.Portiewierski,R.Holyst,Density-functional theory for nematic and smectic-a ordering of hard spherocylinders,Phys.Rev.Lett.,1988,61,2461.
    [56]A.Stroobants,H.N.W.Lekkerkerker,D.Frenkel,Evidence for smectic order in a fluid of hard parallel spherocylinders,Phys.Rev.Lett.,1986,57,1452.
    [57]A.Stroobants,H.N.W.Lekkerkerker,D.Frenkel,Evidence for one-,two-,and three- dimensional order in a system of hard parallel spheroeylinders,Phys.Rev.A,1987,36,2929.
    [58]D.Frenkel,H.N.W.Lekkerkerker,A.Stroobants,Thermodynamic stability of a smectic phase in a system of hard rods,Nature,1988,332,822.
    [59]S.D.Zhang,P.A.Reynolds,J.S.van Suijneveldt,Phase behaviour of mixtures of colloidal platelets and nonadsorbing polymers,J.Chem.Phys.,2002,117,9947.
    [60]F.M.van der Kooij,K.Kassapidou,H.N.W.Lekkerkerker,Liquid crystal phase transitions in suspensions of polydisperse plate-like particles,Nature,2000,406,868.
    [61]A.B.D.Brown,S.M.Clarke,A.R.Rennie,Ordered phase of platelike particles in concentrated dispersions,Langrnuir,1998,14,3129.
    [62]D.van der Beck,H.N.W.Lekkerkerker,Liquid crystal phases of charged colloidal platelets,Langrnuir,2004,20,8582.
    [63]D.van der Beck,A.V.Petukhov,S.M.Oversteegen,G.J.Vroege,H.N.W.Lekkerkerker,Evidence of the hexagonal columnar liquid crystal phase of hard colloidal platelets by high resolution SAXS,Eur.Phys.J.E.,2005,16,253.
    [64]H.H.Wensink,Equation of state of a dense columnar liquid crystal,Phys. Rev.Lett.,2004,93,157801.
    [65]A.Vaccari,Preparation and catalytic properties of cationic and anionic clays,Catal.Today,1998,41,53.
    [66]L.Yang,M.Dadwhal,Z.Shahrivafi,M.Ostwal,P.K.T.Liu,M.Sahimi,T.T.Tsotsis,Adsorption of arsenic on layered double hydroxides;effect of the particle size,Ind.Eng.Chem.Res.,2006,45,4742.
    [67]G.R.Williams,D.O'Hare,Towards understanding,control and application of layered double hydroxide chemistry,J.Mater.Chem.,2006,16,3065.
    [68]F.Leroux,J.-P.Besse,Polymer interleaved layered double hydroxide;a new emerging class of nanocomposites,Chem.Mater.,2001,13,3507.
    [69]J.Choy,S.Kwak,Y.Jeong,J.Park,Inorganic layered double hydroxides as nonviral vectors,Angew.Chem.In.Ed.,2000,39,4042.
    [70]J.V.de Melo,S.Cosnier,C.Mousty,C.Martelet,N.Jaffrezic-Renault,Urea biosensors based on immobilization of urease into two oppositely charged clays(Laponite and Zn-Al layered double hydroxides),Anal.Chem.,2002,74,4037.
    [71]F.Cavani,F.Trifir6,A.Vaccari,Hydrotalcite-type anionic clays;preparation,properties and applications,Catal.Today,1991,11,173.
    [72]M.F.Andrew,L.R.Andrew,M.P.Gordon,Synthesis and anion exchange chemistry of rhombohedral Li/Al layered double hydroxides,Chem.Mater.,1999,11,119.
    [73]侯万国,李稚樱,宋淑娥,孙德军,共沉淀法制备Zn-La-Al型混合金属氢氧化物纳米材料及其性能研究,山东大学学报,1999,34,304.
    [74]S.Velu,K.Suzuki,M.Okazaki,Synthesis of new Sn-incorporated layered double hydroxides and their thermal evolution to mixed oxides,Chem.Mater.,1999,11,2163.
    [75]V.Rives,S.Kannan,Layered double hydroxides with the hydrotalcite-type structure containing Cu~(2+),Ni~(2+)and Al~(3+),J.Mater.Chem.,2000,10,489.
    [76]M.A.Aramendia,Y.Aviles,J.A.Benitez,Comparative study of Mg/Al and Mg/Ga layered double hydroxides,Microporous and Mesoporous Materials,1999,29,
    [77]侯万国,张春光,氢氧化铝镁正电溶胶制备及性能研究,高等学校化学学报,1995,16,1292.
    [78]温斌,何鸣元,宋家庆,含铜类水滑石催化材料热分解过程的研究,无机化学学报,2000,16,58.
    [79]韩书华,张春光,侯万国,镁铝氢氧化物正点溶胶结构研究,高等学校化学学报,1996,11,1785.
    [80]韩书华,许之,侯万国,铝镁氢氧化物正电溶胶的制备,无机化学学报,1998,14,148.
    [81]W.Feitknecht,The formation of double hydroxides between bivalent and trivalent metals,Helv.Chim.Acta,1942,25,555.
    [82]S.Miyata,The synthesis of hydrotalcite-like compounds and their structures and physico-chemical properties I,Clays Clay Miner.,1975,23,369.
    [83]S.Miyata,Physico-chemical properties of synthetic hydrotalcites in relation to composition,Clays Clay Miner.,1980,28,50.
    [84]W.T.Reichle,Catalytic reactions by thermally activated,synthetic,anionic clay minerals,J.Catal.,1985,94,547.
    [85]W.T.Reichle,Synthesis of anionic clay minerals mixed metal hydroxides,hydrotalcite,Solid State Ionics,1986,22,135.
    [86]W.T.Reichle,S.Y.Kang,D.S.Everhardt,The nature of the thermal decomposition of a catalytically active anionic clay mineral,J.Catal.,1986,101,352.
    [87]段雪,何静,赵芸,矫庆泽,一种纳米尺寸氢氧化镁的制备方法,CN00136739.0.
    [88]赵芸,矫庆泽,李峰,非平衡晶化控制水滑石晶粒尺寸,无机化学学报,2001,17,830.
    [89]任玲玲,李峰,何静,镁锌铝三元水滑石的合成与结构分析,北京化工大学学报,2002,29,77.
    [90]冯桃,李殿卿,D.G Evans,水滑石晶体长厚比及晶粒尺寸控制方法研究,无机化学学报,2002,18,1156.
    [91]P.Courty,C.Marcilly,Preparation of Catalysts Ⅲ,G.Poncelet,P.Grange,P.A.Jacobs(Editors),Elsevier,Amsterdam,1983,p.485.
    [92]M.Ogava,H.Kaiho,Homogeneous precipitation of uniform hydrotalcite particles,Langrnuir,2002,18,4240.
    [93]谢晖,矫庆泽,段雪,镁铝型水滑石水热合成,应用化学,2001,18,70.
    [94]E.Abdelali,L.Ahmed,De R.Andre,P.B.Jean,Shape and size determination for zinc-aluminium-chloride layered double hydroxide crystallites by analysis of X-ray diffraction line broadening,J.Mater.Chem.,2000,10,2337.
    [95]M.R.Weir,R.A.Kydd,Synthesis of heteropolyoxometalate-pillared Mg/Al,Mg/Ga,and Zn/Al layered double hydroxides via LDH-hydroxide precursors,Inorg.chem.,1998,37,5619.
    [96]K.R.Kottapalli,G.Monique,S.V.Jaime,Activation of Mg-Al hydrotalcite catalysts for aldol condensation reactions,J.Catal.,1998,173,115.
    [97]E Prinetto,D.Tichit,R.Teissier,B.Coq,Mg- and Ni- containing layered double hydroxides as soda substitutes in the aldol condensation of acetone,Catal.Today,2000,55,103.
    [98]M.Sychev,R.Prihod'ko,K.Erdmann,A.Mangel,R.A.van Santen,Hydrotalcites;relation between structural features,basicity and activity in the Wittig reaction,Applied Clay Science,2001,18,103.
    [99]N.S.Puttaswamy,P.V.Kamath,Reversible thermal behaviour of layered double hydroxides;a thermogravimetric study,J.Mater.Chem.,1997,7,1941.
    [100]J.Rocha,M.del Arco,V.Rives,M.A.Ulibarri,Reconstruction of layered double hydroxides from calcined precursor;a powder XRD and ~27Al MAS NMR study,J.Mater.Chem.,1999,9,2499.
    [101]E S.Kumbhar,J.Sanchez-Valente,E Figueras,Modified Mg-Al hydrotalcite;a highly active heterogeneous base catalyst for cyanoethylation of alcohols,Chem.Commun.,1998,10,1091.
    [102]M.Rajamathi,G.D.Nataraja,S.Ananthamurthy,P.V.Kamath,Reversible thermal behavior of the layered double hydroxide of Mg with Al;mechanistic studies,J.Mater.Chem.,2000,10,2754.
    [103]H.C.B.Hansen,R.M.Taylor,Formation of synthetic analogues of double metal-hydroxy carbonate minerals under controlled pH conditions. II. The synthesis of desautelsite, Clay Miner., 1991, 26, 507.
    
