臭氧化MBR中臭氧控制膜污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(MBR)作为一种新型高效的水处理技术,具有占地面积小、出水水质好、有机负荷高、剩余污泥产率低、运行启动快、可实现模块化等优点而日益受到人们的关注。然而,在运行过程中由于膜污染存在导致过滤阻力不断增加、膜通量严重衰减、膜组件更换和清洗的频率增加等一系列问题,膜污染已成为限制MBR广泛应用的瓶颈。因此如何控制膜污染一直是当前研究MBR的热点。
     臭氧作为一种高效的、无二次污染的强氧化剂,在膜过滤系统中广泛运用。由于本实验室在臭氧氧化同步污泥减量工艺的研究中,发现投加适量臭氧至MBR中能达到污泥减量,同时还能改善膜污染,因此本试验采用臭氧+MBR工艺来研究臭氧对膜污染的影响。主要内容包括四部分:①膜的清水实验;②臭氧投加量优化实验;③操作条件优化;④在前面实验结论的基础上,长期对比运行MBR与臭氧化MBR两套系统达175天,综合分析臭氧控制膜污染的效果及污泥减量效果。
     研究结果表明:
     (1)膜组件1与膜组件2的膜比通量与过膜压差的关系直线的斜率分别K1=0.104,K2=0.119,数值基本相等,表明两个膜组件相关性比较好,可比性强,可为后续对比研究膜污染奠定基础。
     (2)臭氧投加量为32.23mg.1-1,作用时间为15min时,膜比通量值达到最高值0.96LMH/kPa。臭氧作用于污泥混合液后,污泥混合液的MLSS基本上呈下降的趋势,粘度变化不大。污泥中的TOC、多糖、蛋白质质量浓度都随着臭氧投加浓度的增加及作用时间的延长而增加,而SOUR及pH会逐渐降低,但不至于影响微生物的生存,这可为臭氧直接充入MBR中用于减缓膜污染研究提供一定的理论支持。
     (3)考察抽吸压力、抽停时间比、曝气量三个工艺参数对膜通量衰减的影响,结果表明:①最佳的抽吸压力≤0.03MPa,当大于0.03MPa时,其膜通量的衰减速率增大;②最适的抽停时间比为9:1;③最适的曝气量为100 L.h-1,曝气量为200 L.h-1时的膜通量并未明显优于100 L.h-1,这归功于本反应器的圆形构造和微孔曝气结构,使得曝气产生的气泡粒径小、分布均匀,传质速率快,曝气充分又不易形成死角。
     (4)平行运行臭氧化MBR及MBR175天,三个阶段中臭氧化MBR与MBR的膜比通量SF值呈现相同的规律:与MBR对比,臭氧化MBR膜污染前期发展迅速,而后期增长缓慢。
     (5)对第三阶段运行44天后的膜组件污染阻力构成进行分析,结果发现:①MBR比臭氧化MBR膜污染严重。MBR膜污染的总阻力值达到21.08×1012m-1,滤饼层阻力Rc、不可逆阻力Rp、固有阻力Rm分别占总阻力的56.31%、24.86%、18.83%,而臭氧化MBR只发展到17.95×1012m-1,其中Rc、Rp、Rm分别占总阻力的40.72%、36.66%、22.62%;②无论MBR还是臭氧化MBR,滤饼层阻力Rc始终是膜污染的主要阻力;③与MBR相比,臭氧化MBR由于臭氧作用后膜的Rc相对减小,而Rp却增大。
     (6)不同清洗方式膜通量恢复实验进一步说明了膜污染主要以滤饼层为主,对滤饼层污染物进行FTIR分析得到以多糖和蛋白质为主的EPS是膜面有机物污染的主要成分。相比于MBR,臭氧化MBR能有效减缓无机物污染如Fe、Ca的沉积。
     (7)忽略膜清洗及取样测试的污泥损耗,两系统运行175d污泥变化情况为:MBR污泥浓度增长迅速,从5282mg.L-1增加到12740mg.L-1,总共增加了7458mg.L-1;而臭氧化MBR中污泥浓度从5310mg.L-1增加到8698mg.L-1,总共增加了3388mg.L-1,其污泥增加量只占MBR增加量的45.4%,表明臭氧化MBR确实有污染减量的效果。
     (8)臭氧化MBR对COD、NH3-N和TP的平均去除率分别达到90%、95.8%、62.1%,膜出水水质略差于MBR,但其影响程度不大。
     本研究所采用的臭氧化MBR是直接把臭氧通入MBR,发现投加适量臭氧,此工艺能在保证出水水质的条件下不仅能减缓膜污染,还能达到污染减量的效果。本研究可为今后臭氧用于MBR中减缓膜污染或污泥减量提供一定的参考。
As a new highly effective water treatment technologies, Membrane bioreactor (MBR) has many advantages such as small footprint, good water quality, high organic load, low sludge production, easily start, can be realized modular and so on. It receives people's attention increasingly. However, the existence of membrane fouling bring a series of problems such as fast increasing of filtration resistance, serious weaken of membrane flux,short frequency of replacement and clean membrane module. Membrane fouling has become the bottleneck for the widely used of MBR. Therefore, how to control the membrane fouling has been the focus of the current research about MBR.
