双马来酰亚胺树脂基复合材料的离位增韧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双马来酰亚胺树脂(Bismaleimide,BMI)具有良好的的流动性和可模塑性,以及良好的耐高温、耐湿热等优良特性,在很多领域得到了迅速发展和应用。但是,BMI抗冲击损伤能力较差、冲击后压缩强度低,限制了以其为基体的复合材料层合板在飞机的主承力结构件上的应用。为了改善BMI树脂基复合材料的抗冲击损伤能力,传统的增韧方法是在树脂基体中引入增韧剂形成两相结构,提高树脂基体的韧性,达到增韧复合材料的目的。但是这种做法增加了树脂基体的粘度,改变了树脂基体的固化工艺;同时树脂基体韧性虽可以大幅度提高,但是复合材料的韧性提高幅度较小。鉴于这种情况,Aemrican Cyanamid公司提出了Interleaf层间增韧技术。Interleaf增韧方法针对复合材料薄弱的层间实施有目的的选择性增韧。。Interleaf增韧效果明显,但由于Interleaf增韧树脂的刚度和强度比较低,在保证复合材料的设计强度要求下,需要增加额外的纤维层,从而导致复合材料的减重效果大大降低。
     针对以上情况,本文将离位增韧技术应用到BMI树脂基复合材料中。复合材料的制备工艺包括预浸料/热压罐工艺和树脂传递模塑(resin transfer molding,RTM)工艺。离位(Ex-situ)增韧思想是益小苏教授在2001年申请国家973项目时提出的。离位思想的基本原理是:区分原有过程中的各个物理、化学过程,从结构、功能等方面将原来统一的过程分解为若干小问题,分别加以解决。具体来讲就是从热固性树脂相、热塑性树脂相两种纯组分相的叠层结构开始,利用固化反应诱导相分离,通过相反转,形成热塑/热固双连续相的层状结构。其中热固性单相部分保持复合材料原有的静态力学性能和湿/热性能,而热塑/热固双连续相则用来提高复合材料层间分层阻抗和损伤容限。目前,离位增韧技术在环氧预浸料复合材料中得到成功的应用。
     本文将离位增韧技术引入到BMI树脂基复合材料的增韧中去,其中BMI树脂基复合材料的制备工艺包括预浸料/热压罐工艺和RTM工艺。首先分别研究了用于预浸料/热压罐工艺和RTM工艺的BMI树脂体系的固化动力学,绘制出了表征BMI树脂固化工艺特性的时间-温度-转变图(Time-Temperature-Transformation diagram)。其次,针对离位增韧中增韧剂与BMI树脂之间的相分离行为,研究了增韧剂与BMI树脂的反应诱导相分离机理、相形貌演化和力学性能。
     利用离位增韧技术增韧预浸料/热压罐工艺BMI树脂基复合材料,使得BMI树脂基复合材料的冲击后压缩强度提高近61%,同时复合材料的静态力学性能保持良好。
     为了验证离位增韧技术的普适性,将离位增韧技术应用于RTM工艺BMI树脂基复合材料中。实验结果表明,RTM工艺BMI树脂基复合材料经过离位增韧后,Ⅰ型断裂能释放率从增韧前的210J/m~2,提高到增韧后的627J/m~2,提高了近1倍:Ⅱ型断裂能释放率由增韧前的510J/m~2提高到971J/m~2,提高了近1倍。而RTM工艺BMI树脂基复合材料的冲击后压缩强度,由原来的155MPa提高到277MPa,同时复合材料的静态力学性能保持良好,并且离位增韧技术对BMI树脂基复合材料的RTM制备工艺没有影响。。
     本论文进一步对离位增韧RTM工艺BMI树脂基复合材料的力学性能进行了系统研究,其中包括复合材料在低温环境、高温环境、湿热环境等不同环境下的力学性能。发现离位增韧后,室温干态条件下RTM工艺BMI树脂基复合材料的静态力学性能有所提高:-55℃干态条件下,RTM工艺BMI树脂基复合材料的静态力学性能基本保持在室温干态水平,没有发生大幅的降低。另外,RTM工艺BMI树脂基复合材料的开孔拉伸性能经过离位增韧后有所提高。通过对离位增韧RTM工艺BMI树脂基复合材料静态力学性能的系统研究,得出离位增韧技术在大幅度提高复合材料韧性的同时,并不影响复合材料原来的静态力学性能,某些性能还有小幅度的提高,这为离位增韧技术的工程化应用提供了重要的参考意义。
Bismaleimdes(BMIs)with distinguished processing characteristics,excellent heat resistance and hot/wet properties is developed quickly and applied in many fields. However,the application of graphite laminates based on BMI matrix in the primary structure has been limited to some degree by their poor damage resistance and the reduction in compression strength after impact(CAI).A traditional method to improve the toughness of composites is to incorporate toughener component into the matrix system to form a two-phase structure.Unfortunately,many problems such as the low efficiency of toughening,the changing original process of matrix resin are followed by this method.According to the problems of composites,the interlaminar toughening technology-interleaf-is proposed by American Cyanamid company.The concept of interleaved composites is selectively toughening the interlaminar region of composites and the efficiency shows perfect.However,the major disadvantage of interleaved composites is a weight penalty.The tough layers of resin have low stiffness and strength which proportionately reduce the stiffness and strength of the laminate,requiring additional plies to maintain design properties.