    [104] J. M. Fernandez, C. Barriga, M. A. Ulibarri, F. M. Labajos, V. Rives, Preparation and Thermal Stability of Manganese-containing hydrotalcite, [Mg_(0.75)Mn(II)_(0.04)Mn(III)_(0.21)(OH)_2](CO_3)_(0.11).nH_2O, J. Mater. Chem., 1994,4,1117.
    
    [105] S. Velu, N. Shah, T. M. Jyothi, S. Sivasanker, Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides, Microporous and Mesoporous Materials, 1999,33,61.
    
    [106] P. Federica, G. Giovanna, G Patrick, Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples, Microporous and Mesoporous Materials, 2000, 39,229.
    
    [107] E. C. Kruissink, L. L. van Reijen, J. R. H. Ross, Coprecipitated nickel-alumina catalysts for methanation at high temperature. Part I.-chemical composition and structure of the precipitates, J. Chem. Soc., Faraday Trans., 1981, 77, 649.
    
    [108] Z. P. Xu, H. C. Zeng, Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases, J. Mater. Chem., 1998, 8,2499.
    
    [109] S. I. Stupp, P. V. Braun, Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors, Science, 1997,277, 1242.
    
    [110] Attila Beres, Istvan Palinko, Imre Kiricsi, Janos B. Nagy, Yoshimichi Kiyozumi, Fujio Mizukami, Layered double hydroxides and their pillared derivatives-materials for solid base catalysis: synthesis and characterization, Appl. Catal. A: General, 1999, 182,237.
    
    [111] A. Vaccari, Clays and catalysis: a promising future. Applied Clay Science 1999,14,161.
    
    [112] M. R. Weir, R. A. Kydd, Synthesis of metatungstate pillared layered double hydroxides with variable layer composition, effect of the Mg:Al ratio on the microporous structure, Microporous and Mesoporous Materials, 1998,20, 339.
    
    [113] F. Prinetto, G. Ghiotti, P. Graffin, D. Tichit, Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples, Microporous and Mesoporous Materials, 2000,39,229.
    
    [114] Yun Zhao, Feng Li, Rui Zhang, David G. Evans, Xue Duan, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps, Chem. Mater., 2002, 14,4286.
    
    [115] Herve Roussel, Valerie Briois, Erik Elkaim, Andre de Roy, J.-P. Besse, J. -P. Jolivet, Study of the formation of the layered double hydroxide [Zn-Cr-Cl], Chem. Mater., 2001,13,329.
    
