化学还原法去除饮用水中溴酸盐比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文比较了硫酸亚铁还原法、零价铁粉还原法、铁炭微电解还原法对溴酸盐的去除效果。通过静态实验对各种方法的影响因素进行了研究,选出最优的方法,然后进行小试实验。最后,从处理效果、经济成本、技术可行性三方面对三种方法进行了分析比较。
     通过静态实验研究了FeSO4投加量、反应时间、pH值、DO等因素对硫酸亚铁还原去除溴酸盐的影响。结果表明:在pH为8.0~9.0,反应时间为30min时,投加20mg/L的FeSO4可以将30μg/L的溴酸盐去除60%。同时可知该反应满足假一级反应动力学方程。
     通过静态实验对零价铁粉的表面性质、溶解氧、pH值、BrO3-初始浓度、温度和摇床转速等因素进行研究。研究表明,对零价铁表面进行酸洗活化后去除效率显著提高;用氮气对溶液进行吹脱后可以提高去除效果;溶液的pH值在酸性条件下可促进还原反应的进行;溴酸盐浓度过高会对活性点产生竞争效应;铁粉表面附载一层金属铜可以加速BrO3-的还原去除。零价铁粉在连续与溴酸盐反应过程中会出现钝化现象,将溶液的pH值调节至酸性或加入一定量的Cl-可以使零价铁重新活化。
     铁炭微电解还原去除的影响因素包括:铁炭比、pH值、溶液的电导率、摇床转速和反应温度等。研究表明,Fe/C还原体系适宜的铁炭质量比为2:1~4:1;溶液中加入电解质后提高对溴酸盐的去除效果;增大摇床的转速可以强化溴酸盐与还原体系之间的传质过程;铁炭微电解在25~37℃的反应温度范围内均可保持较高的处理效率;铁炭微电解在pH值酸性条件下处理效果较好。
     对以上三种方法进行比较分析可知,铁炭微电解法效果最好。通过动态小柱实验对铁粉-活性炭柱和铁屑-活性炭柱对BrO3-的去除效果进行研究。模拟工程实际情况,对铁炭比和EBCT进行了优化。对于铁炭床易板结,从而对去除BrO3-产生影响,因此对于需要定期对其进行活化和反冲。
     在以上静态和动态实验研究的基础上,着重从去除效果、成本、实际操作的难易度、水厂不同运行条件(突发性应急事件、水厂正常运行等情况)以及铁炭床板结后的活化和维护等方面对三种方法进行分析比较。最后确定不同情况适宜采用的方法。
This paper used ferrous sulfate reduction, zero-valent iron reduction and iron-carbon micro-electrolysis methods to remove bromate from drinking water. After investigated influencing factors by static experiments, optimal method was selected and used to investigate its continuous operation effects. Finally, the three methods were compared and analyzed in terms of treatment effects, economic costs and technical feasibility.
     The impacts of FeSO4 dosage, reaction time, pH value, DO and other factors on ferrous sulfate reducting bromate was investigated by static experiment. The results show that: when pH was 8.0-9.0, 60% of the bromate (30μg/L) can be removed after 30min reaction with 20mg/L FeSO4 addition. At the same time, we can see that the reaction was fit for the pseudo-first order reaction kinetics.
     The study investigated the factors such as surface properties of zero-valent iron, dissolved oxygen, pH, initial concentration of BrO3-, temperature and shaker speed by static experiments. The results show that: the removal efficiency of zero-valent iron was increased significantly after pickling to restore the activation; treating the solution by nitrogen stripping could improve the removal efficiency; low pH could promote the conducting of the reduction degradation reaction; too high bromate concentration would generate competition effects at active sites; the reduction and removal rate of BrO3- was accelerated because of the iron surface covered by a layer of metallic copper. Zero-valent iron powder would appear passive phenomenon in a continuous reaction with bromate. Adjusting the pH of solution to acidic or adding Cl- would make zero-valent iron re-activation.