     Ozone, as a highly efficient and no secondary pollution strong oxidants, has been used widely in membrane filtration systems. In our laboratory's previous study of sludge reduction by ozonation, we found that the way adding proper amount of ozone to the MBR, can achieve the reducing of sludge as well as the mitigating of membrane fouling, so in this study, it couples ozone with MBR in order to study the impact of ozone to membrane fouling. The contains mainly including four parts:①test of membrane function in distilled water;②test of optimization about ozone dosage;③test of optimum operating conditions;④comparing MBR and the ozone +MBR two sets of systems on long-run, analysis of the mitigating of membrane fouling and the effect of sludge reduction
     The results show that:
     (1) The slope of membrane module 1 and membrane module 2 about the relationship between specific flux and membrane pressure is K1=0.104, K2=0.119 respectively, it means that these two membrane modules have a strong comparability, which is the foundation of the subsequent research in membrane fouling
     (2) In the test of optimization about ozone dosage, the highest specific flux can reach up to 0.96LMH/kPa on the condition of ozone dosage was 32.23mg.l-1 and the reaction time was 15min. the characteristics of sludge mixture change a lot after ozonization the concentration of MLSS basically shows a downward trend, the viscosity changes little, the concentration of TOC、polysaccharide and protein in the sludge increases with the large of dosage concentration and the long of reaction time. The value of SOUR and pH decrease a little, but it doesn't affect the survival of microorganisms. All these results have provide theoretic support for mitigating membrane fouling in ozone +MBR process.
     (3) In the optimization test of operating conditions, It investigated the effect of membrane flux by three operating parameters including suction pressure, aeration, the ratio of stop/run. the results showed that:①the best suction pressure≤0.03MPa, when more than 0.03 MPa, the decay rate of flux increases fast;②the optimal ratio of pumping suction/stop was 9:1;③the optimal aeration quantity is 100 L. h-1. when at aeration capacity of 200 L.h-1 the membrane flux was not significantly better than the 100 L. h-1,this may thanks to the circular structure of reactor and the microporous aeration structure, it will produce small、uniform size bubble, accelerate the mass transfer and give full play of aeration without the formation of dead angle.
     (4) Running two systems parallel for 175 days, it found the SF values in three stages of 175 days shows the same regulation that the membrane fouling in ozone +MBR process developed rapidly at first, and later slowly, compared with the MBR process.