    [116] K. Okamoto, N. Iyi, T. Sasaki, Factors affecting the crystal size of the MgAl-LDH(layered double hydroxide) prepared by using ammonia-releasing reagents, Appl. Clay Sci., 2007, 37, 23.
    
    [117] G. A. Bubniak, W. H. Schreiner, N. Mattoso, F. Wypych, Preparation of a new nanocomposite of Al_(0.33)Mg_(0.67)(OH)_2(Cl_2H_(25)SO_4)_(0.33) and poly(ethylene oxide), Langmuir, 2002,18, 5967.
    
    [118] V. Prevot, C. Forano, J. P. Besse, Syntheses and thermal and chemical behaviors of tartrate and succinate intercalated Zn3Al and Zn2Cr layered double hydroxides, Inorg. Chem., 1998, 37,4293.
    
    [119] W. Y. Tseng, J. T. Lin, C. Y. Mou, S. Cheng, S. B. Liu, P. P. Chu, H. W. Liu, Incorporation of C_(60) in layered double hydroxide, J. Am. Chem. Soc., 1996, 118, 4411.
    
    [120] S. Carlino, The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods, 1997, 98, 73.
    
    [121] J. Wang, A. G. Kalmichev, R. J. Kirkpatrick, X. Hou, Molecular modeling of the structure and energetics of hydrotalcite hydration, Chem. Mater., 2001,13, 145.
    
    [122] X. Hou, R. J. Kirkpatrick, Interlayer structure and dynamics of ClO4 - layered double hydroxides, Chem. Mater., 2002, 14,1195.
    
    [123] X. Hou, D. L. Bish, S. Wang, C. T. Johnston, R. J. Kirkpatrick, Hydration, expansion, structure, and dynamics of layered double hydroxides, American Mineralogist, 2003, 88, 167.
    
    [124] A. G. Kalinichev, R. J. Kirkpatrick, R. T. Cygan, Molecular modeling of the structure and dynamics of the interlayer and surface species of mixed-metal layered hydroxides;chloride and water in hydrocalumite(Friedel's salt),American Mineralogist,2000,85,1046.
    [125]W.M.Kfiven,S.-Y.Kwak,M.A.Wallig,J.-H.Choy,Bio-resorbable nanoceramics for gene and drug delivery,MRS Bulletin,2004,29,33.
    [126]J.-M.Oh,S.-Y.Kwak,J.-H.Choy,Intracrystalline structure of DNA stabilized in the layered double hydroxide,J.Phys.Chem.Solid.,2006,67,1028.
    [127]F.Leroux,J.Gachon,J.-P.Besse,Biopolymer immobilization during the crystalline growth of layered double hydroxide,J.Solid state chem.,2004,177,245.
    [128]J.Liu,X.Huang,Y.Li,K.M.Sulieman,X.He,F.Sun,Facile and large-scale production of ZnO/Zn-Al layered double hydroxide hierarchical heterostructures,J.Phys.Chem.B,2006,110,21865.
    [129]J.J.Bravo-Suarez,E.A.Paez-Mozo,S.T.Oyama,Microtextural properties of layered double hydroxides;a theoretical and structural model,Microporous and Mesoporous Materials,2004,67,1.
    [130]张春光,徐同台,侯万国,MMH正电胶钻井液,石油工业出版社,2000.
    [131]W.-G.Hou,Y.-L.Su,D.-J.Sun,C.-G.Zhang,Studies on zero point of charge and permanent charge density of Mg-Fe hydrotalcite-like compounds,Langmuir,2001,17,1885.
    [132]孙德军,刘尚营,杨智,侯万国,张春光,Al-Mg MMH正电胶体粒子体系的流变学,高等学校化学学报,2001,22,1002.
    [133]F.Leroux,M.Adachi-Pagano,M.Intissar,S.C.Are,C.Forano,J.-P.Besse,Delamination and restacking of layered double hydroxides,J.Mater.Chem.,2001,11,105.
    [134]N.Yamaguchi,T.Nakamura,K.Tadanaga,A.Matsuda,T.Minami,M.Tatsumisago,Direct formation of Zn-Al layered double hydroxide films with high transparency on glass substmte by the sol-gel process with hot water treatment,Crystal Growth and Design,2006,6,1726.
    [135]N.Yamaguchi,D.Ando,K.Tadanaga,M.Tatsumisago,Direct formation of Mg-Al-layered double- hydroxide films on glass substrate by the sol-gel method with hot water treatment, J. Am. Ceram, Soc., 2007,90,1940.
    
    [136] L. Albiston, K. R. Franklin, E. Lee, J. Bas A. F. Smeulders, Rheology and microstructure of aqueous layered double hydroxide dispersions, J. Mater. Chem., 1996,6,871.
    
    [137] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science, 2000,289, 751.
    
    [138] R. L. Penn, J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science, 1998, 281, 969.
    
    [139] M. Niederberger, H. Colfen, Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly, Phys. Chem.Chem. Phys., 2006, 8, 3271.
    
    [140] H. Colfen, M. Antonietti, Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment, Angew. Chem. Int. Ed., 2005, 44, 5576.
    
    [141] S. Weiner, I. Sagi, L. Addadi, Choosing the crystallization path less traveled, Science, 2005, 309, 1027.
    
    [142] D. Zitoun, N. Pinna, N. Frolet, C. Belin, Single crystal manganese oxid emultipods by oriented attachement, J. Am. Chem. Soc., 2005, 127, 15034.
    
    [143] Y. Cheng, Y. Wang, D. Chen, F. Bao, Evolution of single crystalline dendrites from nanoparticles through oriented attachment, J. Phys. Chem. B., 2005, 109, 794.
    
    [144] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO_2 nanowires made by the "oriented attachment" mechanism, J. Am. Chem. Soc., 2004,126,14943.
    