     To this question,the Ex-situ concept is firstly proposed by Prof.Xiaosu Yi in national 973 program application in 2001.The principle of Ex-situ concept is to distinguish all kinds of physical and chemical process and break up the unitive process into some little issues based on structure and functions and solve them respectively.Further explanation is to start from the laminated structure of thermoplastic(TP)/thermosetting(TS)resin and the TP/TS co-continuous phase structure is formed by phase decomposition and phase inversion induced by curing reaction.The basic static mechanical properties and hot/wet properties of composites are kept by single thermosetting phase and the impact resistance and damage tolerance of composites is improved by the TP/TS co-continuous phase structure.The Ex-situ toughening technique has been successfully applied in prepreg/autoclave composites based on epoxy matrix.
     In this dissertation,The Ex-situ toughening technique will be introduced into composites based on BMI matrix,including prepreg/autoclave and resin transfer molding process.Firstly,the cure kinetics of BMI resin system suitable for autoclave and RTM process was investigated respectively,then the time-temperature-transformation diagrams were built,which standed for the characteristics of curing process.Secondly,the phase separation mechanism,phase evolution and mechanical properties of toughener/BMI diphase system were investigated to prepare for toughening composite with Ex-situ technique.
     The Ex-situ toughening technique was applied to toughen the T700/BMI composites manufactured with prepreg/autoclave process.The CAI(compression after impact)strength was improved by 61%,and the static mechanical properties of T700/BMI composites were well kept.
     The Ex-situ toughening technique was also transferred to RTM process to further validate the applicability of Ex-situ toughening technique.The experimental results showed that the process of RTM was not influenced by Ex-situ toughening technique. The ModeⅠfracture toughness of composites toughened with Ex-situ technique was improved from the 215J/m~2 to 627J/m~2,nearly two times improvement.The ModeⅡfracture toughness of composites toughened with Ex-situ technique was improved from 510J/m~2 to 905J/m~2,nearly one times improvement.The CAI strength increased from 155MPa to 277MPa,nealy 80%improvement.The basic static mechanical properties of composites were well kept,
     Finally,the mechanical properties of RTM composites toughened with Ex-situ technique was systemically investigatied,including the cryogenic temperature,high temperature and hot/wet properties.The experimental results showed that the mechanical properties of composites toughened with Ex-situ technique were well kept. Some properties such as open hole tension,open hole compression were significantly improved.
引文
[1]益小苏.先进复合材料技术研究与发展.北京:国防工业出版社,2006.
    [2]T.K.O'Brien.Interlaminar Fracture of Composites.NASA TM 85768,1984.
    [3]S.S.Wang.Edge Delamination in Angle-ply Composite Laminates.AIAA Journal,1984,22,p256-264.
    [4]S.S.Wang and R.J.Stango.Optimally Diseretized Finite Elements for Boundary Layer Stresses in Composite Laminates.AIAA Journal,1983,21,p614-620.
    [5]A.S.D.Wang and F.W.Crossman.Calculation of Edge Stresses in Multi-layer Laminates by Sub-structuring.Journal of Composite Materials,1978,12,p76-83.
    [6]R.B.Piper and N.J.Pagano.Interlaminar Stresses in Composite Laminates under Uniform Axial Extension.Journal Composite Materials,1970,4,p538-548.
    [7]A.S.D.Wang.Fracture Mechanics of Sublaminate Cracks in Composite Materials.Composite technology Rev,1984,6,p45-62.
    [8]J.H.Strarnes and J.G Williams.Failure Characteristics of Graphite Epoxy Structural Components Loaded in Compression.NASA TM 84552,1982.
    [9]V.S.Avva.Fatigue Impact Studies in Laminated Composites.AFWAL TR,1983,p83-3060.
    [10]J.G Willimas,T.K.O'Brien and A.J.Chapman.Comparison of Toughened Composite Laminates Using NASA Standard Damage Tolerance Tests.NASA CP-2321,ACEE Composite Structure Technology Conference,Seattle,WA,August,1984.
    [11]T.K.O'Brien,N.J.Johnston,I.S.Raju,D.H.Morris and R.A.Simonds.Comparisons of Various Configurations of the Edge Delamination Test for Interlaminar Fracture Toughness.NASA TM 86433,1985.