     The main influencing factors of removal of iron-carbon micro-electro-reduction include iron-carbon ratio, pH, solution conductivity, shaker speed, reaction temperature and so on. The results show that: the suitable iron-carbon ratio in Fe/C reduction system was 2:1-4:1, add electrolytes into the solution could improve the removal rate of bromate. Increase the speed of shaking could strengthen the transfer process between bromate and reduction system. Iron-carbon micro-electrolysis could maintain a higher processing efficiency at 25-37℃. Under the low pH conditions, the treatment effect of iron-carbon micro-electrolysis was good.
     Comparing and analysing the above three methods, we can know that iron-carbon micro-electrolysis method is the optimal method. The paper studied the effects of BrO3- removal rate in the iron powder-activated carbon columns and iron filings-activated carbon columns through dynamic small-column tests. Simulating practical engineering, iron-carbon ratio and EBCT were optimized. The iron-carbon bed hardened easily and furthermore influenced the removal rate of BrO3-, therefore the iron-activated carbon column need to be actiated and recoiled regularly.
     Based on the above static and dynamic experiments study, the analysis and comparison of these three methods focused on the removal efficiency, cost, ease of practical operation, different operating conditions in water treatment plant (unexpected emergency event, normal running, etc.) as well as the activation and maintenance of iron-carbon bed board after hardened. Finally, the suitable methods for different situations were detemined.
引文
1 Metcalf & Eddy, Inc. (1991) Wastewater Engineering: Treatment, Disposal and reuse, 3ded. McGraw-Hill, New York
    2 U. V. Gtlnten. Ozonation of Drinking Water: PartⅡ. Disinefction and By- Product Formation in Presence of Bromide, Iodide or Chlorine. Water Research. 2003, 37: 1469~1487.
    3 U. Von Gunten. Bromate Formation during Ozonation of Bromide Contanining Waters Interaction of Ozone and Hydroxyl Radical Reactions. Environmental Science and Technology. 1994, 28(7): 1234.
    4 USEPA. Health Risk Assessment/Characterization of the Drinking Water Disinfection By-product Bromate. Fed. Reg. 63: 61: 5673. FR. Document, 98~8215(Mar. 13. 1998).
    5 T. V. Luong, C. J. Peters, R. Perry. Occurrence of Bromide in Source and Treated Waters. Effluent Water Treatment. 1983, 5: 192~197
    6 C. T. Meijers, J. C. Kruithof. Potential Treatment Options for Restriction of Bromate Formation and Bromate Removal. Water Supply. 1995, 13: 183~189
    7董文艺.臭氧化组合工艺净水效能及副产物控制对策研究.哈尔滨工业大学博士论文. 2004: 61~73
    8 H. Weinberg, S. Carriea, V. Unnam. Bromate in Chlorinated Drinking Waters: Occurrence and Implications for Future Regulation. Environmental Science and Technology. 2003, 37: 3104~3110
    9 W. R. Haag, J. Hoigne. Oznation of Bromide Containing waters: Kinetics of Formation of Hypobromous Acid and Bromate. Environmental Science and Technology. 1983, 17: 261~267
    10 U. V. Gunton, J. Hoigne. Bromate Formation during Ozonation of Bromide Containing Waters: Interaction of Ozone and Hydroxyl Radical Reactions. Environmental Science and Technology. 1994, 28(7): 1234~1242
    11 A. Mari, A. Takaka. Occurrence and Control of Bromate in Aqueous Media. Health Science. 1999, 45: 344~355
    12 S. W. Krasner, W. H. Glaze, H. S. Weinberg, et al. Formation and Control of Bromate during Ozonatioin of Waters Containing Bromide. American Water Works Association. 1993, 85: 73~81