    [145] K. -S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles, J. Am. Chem. Soc., 2005,127,7140.
    
    [146] N. Pradhan, H. Xu, X. Peng, Colloidal CdSe quantum wires by oriented attachment, Nano Lett., 2006,6, 720.
    [147]B.Gilbert,H.Zhang,F.Huang,M.P.Finnegan,G.A.Waychunas,J.F.Banfield,Special phase transformation and crystal growth pathways observed in nanoparticles,Geochem.Trans.,2003,4,20.
    [148]周其凤,王新久著,液晶高分子,科学出版社,1999.
    [149]P.G.de Gennes著,孙政民,王新久译,液晶物理学,上海翻译出版公司,1990.
    [150]谢毓章,液晶物理学,科学出版社,1998.
    [151]王新久,液晶的结构,缺陷与织构,液晶与显示,1996,11,1.
    [152]钱人元,陈寿曦,宋文辉,主链型高分子液晶向列相向错观察的进展,化学进展,1996,8,1.
    [153]F.Kim,S.Kwan,J.Akana,P.Yang,Langmuir-Blodgett nanorod assembly,J.Am.Chem.Soc.,2001,123,4360.
    [154]冯端等著,金属物理学,第二卷,相变,科学出版社,1990.
    [155]G.Jaeger,The ehrenfest classification of phase transitions;introduction and evolution,Arch.Hist.Exact Sci.,1998,53.51.
    [156]J.Anwar,P.K.Boateng,Computer simulation of crystallization from solution,J.Am.Chem.Soc.,1998,120,9600.
    [157]J.T.Cabral,J.S.Higgins,T.C.B.Mcleish,S.Strausser,S.N.Magonov,Bulk spinodal decomposition studied by atomic force microscopy and light scattering,Macromocules,2001,34,3478.
    [158]D.Frenkel,Entropy-driven phase transitions,Physica A,1999,263,26.
    [159]M.Adams,Z.Dogie,S.L.Keller,S.Fraden,Entropically driven microphase transitions in mixtures of colloidal rods and spheres,Nature,1998,393,349.
    [160]Y.Mao,M.E.Cates,H.N.W.Lekkerkerker,Depletion force in colloidal systems,Physica A,1995,222,10.
    [161]G.H.Koenderink,G.A.Vliegenthart,S.G.J.M.Kluijtmans,A.van Blaaderen,A.P.Philipse,H.N.W.Lekkerkerker,Depletion-induced crystallization in colloidal rod-sphere mixtures,Langrnuir,1999,15,4693.
    [162]S.M.Oversteegen,H.N.W.Lekkerkerker,The importance of correlations in free-volume models for depletion phenomena,Physica A,2002,310,181.
    [163] O. Pelletier, P. Davidson, C. Bourgaux, C. Coulon, S. Regnault, J. Livage, A detailed study of the synthesis of aqueous vanadium pentoxide nematic gels, Langmuir, 2000,16, 5295.
    
    [164] X. Commeinhes, P. Davidson, C. Bourgaux, J. Livage, Alignment of liquid-crystalline V2O5 ribbons suspensions in a magnetic field, Adv. Mater., 1997, 9, 900.
    
    [165] S. Lamarque-Forget, O. Pelletier, I. Dozov, P. Davidson, P. Martinot-Lagarde, J. Livage, Electrooptic effects in the nematic and isotropic phases of aqueous V_2O_5 suspensions, Adv. Mater., 2000,12,1267.
    
    [166] P. A. Buining, H. N. W. Lekkerkerker, Isotropic-nematic phase separation of a dispersion of organophilic boehmite rods, J. Phys. Chem., 1993, 97,11510.
    
    [167] P. A. Buining, A. P. Philipes, H. N. W. Lekkerkerker, Phase behavior of aqueous dispersions of colloidal boehmite rods, Langmuir, 1994, 10, 2106.
    
    [168] M. P. B. van Bruggen, F. M. van der Kooij, H. N. W. Lekkerkerker, Liquid crystal phase transitions in dispersions of rod-like colloidal particles, J. Phys.: Condens. Matter, 1996, 8, 9451.
    
    [169] M. P. B. van Bruggen, H. N. W. Lekkerkerker, Tunable attractions directing nonequilibrium states in dispersions of hard rods, Macromolecules, 2000, 33, 5532.
    
    [170] H. Maeda, Atomic force microscopy studies for investigating the smectic structures of colloidal crystals of α-FeOOH, Langmuir, 1996,12, 1446.
    
    [171] J. -C. P. Gabriel, C. Sanchez, P. Davidson, Observation of nematicliquid-crystal textures in aqueous gels of smectite clays, J. Phys. Chem., 1996, 100, 11139.
    
    [172] F. M. van der Kooij, D. van der Beek, H. N. W. Lekkerkerker, Isotropic-nematic phase separation in suspensions of polydisperse colloidal platelets, J. Phys. Chem. B, 2001, 105,1696.
    
    [173] D. van der Beek, T. Schilling, H. N.W. Lekkerkerker, Gravity-induced liquid crystal phase transitions of colloidal platelets, J. Chem. Phys., 2004, 121, 5423.
    
    [174] J. E. G. J. Wijnhoven, D. D. van 't Zand, D. van der Beek, H. N. W. Lekkerkerker, Sedimentation and phase transitions of colloidal gibbsite platelets, Langmuir, 2005, 21, 10422.
    
    [175] D. van der Beek, A. V. Petukhov, P. Davidson, J. Ferre, J. P. Jamet, H. H. Wensink, G. J. Vroege, W. Bras, H. N. W. Lekkerkerker, Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets, Phys. Rev. E, 2006, 73, 041402.
    
    [176] H. H. Wensink, G J. Vroege, H. N. W. Lekkerkerker, Isotropic-nematic density inversion in a binary mixture of thin and thick hard platelets, J. Phys. Chem. B, 2001,105, 10610.
    