    [12]Tough Composite Materials.Recent Developments.NASA Langley Research Center Hampton,Virgina(Noyes Publications,New Jersey,USA,1985).
    [13]W.S.Johnson and P.D.Mangalgiri.Influence of the Resin on Interlaminar Mixed Mode Fracture.NASA TM 87571,1985.
    [14]L.C.Chan,J.K.Gillham,A.J.Kinloch and S.J.Shaw.Advances in Chemsitry No.209 American Chem Soc.Washington DC,1984.
    [15]W.J.Gilwee and Z.Nir.Toughened Reinforced Epoxy Composites with Brominated Polymeric Additives.US Patent 6-493 865,1983.
    [16]A.F.Yee.Modifying Matrix Materials for Tougher Composites.ASTM Toughened Composite Symposium,Houston,TX,March 1985.
    [17]R.W.Hillermeier,B.S.Hayes and J.C.Seferis.Processing of Highly Elastomeric Toughened Cyanate Esters through a Modified Resin Transfer Molding Technique.Polymer Composites,1999,20(1),p155-165.
    [18]D.Rakutt,B.Fitzer and H.D.Stenzenberger.The Toughness and Morphology Spectrum of Bismaleimide/Polyetherimide Carbon Fabric Laminates.High Performance Polymers,1991,3(1),p59-72.
    [19]W.D.Bascom,R.J.Bitner,R.J.Moulton and A.R.Siebert.The Interlaminar Fracture of Organic Matrix Woven Reinforced Composites,Composites,1980,11,p9-18.
    [20]R.E.Evans and J.E.Masters.A New Generation of Epoxy Composites for Primary Structural Applications:Materials and Mechanics.ASTM Toughened Composite Symposium,Houston,TX,March 1985.
    [21]W.L.Bradley and R.N.Cohen.Matrix Deformation and Fracture in Graphite-Reinforced Epoxies.Delamination and Debonding of Materials ASTM STP 876,1985.
    [22]J.E.Masters.Characterization of Impact Damage Development in Graphite/Epoxy Laminates,Fractography of Modern Engineering Materials:Composites and Metals,ASTM STP 948,1987.
    [23]J.C.Seferis.Interlayer Toughened Unidirectional Carbon Prepreg Systems:Effects of Preformed Particle Morphology.Composites Part A:applied science and manufacturing,2003,34,p245-252.
    [24]E.M.WOO and K.L.Mao.Evaluation of Interlminar-Toughened Poly(etherimide)Modified Epoxy/Carbon Fiber Composites.Polymer Composites,1996,17(6),p799-805.
    [25]J.A.Miranda.The Research and Development of Damage Tolerant Carbon Fiber Composites.PhD dissertation,Texas A & M University,December,1999.
    [26]S.C.Kim.Toughening of Carbon Fiber/Epoxy Composite by Inserting Polysulfone Film to Form Morphology Spectrum.Polymer,2004,45,p6953-6958.
    [27]X.F.An,S.Y.Ji,B.M.Tang,Z.L.Zhang and X.S.Yi.Toughness Improvement of Carbon aminates by Periodic Interleaving Thin Thermoplastic Films.Journal of Materials Science Letters,2002,21(22),p1763-1765.
    [28]X.-S.Yi,X.F.An,B.M.Tang and Y.Pan.Ex-situ Formation Periodic Interlayer Structure to Improve Significantly the Impact Damage Resistance of Carbon Laminates.Advanced Engineering Materials,2003,5(10),p729-732.
    [29]W.Long,Y.H.Xu,and X.S.Yi.Preliminary Study on Resin Transfer Molding of Highly-Toughened Graphite Laminates by Ex-Situ Method.Journal of Materials Science,2004,39,p2263-2266.
    [30]A.P.Mouritz.Thermal Degradation of the Mode I Interlaminar Fracture Properties of Stitched Glass Fibre/Vinyl Ester Composites.Journal of materials science,1998,33,p2629-2638.
    [31]C.Pederson,C.L.Faro and M Aldridge and R.Maskell.Epoxy-Soluble Thermoplastic Fibers:Enabling Technology for Manufacturing High Toughness Structure by Liquid Resin Infusion.SAMPE Journal,2003,39(4),p22-28.
    [32]P.J.Hogg.Interlaminar Fracture Toughness of Hybrid Composite Based on Commingled Yard Fabrics.Composites Science and Technology,2005,65,p1547-1563.
    [33]R.W.Hillermeier and J.C.Seferis.Interlayer Toughening of Resin Transfer Molding Compostes.Composites,Part A:Applied Science and Manufacturing,2001,32,p721-729.
    [34]T.Inoue.Reaction-Induced Phase Decompositeion in Polymer Blends.Progress in Polymer Science,1995,20,p119-153.