    13 G. Thomas, I. Najim. Bromate Formation and Control during Ozonation of Low Bromide Waters. Published by American Water Works Association ResearchFoundation and American Water Works Association. 2001: 38~65
    14 U. V. Gunten. Ozonation of Drinking Water: Part II. Disinfection and By-Product Formation in Presence of Bromide, Iodide or Chlorine. Water Research. 2003, 37: 1469~1487
    15 R. G. Song, P. Westerhoff, R. Minear, G. Amy. Bromate Minimization during Ozonation. American Water Works Association. 1997, 89(6): 69~78
    16 U. Pinkernell, U. V. Gunten. Bromate Minimization during Ozonation: Mechanistic Considerations. Environmental Science and Technology. 2001, 35(12): 2525~2531
    17 R. G. Song, R. Minear, P. Westerhoff, G. Amy. Modeling and Risk Analysis of Bromate Formation from Ozonation of Bromide-Containing Waters. Water Science and Technology. 1996, 34(7-8): 79~85
    18 H. M. Shukairy, R. J. Miltner, R. S. Summers. Bromides Effect on DBP Formation, Speciation and Controlling Biotreatment. American Water Works Association. 1995, 87(10): 71~82
    19 M. Siddiqui, G. Amy. Factors Affecting DBP Formation during Ozone Bromide Reactions. Journal American Water Works Association. 1993, 85(1): 63~72
    20 M. D. Williams, B. M. Coffey, S. W. Krasner. Evaluation of pH and Ammonia for Controlling Bromate during Cryptosporidium Disinfection. American Water Works Association. 2003, 95(10): 82~93
    21陈美发.控制长江口北支咸潮倒灌支持南水北调.水利水电科技进展. 2003, 23(3): 17~18
    22 M. S. Elovitz, U. V. Gunten. Hydroxyl Radical/Ozone Ratios during Ozonation Processes. I. The R-ct Concept. Ozone Science and Engineering. 1999, 21(3): 239~260
    23 M. S. Elovitz, U. V. Gunten, H. P. Kaiser. Hydroxyl Radical/Ozone Ratios during Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties. Ozone Science and Engineering. 2000, 22(2): 123~139
    24 U. V. Gunten, A. Driedger, H. Gallard. By-Products Formation During Drinking Water Disinfection: A tool to Assess Disinfection Efficiency Water Research. 2001, 35(8): 2095~2099
    25 H. S. Park, T. M. Hwang, J. W. Kang, et al. Characterization of Raw Water for the Ozone Application Measuring Ozone Consumption Rate. Water Research. 2001, 35(11): 2607~2614
    26 S. W. Krasner, W. H. Glaze, H. S. Weinberg, et al. Formation and Control of Bromate during Ozonation of Waters Containing Bromide. American Water Works Association. 1993, 85(1): 73~81
    27张金松,李伟光,马放,赫俊国,袁纯英.臭氧接触装置的传质与吸收试验研究.哈尔滨建筑大学学报. 1997, 2: 75-79
    28 R. Hofmann, C. Robert. Ammonical Bromines: A Review of Their Influence on Bromate Formation during Ozonation. Water Research. 2001, 35(3): 599~604
    29 J. Tanaka, M. Matsumura. Application of Ozone Treatment for Ammonia Removal in Spent Brine. Advances in Environmental Research. 2003, 7(4): 835~845
    30 R. Song, G. Amy, P. Westerhoff. Bromate Minimization during Ozonation. American Water Works Association. 1997, 89(6): 69~78
    31 W. Glaze, H. Weinberg, J. Cavanaugh. Evaluation the Formation of Brominated DBPs during Ozonation. American Water Works Association. 1993, 85(1): 96~103
    32 M. Siddiqui, G. Amy. Factors Affecting DBP Formation during Ozone- Bromide Reactions. American Water Works Association. 1993, 85(1): 63~72
    33 J. Ma, N. Graham, G. Li. Effect of Permanganate Preoxidation in Enhancing the Coagulation of Surface Waters: Laboratory Case Studies. Water SRT-Aqua. 1997, 46(1): 1~10