    [177] F. M. van der Kooij, H. N. W. Lekkerkerker, Liquid-crystal phases formed in mixed suspensions of rod- and plate- like colloids, Langmuir, 2000,16,10144.
    
    [178] A. B. D. Brown, C. Ferrero, T. Narayanan, A. R. Rennie, Phase separation and structure in a concentrated colloidal dispersion of uniform plates, Eur. Phys. J. B, 1999,11,481.
    
    [179] N. Miyamoto, T. Nakato, Liquid crystalline nature of K_4Nb_6O_(17) nanosheet sols and their macroscopic alignment, Adv. Mater., 2002,14,1267.
    
    [180] N. Miyamoto, T. Nakato, Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate K_4Nb_6O_(17), J. Phys. Chem. B, 2004,108, 6152.
    
    [181] T. Nakato, N. Miyamoto, A. Harada, Stable liquid crystalline phases of colloidally dispersed exfoliated layered niobates, Chem. Commun., 2004,1, 78.
    
    [182] T. Nakato, N. Miyamoto, A. Harada, H. Ushiki, Sol-gel transition of niobium oxide nanosheet colloids: hierarchical aspect of a novel macroscopic property appearing in colloidally dispersed states of layered niobate K_4Nb_6O_(17), Langmuir, 2003,19,3157.
    
    [183] N. Miyamoto, T. Nakato, Liquid crystalline colloidal system obtained by mixing niobate and aluminosilicate nanosheets: a spectroscopic study using a probe dye, Langmuir, 2003,19, 8057.
    
    [184] M. J. Shah, D. C. Thompson, C. M. Hart, Reversal of electro-optical birefringence in bentonite suspensions, Electro-Optical Properties of Bentonite, 1963, 67, 1170.
    [185] A. Kahn, D. R. Lewis, The size of sodium montmorillonite particles in suspension from electro-optical birefringence studies, J. Phys. Chem., 1954, 58, 801.
    
    [186] R. Sasai, N. Ikuta, K. Yamaoka, Reversing-pulse electric birefringence of montmorillonite particles suspended in aqueous media, instrumentation and the effect of particle concentration, ionic strength, and valence of electrolyte on field orientation, J. Phys. Chem., 1996,100,17266.
    
    [187] S. Asakura, F. Oosawa, Interaction between two bodies immersed in a solution of macromolecules, J. Chem. Phys., 1954, 22, 1255.
    
    [188] A. P. Gast, W. B. Russeland, C. K. Hall, An experimental and theoretical study of phase transitions in the polystyrene latex and hydroxyethylcellulose system, J. Colloid and Interface Sci., 1986,109, 161.
    
    [189] B. Vincent, J. Edwards, S. Emmett, R. Croot, Phase separation in dispersions of weakly-interacting particles in solutions of non-adsorbing polymer, Colloids and Surfaces, 1988,31,267.
    
    [190] S. M. Ilett, A. Orrock, W. C. K. Poon, P. N. Pusey, Phase behavior of a model colloid-polymer mixture, Phys. Rev. E, 1995, 51, 1344.
    
    [191] E. J. Meijer, D. Frenkel, Colloids dispersed in polymer solutions: a computer simulation study, J. Chem. Phys., 1994,100, 6873.
    
    [192] J. Buitenhuis, L. N. Donselaar, P. A. Burning, A. Stroobants, H. N. W. Lekkerkerker, Phase separation of mixtures of colloidal boehmite rods and flexible polymer, J. Colloid and Interface Sci., 1995,175, 46.
    
    [193] Z. Dogic, S. Fraden, Development of model colloidal liquid crystals and the kinetics of the isotropic-smectic transition, Phil. Trans. R. Soc. Lond. A, 2001, 359, 997.
    
    [194] H. N. W. Lekkerkerker, A. Stroobants, Phase behavior of rod-like colloid plus fexible polymer mixtures, Nuovo Cimento Delia Societa Italiana Di Fisica D, 1994, 16,949.
    
    [195] P. G. Bolhuis, A. Stroobants, D. Frenkel, H. N. W. Lekkerkerker, Numerical study of the phase behavior of rod like colloids with attractive interactions, J. Chem. Phys., 1997, 107, 1551.
    [196] F. M. van der Kooij, M. Vogel, H. N. W. Lekkerkerker, Phase behavior of a mixture of platelike colloids and nonadsorbing polymer, Phys. Rev. E, 2000, 62, 5397.
    
    [197] M. A. Bates, D. Frenkel, Infinitely thin disks exhibit a first order nematic-columnar phase transition, Phys. Rev. E, 1998, 57,4824.
    
    [198] M. A. Bates, D. Frenkel, Phase behavior of model mixtures of colloidal disks and polymers, Phys. Rev. E, 2000, 62, 5225.
    
    [199] S. D. Zhang, P. A. Reynolds, J. S. Van Duijneveldt, Phase separation in mixtures of colloidal platelets and non-adsorbing polymer: a scaled particle treatment, Molecular Physics, 2002,100, 3041.
    
    [200] H. H. Wensink, H. N. W. Lekkerkerker, Sedimentation and multi-phase equilibria in mixtures of platelets and ideal polymer, Europhys. Lett., 2004, 66,125.
    
    [201] J. W. Boclair, P. S. Braterman, Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts, Chem. Mater., 1999,11,298.
    
    [202] J. W. Boclair, P. S. Braterman, J. Jiang, S. Lou, F. Yarberry, Layered double hydroxide stability. 2. Formation of Cr(III)-containing layered double hydroxides directly from solution, Chem. Mater., 1999,11, 303.
    
    [203] F. Kovanda, D. Kolousek, Z. Cilova, V. Hulinsky, Crystallization of synthetic hydrotalcite under hydrothermal conditions, Appl. Clay Sci., 2005,28, 101.
    