    [35]余英丰.热塑性改性环氧体系的复杂相分离.复旦大学博士学位论文,2004.
    [36]J.Y.Jin,J.Cui and S.J.Li.On Polyeterimide Modified Bismaleimide Resin,ⅠEffect of the Chemical Backbone of Polyetherimide.Macromolecular Chemistry and Physics,1999,200(8),p1956-1960.
    [37]J.Y.Jin,J.Cui and S.J.Li.Polyetherimide Modified Bismaleimide Resins.ⅡEffect of Polyetherimide Content.Jorunal of Applied Polymer Science,2001,81,p250-258.
    [38]陶庆胜.聚醚酰亚胺改性氰酸酯体系的反应诱导相分离研究.复旦大学博士学位论文,2004.
    [39]P.W.Erickson and E.P.Plueddemann,Mechanics of Load Transfer at the Interface.New York:Academic Press,1974.
    [40]G.A.Cooper and A.Kelley,Role of the Interface in the Fracture of Fiber-Composite Materials.in Interfaces in Composites,Philadelphia:ASTM STP452,1968,p90-106.
    [41]N.R.Sottos.The Influence of Interphase on Local Thermal Stresses and Deformations in Composites.Ph.D.Dissertation,University of Delaware,Newark,Delaware,1990.
    [42]G.R.Palmese.Interphases in Thermosetting Composites,Ph.D.Dissertation,University of Delaware,Newark,Delaware,1990.
    [43]P.E.Rouse,Jr.A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers.Journal of Chemical Physics,1953,21(7),p1272-1280.
    [44]P.G.de Gennes.Scaling Concepts in Polymer Physics.Cornell University Press:Ithaca,NY,1979.
    [45]M.Doi and S.F.Edwards,The Theory of Polymer Dynamics.Clarendon Press,Oxford,1986.
    [46]P.G.de Gennes,Reptation of a Polymer Chain in the Presence of Fixed Obstacles.Journal of Chemical Physics,1971,55(2),p572-579.
    [47]R.P Wool,Polymer Interfaces:Structure and Strength.Hanser/Gardner Publishers,Inc.,Cincinnati,1995.
    [48]Voyutskii,S.S.Autohesion and Adhesion of High Polymers.New York,Wiley Intersience,1963.
    [49]S.S.Voyutskii.The Diffusion Theory of Adhesion.Rubber Chemistry and Technology Journal,1960,33,p748-756.
    [50]S.S.Voyutskii and V.L.Vakula,The Role of Diffusion Phenomena in Polymer-to-Polymer Adhesion.Journal of Applied Polymer Science,1963,7,p475-491.
    [51]H.H.Kausch and M Tirrell.Polymer Interdiffusion.Annual Review of Materials Science,1989,19,p341-377.
    [52]R.P.Wool and K.M.O'Connor.A Theory of Crack Healing in Polymers.Journal of Applied Physics,1981,52(10),p5953-5963.
    [53]P.Denison,F.R.Jones and J.F.Watts.Interfaces in Polymer,Ceramic,Metal Matrix Composites.Ed.H.Ishida,Elsvier,1988,p77-85.
    [54]L.T.Drzal,M J.Rich,and P.F.Lloyd.Adhesion of Graphite Fibers to Epoxy Matrices:Ⅰ.The Role of Fiber Surface Treatment.The Journal of Adhesion,1983,16(1),p1-30.
    [55]L.T.Drzal,M.J.Rich,M.F.Koenig and P.F.Lloyd.Adhesion of Graphite Fibers to Epoxy Matrices:Ⅱ.The Effect of Fiber Finish.The Journal of Adhesion,1983,16(2),p133-152.
    [56]A.B.Pangelinan,Surface Induced Molecular Weight Segregation in Thermoplastic Composite.Ph.D.Dissertation,University of Delaware,Newark,Delaware,1991.
    [57]H.T.Oyama,J.J.Lesko and J.P.Wightman.Interdiffusion at the Interface between Poly(vinylpyrrolidone)and Epoxy.Journal of Polymer Science Part B:Polymer Physics,1997,35,p331-346.
    [58]P.G.de Gennes,Scaling Concepts in Polymer Physics.Cornell University Press:Ithaca,NY,1979.
    [59]H.S.Min and S.C.Kim.Fracture Toughness of Polysuifone/Epoxy Semi-IPN with Morphology Spectrum.Polymer Bulletin,1999,42,p221-227.
    [60]Y.S.Kim and S.C.Kim.Properties of Polyetherimide/Dicyanate Semi-interpenetrating Polymer Network Having the Morphology Spectrum.Macromolecules,1999,32,p2334-2341.
    [61]陈祥宝.高性能树脂基体.北京:化学工业出版社,1999.