     (5) It investigated fouling resistance composition of the third stage's membrane modules which have run for 44 days. The results showed:①the membrane fouling in MBR process is more serious than ozone +MBR process. in MBR, the total resistance reached 21.08×1012m-1,the rate of cake layer resistance Rc, the irreversible resistance Rp, natural resistance Rm is 56.31%,24.86%,18.83%, while ozone+MBR process is only developed to 17.95×1012m-1, The rate of Rc,Rp, Rm is 40.84%,36.66%, 22.62%;②Whether in ozone +MBR or MBR process, cake layer resistance Rc is always the main resistance in all kinds of fouling;③Compared with the MBR process, in ozone +MBR process cake layer resistance Rc is relatively reduced,but the irreversible resistance Rp was increased.
     (6) The experiments by different cleaning methods to restore flux further showed that cake layer fouling is the majority part in membrane fouling whether in ozone +MBR or MBR process, meanwhile, through the analysis of membrane surface pollutants by FTIR it shows the main components of organic pollution is EPS which mainly contain polysaccharide and protein. Ozone +MBR process can migitate inorganic fouling such as Fe, Ca deposition.
     .(7) Without regard to loss of sludge in membrane cleaning and sampling, both of two systems didn't discharge sludge during a long period of 175 days of experiment operation, the sludge concentration of control reactor increased by 7458mg·L-1 from 5282mg·L-1 to 12740mg·L-1. But the sludge concentration of ozone +MBR reactor just increased by 3388mg·L-1 from 5310mg·L-1 to 8698mg·L-1. The increased amount of sludge in ozone +MBR process only account for 45.4% of the MBR process, it meant that the ozone +MBR process did have the effect of reducing sludge.
     (8) The average removal rates on COD, NH3-N and TP in ozone+MBR process can reach 90%,95.8%,62.1% respectively. The water quality of membrane effluent in ozone +MBR process is slightly worse than MBR process, however the impact is only a little.
     By adding ozone directly to MBR, the research found that with the proper amount of ozone, the ozone +MBR process can achieve not only reducing the sludge, but also mitigating membrane fouling in the condition of ensuring the effluent's water quality, this research will provide some reference for the ozone +MBR process whether it is used for sludge reduction or controlling membrane fouling.
引文
[1]薛罡,何圣兵等著.膜法单元水处理技术[M].北京:中国建筑工业出版社,2008.
    [2]国家环境保护局.膜法分离技术及其应用[M].北京:中国环境科学出版社,1992.
    [3]Philip C S. Control of disifection by-product in drinking water[J].Water Environment Research,1998,70 (4):727-734.
    [4]张琳,张元月.新型污水处理装置一膜生物反应器[J].重庆环境科学,1996,18(4):51-55.
    [5]孟凡刚.膜生物反应器膜污染行为的识别与表征.博士论文.2007,大连理工大学:大连.
    [6]Kimura Set al. Japan's aqua renaissance'90 projects [J].Wat. Sci. Tech.1991,23:1573-1582.
    [7]郑祥,朱小龙,张绍园等.膜生物反应器在水处理中的研究及应用[J].环境污染治理技术与设备,2000.1(5):12-19.
    [8]Yang,W.,Cicek,N., and Ilg,J.State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America [J].Journal of Membrane Science,2006,270(1-2): 201-211.
    [9]黄霞,桂萍等.膜生物反应器废水处理工艺的研究进展[J].环境科学研究,1998,11(1):40-44.
    [10]牛涛涛,汪建根,李振玉等.膜生物反应器在污水处理中的应用及其前景展望[J].环境研究与监测,2008.21(1):35-38.
    [11]孟凡生,王业耀.膜生物反应器在我国的研究发展展望[J].水资源保护2005.21(4):1-3.
    [12]白玲,蓝伟光,严滨,万金保.废水处理中膜生物反应器的研究进展[J].膜科学与技术,2008.28(1):91-96.
    [13]GunderB,Krauth.K Replacement of secondary clarification by membrane sepration-results with Plate and hollow fibre modules[J].Wat.Sci.Tech.1998,38(4-5):383-393.
    [14]Marrot, B et al. Industrial wastewater treatment in a membrane bioreactor:A review. Environmental progress,2004.23(1):59-65.