    [204] M. Bellotto, B. Rebours, O. Clause, J. Lynch, D. Bazin, E. Elkaim, A reexamination of hydrotalcite crystal chemistry, J. Phys. Chem., 1996,100, 8527.
    
    [205] P. Benito, F. M. Labajos, V. Rives, Uniform fast growth of hydrotalcite-likecompounds, Crystal Growth & Design, 2006, 6,1961.
    
    [206] A. V. Petukhov, D. van der Beek, R. P. A. Dullens, I. P. Dolbnya, G. J. Vroege, H. N. W. Lekkerkerker, Observation of a hexatic columnar liquid crystal of polydisperse colloidal disks, Phys. Rev. Lett., 2005, 95,077801.
    
    [207] B. J. Lemaire, P. Panine, J. C. P. Gabriel, P. Davidson, The measurement by SAXS of the nematic order parameter of laponite gels, Europhys. Lett., 2002, 59, 55.
    
    [208] H. De Hek, A. Vrij, Interactions in mixtures of colloidal silica spheres and polystyrene molecules in cyclohexane: I. Phase separations, J. Colloid Interface Sci., 1981,84,409.
    
    [209] V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, K. Yoshikawa, Collapse of single DNA molecule in poly (ethylene glycol) solutions, J. Chem. Phys., 1995, 102,6595.
    
    [210] K. Yoshikawa, Y. Matsuzawa, Nucleation and growth in single DNA molecules, J. Am. Chem. Soc., 1996,118, 929.
    
    [211] I. Lelidis, M. Nobili, G. Durand, Electric-field-induced change of the order parameter in a nematic liquid crystal, Phys. Rev. E, 1993,48, 3818.
    
    [212] I. Lelidis, G. Durand, Electric-field-induced isotropic-nematic phase transition,Phys. Rev. E, 1993,48,3822.
    
    [213] M. Meyn, K. Beneke, G. Lagaly, Anion-exchange reactions of layered double hydroxides, Inorg. Chem., 1990,29, 5201.
    [1] Perm, R. L.; Banfield, J. F. Science 1998, 281,969-971.
    
    [2] Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Perm, R. L. Science 2000, 289,751-754.
    
    [3] Colfen H.; Antonietti M. Angew. Chem. Int. Ed. 2005,44, 5576-5591.
    
    [4] Niederberger M.; Colfen H. Phys. Chem. Chem. Phys. 2006, 8, 3271-3287.
    
    [5] Weiner S.; Sagi I.; Addadi L. Science 2005, 309, 1027-1028.
    
    [6] Politi Y.; Arad T.; Klein E.; Weiner S.; Addadi L. Science 2004, 306, 1161-1164.
    
    [7] Zitoun, D.; Pinna, N.; Frolet, N.; Belin, C. J. Am. Chem. Soc. 2005, 127, 15034-15035.
    
    [8] Cheng, Y.; Wang, Y.; Chen, D.; Bao, F. J. Phys. Chem. B. 2005,109, 794-798.
    
    [9] Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. J. Am. Chem. Soc. 2004,126,14943-14949.
    
    [10] Cho, K.-S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127, 7140-7147.
    
    [11] Pradhan, N.; Xu, H.; Peng, X. Nano Lett. 2006, 6, 720-724.
    [12]Rives,V.,Ed.Layered Double Hydroxides;Present and Future;Nova Science Publishers;New York,2001.
    [13]Vaccari,A.Catal.Today 1998,41,53-71.
    [14]Yang L.;Dadwhal M.;Shahrivari Z.;Ostwal M.;Liu P.K.T.;Sahimi M.;Tsotsis T.T.Ind.Eng.Chem.Res.2006,45,4742-4751.
    [15]Williams G.R.;O'Hare D.J.Mater.Chem.2006,16,3065-3074.
    [16]Leroux,F.;Besse,J.-P.Chem.Mater.2001,13,3507-3515.
    [17]Choy J.;Kwak S.;Jeong Y.;Park J.Angew.Chem.In.Ed.2000,4042-4045.
    [18]de Melo J.V.;Cosnier S.;Mousty C.;Martelet C.;Jaffrezic-Renault N.Anal.Chem.2002,74,4037-4043.
    [19]Bravo-Suarez J.J.;Paez-Mozo E.A.;Oyama S.T.Microp.Mesop.Mater.2004,67,1-17.
    [20]Bravo-Suarez J.J.;Paez-Mozo E.A.;Oyama S.Y.Quim.Nov.2004,27,574-581.
    [21]Bravo-Suarez J.J.;Paez-Mozo E.A.;Oyama S.T.Quim.Nov.2004,27,601-604.
    [22]Gardner E.;Huntoon K.M.;Pinnavaia T.J.Adv.Mater.2001,13,1263-1266.
    [23]Gursky J.A.;Blough S.D.;Luna C.;Gomez C.;Luevano A.N.;Gardner E.A.J.Am.Chem.Soc.2006,128,8376-8377.
    [24]Tyner,K.M.;Roberson,M.S.;Berghom,K.A.;Li,L.;Gilmour,R.F.;Batt,C.A.;Giannelis,E.P.J.Controlled Release 2004,100,399-409.
    [25]Liu,S.;Zhang,J.;Wang,N.;Liu,W.;Zhang,C.;Sun,D.Chem.Mater.2003,15,3240-3241.
    [26]Yang F.;Liu S.;Xu J.;Lan Q.;Wei F.;Sun D.J.Colloid Interface Sci.2006,302,159-169.
    [27]Zhao Y.;Li F.;Zhang R.;Evans D.;Duan X.Chem.Mater.2002,14,4286-4291.
    [28]Xu Z.P.;Stevenson G.S.;Lu C.;Lu G.Q.;Bartlett P.F.;Gray P.P.J.Am.Chem.Soc.2006,128,36-37.
    [29]Xu,Z.P.;Stevenson,G.;Lu,C.;Lu,G.Q.J.Phys.Chem.B.2006,110,16923-16929.
    [30]Boclair J.W.;Braterman P.S.Chem.Mater.1999,11,298-302.
    [31]Boclair J.W.;Braterman P.S.;Jiang J.;Lou S.;Yarberry F.Chem.Mater.1999,11,303-307.
    [32]Kovanda F.;Kolousek D.;Cilovaz.;Hulinsky V.Appl.Clay Sci.2005,28,101-109.
    [33]Bellotto M.;Rebours B.;Clause O.;Lynch J.;Bazin D.;Elkalm E.J.Phys.Chem.1996,100,8527-8534.
    [34]Zhang H.;Banfield J.F.Chem.Mater.2002,14,4145-4154.
    [35]Gilbert B.;Zhang H.;Huang F.;Finnegan M.P.;Waychunasc G.A.;Banfield J.F.Geochem.Trans.2003,4(4),20-27.
    [36]Xu,Z.P.;Lu,G.Q.Chem.Mater.2005,17,1055-1062.
    [1] P. N. Pusey, W. van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature 320 (1986) 340-342.
    