    [62]F.J.McGarry.Building Design with Fibre Reinforced Materials.Proceedings of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,1970,319,p59-68.
    [63]J.N.Sultan,R.C.Laible and F.J.McGarry.Microstructure of Two-Phase Polymers.Applied Polymer Symposium,1971,16,p127-136.
    [64]J.Lee and A.F.Yee.Inorganic Particle Toughening Ⅰ:Micro-Mechanical Deformations in the Fracture of Glass Bead Filled Epoxies.Polymer,2001,42(2),p577-588.
    [65]J.Lee and A.F.Yee.Inorganic Particle Toughening Ⅱ:Toughening Mechanisms of Glass Bead Filled Epoxies,Polymer,2001,42(2),p589-597.
    [66]J.B.Rose.Preparation and Properties of Poly(arylene ether sulphones).Polymer,1974,15(7),p456-465.
    [67]C.B.Bucknall and I.K Partridge.Phase Separation in Epoxy Resins Containing Polyethersuiphone.Polymer,1983,24(5),p639-644.
    [68]R.S.Raghava.Role of Matrix-Particle Interface Adhesion on Fracture Toughness of Dual Phase Epoxy-Polyethersulfone Blend.Journal of Polymer Science Part B:Polymer Physics,1987,25(5),p1017-1031.
    [69]J.L.Hedrick,I.Yilgor,M.Jurek,J.C.Hedrick,G.L.Wilkes and J.E McGrath.Chemical Modification of Matrix Resin Networks with Engineering Thermoplastics:1.Synthesis,Morphology,Physical Behaviour and Toughening Mechanisms of Poly(arylene ether sulphone)Modified Epoxy Networks.Polymer,1991,32(11),p2020-2032.
    [70]C.B.Bucknll and A.H.Gilbert.Toughening Tetrafunctional Epoxy Resins Using Polyetherimide.Polymer,1989,30(2),p213-217.
    [71]安学锋.基于复相体系的层状化增韧复合材料研究.浙江大学博士学位论文.2004.
    [72]唐邦铭.先进复合材料树脂膜渗透成形及其高性能化技术研究.北京航空材料研究院博士学位论文.2005.
    [1]梁国正,顾嫒娟.双马来酰亚胺树脂.北京:化学工业出版社,1997.
    [2]R.S戴夫,A.C.卢斯编著,方征平,沈烈译.高分子复合材料加工工程,北京:化学工业出版社,2004.
    [3]W.G Kim,J.Y.Lee and K.Y.Park.Curing Reaction of O-cresol Novolac Epoxy Resin According to Hardener Change.Journal of Polymer Science Part A:Polymer.Chemistry,1993,31(3),p633-639.
    [4]A.Moroni,J.Mijovic,E.M.Pearce and C.C.Foun.Cure Kinetics of Epoxy Resins and Aromatic Diamines.Journal of,Applied Polymer Science,1986,32(2),p3761-3773.
    [5]C.C.Su,E.M.Woo,C.Y.Chen and R.R.Wu.N.m.r.and FT i.r.Studies on Transreactions and Hydroxyl Exchanges of Bisphenol-A Polycarbonate with An Epoxy upon Heating.Polymer,1997,38(9),p2047-2056.
    [6]S.Montserrat,C.Flaque,P.Pages and J.MaleK.Effect of the Crosslinking Degree on Curing Kinetics of An Epoxy-Anhydride System.Journal of,Applied Polymer Science,1995,56(11),p1413-1421.
    [7]L.Barral,J.Cano,A.J.Lopez,,J.Lopez,P.Nogueira and C.Ramirez.Isothermal Cure Kinetics of a Diglycidyl Ether of Bisphenol A/1,3-Bisaminomethylcyclohexane(DGEBA/1,3-BAC)Epoxy Resin System.Journal of,Applied Polymer Science,1995,56(9),p1029-1037.
    [8]C.S.Chern and G.W.Poehlein.A Kinetic Model for Curing Reactions of Epoxides with Amines.Polymer Engineering and Science,1987,27(11),p788-795.
    [9]L.Chiao and R.E.Lyon.A Fundamental Approach to Resin Cure Kinetics.Journal of Composite Materials,1990,24(7),p 739-752.
    [10]K.C.Cole.A New Approach to Modeling the Cure Kinetics of Epoxy/Amine Thermosetting Resins.1.Mathematical Development.Macromolecules,1994,24(11),p3093-3097.
    [11]K.C.Cole,J.J.Hechler,and D.Noel.A New Approach to Modeling the Cure Kinetics of Epoxy/Amine Thermosetting Resins.2.Application to a Typical System Based on Bis[4-(diglycidylamino)Phenyl]Methane and Bis(4-aminophenyl)Sulfone.Macromolecules,1994,24(11),p3098-3110.