    34 N. A. Hayek, B. Legube, M. Dore. Fe3+/A12O3- Catalysed Ozonation of Phenol and Its Ozonation By-Product. Environment Technology Letters. 1989, 10: 415~425
    35 R. Andreozzi, A. Insola, V. Caprio, et al. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalysed by Suspended and Dissolved Manganese. Water Research. 1998, 32(5): 1492~1496
    36 R. Andreozzi, V. Caprio, A. Insola. Kinetics of Oxalic Acid Ozonation Promoted by Heterogeneous MnO2 Catalysis. Industry Engineering and Chemical Research. 1997, 36(11): 4774~4778
    37 J. Ma, D. Graham. Degradation of Atrazine by Manganese-catalyzed Ozonation: Influence of Humic Substances. Water Research. 1999, 33(3): 785~793
    38 J. Ma, N. J. D. Graham. Preliminary Investigation of Manganese-Catalysed Ozonation for the Destruction of Atrazine. Ozone Science and Engineering. 1997, 19(3): 227~240
    39吴耀国,惠林.金属锰催化臭氧化降解三硝基甲苯功效的实验研究.兵工学报. 2006, 27(2): 339~342
    40 R. Gracia, J. L. Aragües, J. L. Ovelleiro. Mn(II)-Catalysed Ozonation of Raw Ebro River Water and Its Ozonation By-products. Water Research. 1998, 32: 57~62
    41 J. Symons, M. H. Zheng. Does Hydroxyl Radical Oxidize Bromide to Bromate.American Water Works Association. 1997, 89(6): 106~109
    42 U. V. Gunton, J. Hoigne. Bromate Formation during Ozonation of Bromide Containing Waters: Interaction of Ozone and Hydroxyl Radical Reactions. Environment Science and Technology. 1994, 28(7): 1234~1242
    43 M. J. Kirisits, V. L. Snoeyink, J. C. Sanford. Effect of Operating Conditions on Bromate Removal Efficiency in BAC filters. American Water Works Association. 2002, 94(4): 182~194
    44 S. Mohamed, P. Siddiqui. Bromate Ion Formation: A Critical Review. American Water Works Association. 1995, 87(10): 58
    45 M. L. Bao, O. Griffini, D. Santianni, et al. Removal of Bromate Ion from Water Using Granular Activated Carbon. Water. Research. 1999, 33(13): 2959~2970
    46 M. Siddiqui, G. Amy, K. Ozekin, et al. Alternative Strategies for Removing Bromate. American Water Works Association. 1994, 86(10): 81~96
    47 W. J. Huang, C. Y. Chen, M. Y. Peng. Adsorption/Reduction of Bromate from Drinking Water Using GAC: Effects on Carbon Characteristics and Long-Term Pilot Study. Water Safe. 2004, 30(3): 369~375
    48 A. Mills, G. Meadows. Heterogeneous Redox Catalysis: A Novel Route for Removing Bromate Ions from Water. Water Research. 1996, 29(9): 2181~2185
    49 A. Mills, A. Belghazi, D. Rodman. Bromate Removal from Dringking Water by Semiconductor Photocatalysis. Water Research. 1996, 30(9): 1973~1978
    50金文标,马放,杨秀妍,等.饮用水深度处理设备的净化效能.中国给水排水. 2002, 18(5): 39~41
    51 G. Gordon, R. D. Gauw, G. L. Emmert, et al. Chemical Reduction Methods for Bromate Ion Removal. American Water Works Association. 2002, 94(2): 91~99
    52 P. Westerhoff. Reduction of Nitrate, Bromate, and Chlorate by Zero Valent Iron (Fe0). Environment. Engineering. 2003, 129: 10~16
    53 P. Westerhoff, J. James. Nitrate Removal by Zero Valent Iron in Packed Columns. Water Research. 2003, 37: 1818~1830
    54 S. F. Cheng, C. Y. Huang, J. Y. Liu. Study of Different Methods for Enhancing the Nitrate Removal Efficiency of a Zero-Valent Metal Process. Water Science and Technology. 2006, 53(11): 81~87
    55徐新华,卫建军,汪大翚. Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究.中国环境科学. 2004, 24(1): 76~80
    56 A. Agrawal, P. G. Tratnyek. Reduction of Nitroaromatic Compounds by Zero-Valent Iron Metal. Environment Science and Technology. 1996, 30(1): 153~160.