    [2] A. Imhof, D.J. Pine, Ordered macroporous materials by emulsion templating, Nature 389 (1997) 948-951.
    
    [3] J. E. G. J. Wrjnhoven, W. L. Vos, Preparation of photonic crystals made of air spheres in titania, Science 281 (1998) 802-804.
    
    [4] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, 0. Toader, H. M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature 405 (2000) 437-440.
    
    [5] A. S. Sonin, Inorganic lyotropic liquid crystals, J. Mater. Chem. 8 (1998) 2557-2574.
    
    [6] J. -C. P. Gabriel, P. Davidson, New trends in colloidal liquid crystals based on mineral moieties, Adv. Mater. 12 (2000) 9-20.
    
    [7] J. -C. P. Gabriel, P. Davidson, Mineral liquid crystals from self-assembly of anisotropic nanosystems, Top Curr. Chem. 226 (2003)119-172.
    
    [8] P. Davidson, J. -C. P. Gabriel, Mineral liquid crystals, Current Opinion in Colloid and Interface Science 9 (2005) 377-383.
    
    [9] L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y.Acad.Sci. 51 (1949) 627-659.
    
    [10] P. A. Burning, H. N. W. Lekkerkerker, Isotropic-nematic phase separation of a dispersion of organophilic boehmite rods, J. Phys. Chem. 97 (1993) 11510-11516.
    
    [11] F. M. van der Kooij, H. N. W. Lekkerkerker, Formation of nematic liquid crystals in suspensions of hard colloidal platelets, J. Phys. Chem. B 102 (1998) 7829-7832.
    
    [12] P. A. Buining, A. P. Philipes, H. N. W. Lekkerkerker, Phase behavior of aqueous dispersions of colloidal boehmite rods, Langmuir 10 (1994) 2106-2114.
    
    [13] D. van der Beek, H. N. W. Lekkerkerker, Nematic ordering vs. gelation in suspensions of charged platelets, Europhys. Lett. 61 (2003) 702-707.
    
    [14] S. D. Zhang, P. A. Reynolds, J. S. van Duijneveldt, Phase behavior of mixtures of colloidal platelets and nonadsorbing polymers, J. Chem. Phys. 117 (2002) 9947-9958.
    
    [15] M. A. Bates, D. Frenkel, Phase behavior of model mixtures of colloidal disks and polymers, Phys. Rev. E 62 (2000) 5225-5229.
    
    [16] F. M. van der Kooij, M. Vogel, H. N. W. Lekkerkerker, Phase behavior of a mixture of platelike colloids and nonadsorbing polymer, Phys. Rev. E 62 (2000) 5397-5402.
    
    [17] S. Y. Liu, J. Zhang, N. Wang, W. R. Liu, C. G. Zhang, D. J. Sun, Liquid crystalline-phases of colloidal dispersions of layered double hydroxides, Chem. Mater. 15(2003)3240-3241.
    
    [18] A. Vaccari, Preparation and catalytic properties of cationic and anionic clays, Catal. Today 41 (1998) 53-71.
    
    [19] A. Vaccari, Clays and catalysis: a promising future, Appl. Clay Sci. 14 (1999) 161-198.
    
    [20] F. Leroux, J. -P. Besse, Polymer interleaved layered double hydroxide: a new emerging class of nanocomposites, Chem. Mater. 13 (2001) 3507-3515.
    
    [21] A. M. Fogg, A. J. Freij, G. M. Parkinson, Synthesis and anion exchange chemistry of rhombohedral Li/Al layered double hydroxides, Chem. Mater. 14 (2002) 232-234.
    
    [22] M. A. Ulibarri, M. C. Hermosin, In Layered Double Hydroxides: Present and Future, Vicente, R. Ed., Nova Science Publishers, New York, 2001, p. 251.
    
    [23] G. Lagaly, O. Mecking, D. Penner, Colloidal magnesium aluminum hydroxide and heterocoagulation with a clay mineral: I. Properties of colloidal magnesium aluminum hydroxide, Colloid Polym. Sci. 279 (2001) 1090-1096.
    
    [24] E. Gardner, K. M. Huntoon, T. J. Pinnavaia, Direct synthesis of alkoxide-intercalated derivatives of hydrocalcite-like layered double hydroxides: precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films, Adv. Mater. 13 (2001)1263-1266.
    
    [25] S. H. Han, W. G. Hou, C. G. Zhang, D. J. Sun, X. R. Huang, G. T. Wang, Structure and the point of zero charge of magnesium aluminium hydroxide, J. Chem. Soc., Faraday Trans. 94 (1998) 915-918.
    
    [26] P. Z. Guo, D. J. Sun, J. Zhang, C. G. Zhang, Studies on synthesis of MMH and rheological properties of concentrated MMH dispersions, Chem. Lett. 32 (2003) 250-251.
    