    [12]S.V.Muzumdar and L.J.Lee.Prediction of Gel-Time in the Cure of Unsaturated Polyester resins:Phenomenological Modeling vs.Statistical Analysis.Polymer Engineering and Science.1991,31(23),p1647-1656.
    [13]V.M.Gonzalez-Romero and N.Casillas.Isothermal and Temperature Programmed Kinetic Studies of Thermosets,Polymer Engineering and Science,1989,29(5),p295-301.
    [14]J.L.Hong,C.K.Wang and R.H.Lin.Cure Kinetics of Different Molar Ratios of 4,4\-Bismaleimidodiphenylmethane and Bisphenol A Dicyanate.Journal of Applied Polymer Science,1994,53(1),p105-112.
    [15]高家武.高分子材料近代测试技术.北京:北京航空航天大学出版社,1994.
    [16]L.E.N.Ielsen.Crosslinking Effect on Physical Properties of Polymers.Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics.1969.C3p69103.
    [17]P.J.Flory.Principles of Polymer Chemistry.1953,Cornell University Press,Ithaca,NY.
    [18]陈祥宝.聚合物基复合材料手册.北京:化学工业出版社,2004.
    [1]刘克静,张海春,陈天禄.一步法合成带有酞侧基的聚芳醚砜.申请号:CN85101721.发明专利,1985.
    [2]张海春,陈天禄,袁雅桂.合成带有酞侧基的新型聚醚醚酮.申请号:CN85108751.发明专利,1985.
    [3]K.Yamanaka and T.Inoue.Structure Development in Epoxy Resin Modified with Poly(ether sulphone).Polymer,1989,30(4),p662-667.
    [1]G.Y.Nam,G.W.Yong and C.K.Sung.Toughening of Carbon Fiber/Epoxy Composite by Inserting Polysulfone Film to Form Morphology Spectrum.Polymer,2004,20(16),p6953-6958.
    [2]C.B.Bucknall and I.K.Partridge.Phase Separation in Epoxy Resins Containing Polyetersuiphone.Polymer,24(5),p639-644.
    [3]C.B.Bucknall and A.H.Gilbert.Toughening Tetrafunctionai Epoxy Resins Using Polyetherimide.Polymer,30(2),p213-217.
    [4]益小苏.先进复合材料技术研究与发展.北京:国防工业出版社,2006.
    [5]X.S.Yi,X.F.An,B.M TANG and Y.PAN.Ex-situ Formation of Periodic Interlayer Structure to Significantly Improve the Impact Damage Resistance of Carbon Laminates.Advanced Engineering Materials,2003,5(10),p729-732.
    [6]益小苏等.一种增韧的复合材料层合板及其制备方法.申请号:200610099381.9.国防专利,2006
    [7]X.S.Yi,X.F.An,B.M.Tang.A kind of Toughened Composite Laminates and Their Fabrication Technology.PCT.Pat.No.FP 1060809P,2006.
    [8]益小苏,安学锋,唐邦铭,张子龙,纪双英.一种提高层状结构复合材料韧性的方法.申请号:CN01100981.0.发明专利,2001.
    [9]安学锋.基于复相体系的层状化增韧复合材料研究.浙江大学博士学位论文.2004.
    [10]Advanced Composite Compression Tests.Boeing Specification Support Standard BSS 7620,1982.
    [11]K.Srinivasan,W.C.Jackson,B.T.Smith and J.A.Hinkley.Charaterization of Damage Modes in Impacted Thermoset and Thermoplastic Composites.Journal of Reiforced Plasctics and Composites 1992,11,11111-1126.
    [12]Standard Tests for Toughened Resin Composites.NASA Reference Publication 1092.1982.
    [13]Boeing Specification Support Standard BSS 7260.Advanced composite compression test.1982.
    [14]Test Method for Compression After Impact Properties of Oriented Fibre Composites SRM 2-88.Suppliers of Advanced Composite Materials Association.
    [15]J.C.Prichard and P.J.Hogg.The Role of Impact Damage in Post-Impact Compression Testing,Composites,1990,21(6),p503-511.
    [16]P.T.Curtis.CRAG Test Methods for the Measurement of the Engineering Properties of Fibre Reinforced Plastics.RAE TR 88012.Royal Aerospace Establishment,UK 1988.
    [17]HB6739-93.碳纤维复合材料层合板冲击后压缩实验方法.中国航空工业总公司 1993.
    [18]L.Broutman and A.Rotem.Impact Strength and Toughness of Fiber Composite Material,Foreign Object Impact Damage to Composites.ASTM STP 568,American Society for Testing and Materials,Philadelphia,1975,p114-133.
    [19]P.J.Falzon.The Design,Manufacture and Performance of Two-Dimensional Braided Composites.PhD Thesis,RMIT University,March,1997.