    57 J. F. Devlin, J. Klausen, R. P. Schearzenbach. Kinetics of Ni-TroaromaticReduction on Granular Iron in Recirculating Bathexperiments. Environment Science and Technology. 1998, 32(13): 1941~1947
    58陈郁,全燮.零价铁处理污水的机理及应用.环境科学研究. 2000, 13(05): 24~27
    59范彬,曲久辉,刘锁祥.饮用水中硝酸盐的脱除.环境污染治理技术与设备. 2000, 1(3): 44~47
    60周玲,李铁龙,全化民.还原铁粉去除地下水中硝酸盐氮的研究.农业环境科学学报. 2006, 25(2): 368~372
    61 F. Cheng. Reduction of Nitrate to Ammonia by Zero-Valent Iron. Chemosphere. 1997, 35(11): 2689~2696
    62 D. P. Siantar. Treatment of 1, 2-Dibromo-3-Chloropropane and Nitrate- Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysts. Water Research. 1996, 30(10): 2351~2358
    63 S. Choe, et al. Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron. Chemosphere. 2000, 41: 1307~1314
    64张环,金朝晖,韩璐.负载型纳米铁化学反硝化法去除硝酸盐氮的研究.中国给水排水. 2006, 22(15): 83~87
    65顾莹莹,高孟春,贾永刚.海绵铁还原水中硝酸盐的初步研究.中国给水排水. 2006, 22(7): 82~84
    66周培国,傅大放.微电解工艺研究进展.环境污染治理技术与设备. 2001, 2(4): 18-24
    67 C. F. Chew, T. C. Zhang. In-Situ Remediation of Nitrate-Contaminated Ground Water by Electrokinetics/Iron Wall Process. Water Science and Technology. 1998, 38(7): 135~146
    68詹艳,熊忠,林衍.铁炭内电解法对麻废水的预处理研究.工业水处理. 2003, 23(1): 28~31
    69孟刚,郑泽根,周小兵.铁炭微电解一亚铁还原氧化法处理花箐废水的研究.感光科学与光化学. 2002, 20(4): 303~312
    70张波,何义亮.铁炭微电解一混凝沉淀预处理化工有机废水.兰州铁道学院学报. 2001. 20(3): 95~98
    71张焕祯,沈洪艳,李淑芳.铁屑还原一混凝法处理石油精制废碱液酸化废水试验研究.东南大学,全国第四届水处理大会论文集, 2002, 4: 100~105
    72王永广,杨剑峰.微电解技术在工业废水中的研究与运用.环境污染治理技术与设备. 2001, 2(4): 18~24
    73马丽霞,赵仁兴.铁炭内电解法在废水中的运用研究进展.河北工业科技.2002, 3(4): 50~53
    74王有乐,张庆芳.内电解法处理工业废水的研究进展.甘肃工业大学学报. 2003, 29(1): 67~69
    75武烨霞.亚铁离子在空气中氧化速度问题的探讨.内蒙古石油化工. 2002, 6(3): 36~37
    76 M. MARK. BENJAMIN. Water Chemistry, 2002
    77方伟,许仕荣.城市供水管网水质化学稳定性研究进展.中国给水排水. 2006. 22(14): 25~27
    78 W. R. Haag, J. Hoigne. Ozonation of Bromide Containing Waters: Kinetics of Formation of Hypobromous Acid and Bromate. Environment Science and Technology. 1983, 17: 261~26
    79魏宝明.金属腐蚀理论及应用.北京:化学工业出版社, 1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700