    [27] Q. Z. Yang, D. J. Sun, X. J. Wang, Synthesis and characterization of polyoxyethylene sulfate intercalated Mg-Al-Nitrate layered double hydroxide, Langmuir 19 (2003) 5570-5574.
    
    [28] H. H. Wensink, H. N. W. Lekkerkerker, Sedimentation and multi-phase equilibria in mixtures of platelets and ideal polymer,Europhys.Lett.66(2004)125-131.
    [29]J.Buitenhuis,L.N.Donselaar,P.A.Buining,H.N.W.Lekkerkerker,Phase separation of mixtures of colloidal boehmite rods and flexible polymer,J.Colloid Interface Sci.175(1995)46-56.
    [30]H.De Hek,A.Vrij,Interactions in mixtures of colloidal silica spheres and polystyrene molecules in cyclohexane;I.Phase separations,J.Colloid Interface Sci.84(1981)409-422.
    [31]V.V.Vasilevskaya,A.R.Khokhlov,Y.Matsuzawa,K.Yoshikawa,Collapse of single DNA molecule in poly(ethylene glycol)solutions,J.Chem.Phys.102(1995)6595-6602.
    [32]K.Yoshikawa,Y.Matsuzawa,Nucleation and growth in single DNA molecules,J.Am.Chem.Soc.118(1996)929-930.
    [33]M.P.B.van Bruggen,H.N.W.Lekkerkerker,Tunable attractions directing nonequilibrium states in dispersions of hard rods,Macromolecules 33(2000)
    [1] K. A. Akhilesh, B. V. R. Tata, Advances in Colloid and Interface Science 78 (1998)49.
    
    [2] V. J. Anderson, H. N. W. Lekkerkerker, Nature 416 (2002) 811.
    
    [3] W. Poon, Science 304 (2004) 830.
    
    [4] Z. Gu, A. Fujishima, O. Sato, J. Am. Chem. Soc. 122 (2000) 12387.
    
    [5] H. Yan, C. F. Blanford, J. C. Lytle, C. B. Carter, W. H. Smyrl, A. Stein, Chem. Mater. 13(2001)4314.
    
    [6] A. S. Sonin, J. Mater. Chem. 8 (1998) 2557.
    [7] J. -C. P. Gabriel, P. Davidson, Adv. Mater. 12 (2000) 9.
    [8] J. -C. P. Gabriel, P. Davidson, Top Curr. Chem. 226 (2003) 119.
    [9] P. Davidson, J. -C. P. Gabriel, Curr. Opin. Colloid Interface Sci. 9 (2005) 377.
    [10] H. Zocher, Z. Anorg. Allg. Chem. 147 (1925) 91.
    
    [11] P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon, Oxford, 1993.
    
    [12] V. Rives, Editor. Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001.
    [13] A. Vaccari, Catal. Today 41 (1998) 53.
    [14] L. Yang, M. Dadwhal, Z. Shahrivari, M. Ostwal, P. K. T. Liu, M. Sahimi, T. T. Tsotsis, Ind. Eng. Chem. Res. 45 (2006) 4742.
    [15] G. R. Williams, D. O'Hare, J. Mater. Chem. 16 (2006) 3065.
    [16] F. Leroux, J. -P. Besse, Chem. Mater. 13 (2001) 3507.
    [17] J. Choy, S. Kwak, Y. Jeong, J. Park, Angew. Chem. In. Ed. 39 (2000) 4042.
    [18] J. V. de Melo, S. Cosnier, C. Mousty, C. Martelet, N. Jaffrezic-Renault, Anal. Chem. 74 (2002) 4037.
    [19] Z. P. Xu, G. S. Stevenson, C. Lu, G. Q. Lu, P. F. Bartlett, P. P. Gray, J. Am. Chem. Soc. 128 (2006) 36.
    
    [20] Z. P. Xu, G. S. Stevenson, C. Lu, G. Q. Lu, J. Phys. Chem. B. 110 (2006) 16923.
    [21] E. Gardner, K. M. Huntoon, T. J. Pinnavaia, Adv. Mater. 13 (2001) 1263.
    [22]K.M.Tyner,M.S.Roberson,K.A.Berghom,L.Li,R.F.Gilmour,C.A.Batt,E.P.Giannelis,J.Controlled Release 100(2004)399.
    [23]F.Yang,S.Y.Liu,J.Xu,Q.Lan,F.Wei,D.J.Sun,J.Colloid Interface Sci.302(2006)159.
    [24]S.Y.Liu,J.Zhang,N.Wang,W.R.Liu,C.G.Zhang,D.J.Sun,Chem.Mater.15(2003)3240.
    [25]N.Wang,S.Y.Liu,J.Zhang,Z.H.Wu,J.Chen,D.J.Sun,Soft Matter 1(2005)428.
    [26]W.X.Zhu,D.J.Sun,S.Y.Liu,N.Wang,J.Zhang,L.Y.Luan,Colloids Surf.A 301(2007)106.
    [27]J.Zhang,L.Y.Luan,W.X.Zhu,S.Y.Liu,D.J.Sun,Langmuir 23(2007)5331.
    [28]L.Onsager,Ann.N.Y.Acad.Sci.51(1949)627.
    [29]S.Lamarque-Forget,O.Pelletier,I.Dozov,P.Davidson,P.Martinot-Lagarde,J.Livage,Adv.Mater.12(2000)1267.
    [30]D.van der Beek,A.V.Petukhov,P.Davidson,J.Ferre,J.P.Jamet.H.H.Wensink,G.J.Vroege,W.Bras,H.N.W.Lekkerkerker,Phys.Rev.E 73(2006)041402.
    [31]I.Lelidis,M.Nobili,G.Durand,Phys.Rev.E 48(1993)3818.
    [32]I.Lelidis,G.Durand,Phys.Rev.E 48(1993)3822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700