    [1]A.Watt,A.A.Goodwin and A.P.Mouritz.Thermal Degradation of the Mode I Interlaminar Fracture Properties of Stitched Glass Fibre/Vinyl Ester Composites.Journal of materials science,1998,33,p2629-2638.
    [2]C.Thanomsilp and P.J.Hogg.Interlaminar Fracture Toughness of Hybrid Composites based on Commingled Yarn Fabrics.Composites Science and Technology,2005,65,p1547-1563.
    [3]X.S.Yi,X.F.An and B.M.Tang.A kind of Toughened Composite Laminates and Their Fabrication Technology.PCT.Pat.No.FP 1060809P,2006.
    [4]益小苏,安学锋,唐邦铭,张子龙,纪双英.一种提高层状结构复合材料韧性的方法.申请号:CN01100981.0.发明专利,2001.
    [5]FIB 7402-96.碳纤维复合材料层合板Ⅰ型层间断裂韧性G_(IC)试验方法,1996.
    [6]S.P.Wilkingson,T.C.Ward and J.E.McGrath.Effect of Thermoplastic ModifierVariables on Toughening a Bismaleimide Matrix Resin for High-Performance Composite Materials.Poloymer,1993,34(4),p870-884.
    [7]HB 7403-96.碳纤维复合材料层合板Ⅱ型层间断裂韧性Gnc试验方法,1996.
    [8]Boeing Support Specification(BSS)7260.Compression After Impact Test.Renton,Washington:Boeing Commercial Airplane Group,1992.
    [9]J.C.Prichard and P.J.Hogg.The Role of Impact Damage in Post-Impact Compression Testing.Composites,1990,21(6),p503-511.
    [10]GB/T3354-1999.定向纤维增强塑料拉伸性能试验方法,1999.
    [11]GB/T3856-2005.单向纤维增强塑料平板压缩性能试验方法,2005.
    [12]GB/T3356-2005.单向纤维增强塑料弯曲性能试验方法,2005.
    [13]GB/T3357-2005.单向纤维增强塑料的层间剪切强度试验方法,2005.
    [14]R.Olsson.Factors Influencing the Interlaminar Fracture Toughness and Its Evaluation in Composites.FFA TN 1991-34,The Aeronautical Research Institute of Sweden(FFA),Dec.1992.
    [15]J.E.Grady.Fracture Toughness Testing of Polymer Matrix Composites.NASA Technical Paper 3199,National Aeronautics and Space Administration,Nov.1992.
    [16]J.Masters.Improved Impact and Ddamination Resistance through Interleafing,Key Engineering Materials,1989,37,p317-348.
    [17]E.M.Woo and K.L.Mao.Evaluation of Interlaminar-Toughened Poly(etherlmide)-modified Epoxy/Carbon Fiber Composites.Polymer Composites,1996,17(1),p799-805.
    [18]Y.S.Kim and S.C.Kim.Toughening of Carbon Fiber/Thermoset Composite by the Morphology Spectrum Concept.Polymer Composites,1998,19(6),p714-723.
    [19]A.J.Russell,and K.N.Street.The Effect of Matrix Toughness on Delamination:Static and Fatigue Fracture under Mode Ⅱ Shear Loading of Graphite Fiber Composites.Tougheded Composites,ASTM STP 937,p275-294.
    [20]T.Inoue.Reaction-Induced Phase-Decomposition in Polymer Blends.Progress in Polymer Science,1995,200,p119-153.
    [21]K.Srinivasan,W.C.Jackson,B.T.Smith and J.A.Hinkley.Characterization of Damage Modes in Impacted Thermoset and Thermoplastic Composites.Journal of Reinforced Plastics and Composites,1992,11(10),p1111-1126.
    [22]J.D.Andre.The Manufacture and Mechanical Properties of Interleaved RTM Composites.PhD dissertation,Royal Melbourne Institute of Technology(RMIT)University,Australia,2001.
    [23]A.Aksoy and L.A.Carlsson.Interlaminar Shear Fracture of Interleaved Graphite/Epoxy Composites.Composites Science and Technology,1992,43(1),p55.
    [24]GB/T3366-1996.碳纤维增强塑料纤维体积含量试验方法,1996.
    [25]N.Sela and O.Ishai.Interlaminar Fracture Toughness and Toughening of Laminated Composite materials:A Review.Composites,1989,20(5),p423-435.
    [26]E.Girard-Reydet,V.Vicard,J.P.Pascault and H.Sautereau.Polyetherimide-Modified Epoxy Networks:Influence of Cure Conditions on Morphology and Mechanical Properties.Journal of Applied Polymer Science,1997,65,p2433.
    [27]A.J.Kinloch,M.L.Yuen and S.D.Jenkins.Thermoplastic-Toughened Epoxy Polymers.Journal of Materials Science,1994,29(14),p3781-3790.
    [1]J.X.Zhao,H.K.Din and J.X.Wei.The Thermophysical and Thermal Shock Resistance Properties of Carbon-Carbon Composites.Proceedings of ICCM-6,London,eds F L Matthews,NCR Buskell,J M Hodgkinson and J Morton,Elsevier Applied Science,1987,4,p394-400.
    [2]J.D.Andre.The Manufacture and Mechanical Properties of Interleaved RTM Composites.Ph.D dissertation,Royal Melbourne Institute of Technology (RMIT)University,Australia,June 2001.
    [3]X.S.Yi,X.F.An and B.M.Tang.A kind of Toughened Composite Laminates and Their Fabrication Technology.PCT.Pat.No.FP 1060809P,2006.
    [4]益小苏,安学锋,唐邦铭,张子龙,纪双英.一种提高层状结构复合材料韧性的方法.申请号:CN01100981.0.发明专利,2001.
    [5]HB7401-96.树脂基复合材料层合板湿热环境吸湿试验方法.中华人民共和国航空工业标准。
    [6]R.P.Reed and M.Gold.Cryogenic Composite Supports:A Review of Strap and Strut Properties.Cryogenic,1997,37(5),p233-250.
    [7]R.P.Reed and M.Golda.Cryogenic Properties of Unidirectional Composites.Cryogenics,1991,34(11),p909-928.
    [8]R.W.Grenoble.Mechanical Properties and Durability of A Composite Material at Cryogenic Temperatures.Ph.D dissertation,Old Dominion Uinversity,2006.
    [9]L.R.Bao.Moisture Absorption and Hygrothermal Aging in A Bismaleimide Resin and Its Carbon Fiber Composites.Ph.D.dissertation,The University of Michigan,2001.
    [10]S.Choi and B.V.Sankar.A Micromechanics Method to Predict the Microcracking of the LH2 Composite Tank at Cryogenic Temperature.In:Proceedings of the Fifth International Congress on Thermal Stresses and Related Topics,Blacksburg,VA,June 2003,p.WM441-444.
    [11]S.Choi and B.V.Sankar.Fracture Toughness of Transverse Cracks in Graphite/Epoxy Laminates at Cryogenic Conditions.Composites Part B:Engineering,2007,38,p193-200.
    [12]K.Whitley and T.Gates.Thermal/Mechanical Response and Damage Growth in Polymeric Composites at Cryogenic Temperatures.43rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,2002,AIAA.
    [13]T.Ishikawa,N.Shikata,Y.Hamaguchi and G Bion.Behavior in Open Hole Compression(OHC)Tests and Proposal of Shorter Specimen.In:Proceedings of ICCM-14.USA:Society of Manufacturing Engineers,2003,CD-ROM.
    [14]E.Iarve and N.J.Pagano.Singular Full-Field Stresses in Composite Laminates with An Open Hole,International Journal of Solids and Structures,2001,38,p1-28.
    [15]E.Iave.Spline Variational Three Dimensional Stress Analysis of Laminated Composite Plates with Open Holes.International Journal of Solids and Structures,1996,33(14),p2095-2118.
    [16]J.Lankford.The Compressive Failure of Polymeric Composites under Hydrostatic Confinement.Composites Part A:Applied Science and Manufacturing,1997,28,409-418.
    [17]P.Berbinau,C.Soutis and I.A.Guzl.Compressive Failure of 0° Unidirectional Carbon Fiber-Reinforced Plastic(CFRP)Laminates by Fiber Microbuckling.Composites Science and Technology,1999,59,p1451-1455.
    [18]L.B.Lessard and F.K.Chang.Effect of Load Distribution on Fiber Buckling Strength of Unidirectional Composites.Journal of Composite Materials,1991,25,p65-87.
    [19]E.G Guynn,W.L.Bradley and O.O.Ochoa.A Parametric Study of Variables that Affect Fiber Microbuckling Initiation in Composite Laminates:Part 2-Experiments.Journal of Composite Materials,1992,26(11),p1617-1643.
    [20]M.D.Rhodes,M.M.Mikulas and P.E.McGowan.Effects of Orthotropy on the Compression Strength of Graphite Epoxy Panels with Holes.AIAA Journal,1984,22(9),p1283-1292.
    [21]S.D.Andrews.The Effect of Fastener Hole Defects Journal of Composite Materials,1993,27(1),p2-20.
    [22]A.K.Afaghi and Y.W.Mai.An Effective Crack Growth Model for Residual Strength Evaluation of Composite Laminates with Circular Holes.Journal of Composite Materials,1996,30(2),p142-163.
    [23]H.Suemasu,H.Takahashi and T.Ishikawa On Failure Mechanisms of Composite Laminates with An Open Hole Subjected to Compressive Load.Composites Science and Technology,2006,66,p634-641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700