    [15]S. Adlarm. et al. Feasibility of the membrane bioreactors of water reclamation.[J].Wat. Sci. Tech.2001.43(10):203-209.
    [16]刘锦霞,顾平等.膜生物反应器脱氮除磷工艺的研究进展[J].城市环境与城市生态,2001,14(2):27-29.
    [17]付婉霞,李海俊,张璐璐.膜生物反应器中膜污染控制方法的研究[J].环境工程,2004,22(6):15-16.
    [18]Wang L, Fukushi K, Sato A. A fundamental study on the application of nano-filtration to water treatment[J] Japan Water Works Assoc,2000,69 (5):35-45.
    [19]Veronique Lahoussine-Turcaud, Mark R Wiesner,Jean-Yues Bottero,et al.Coagulation pretreatment for ultrafiltration of a surface water[J].Journal AWWA,1990,82 (12):76-81
    [20]Simon Judd.The development in MBR Technology[J].H20 MBR Special,2001,56-57.
    [21]Chang,I.S.,et al., Membrane fouling in membrane bioreaetors for wastewater treatment[J]. Journal of Environmental Engineering[J].2002.128(11):1018-1029.
    [22]Choo,K.H. and C.H.Lee,Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor[J].Wat.Sci.Tech.1996.30 (8)1771-1780.
    [23]Choo,K.H. and C.H.Lee, Effect of anaerobic digestion broth composition on membrane permeability[J].Water Science and Technology,1996.34(9):173-179.
    [24]Kang, I.J., Yoon, S.H., and Lee, C.H. Comparison of the filtration characteristics of organic and inorganic membranes in a membrane-coupled anaerobic bioreactor[J].Water Research 2002,36(7):1803-1813.
    [25]Shimizu,Y., et al., Effect of membrane resistance on filtration characteristics for methanogenic waste.Kakaku Kogaku Ronvunshu,1990.16:45.
    [26]Meireles,M., P.Aimar, and V.Sanchez,Effects of Protein fouling on the apparent pore size distribution of sieving membranes[J] Journal of Membrane Science,1991.56(1):13.
    [27]Magara,Y.and M.Itoh, The effect of operational factors on solid/liquid separation by ultra-membrane filtration in a biological denitrifications system for collected human excreta treatments plants[J].Water Science and Technology,1991.23(7-9):1583.
    [28]Choi,J.-G..,et al.,The behavior of membrane fouling initiation on the crossflow membrane bioreactor system [J]. Journal of Membrane Science,2002.203(1-2):103.
    [29]Reihanian, H.,Robertson,C.R.,et al.,Mechanisms of polarization and fouling of ultrafiltration membranes by proteins [J].Journal of Membrane Science,1983.16:237-246.
    [30]王勇,孙寓蛟,黄霞等.丝状菌对膜-生物反应器中膜污染过程的影响[J].中国环境科学,2004.24(2):247-251.
    [31]黄霞,曹斌,文湘华,等.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报,2008.28(3):416-432.
    [32]吴金玲,黄霞.膜-生物反应器混合液性质对膜污染影响的研究进展[J].环境污染治理技术与设备,2006.7(02):16-24.
    [33]王雪梅,刘燕,华志浩,等.胞外聚合物对浸没式膜-生物反应器膜过滤性能的影响[J].环境科学学报,2005.25(12):1602-1607.
    [34]孙宝盛,张海丰,齐庚申.膜生物反应器中的非丝状菌污泥膨胀[J].天津大学学报,2006.39(04):469-473.
    [35]Defrance,L.,Jaffrin,M.Y.,et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling[J].Bioresource Technology,2000,73(2):105-112.
    [36]Harada,H.,Momonoi,K.,et al. Application of anaerobic-UF membrane reactor for treatment of a wastewater containing high strength particulate organics[J]. Water Science and Technology, 1996.30(12):307-319.
    [37]Bouhabila,E.H.,Ben Aim,R.,and Buisson,H. Fouling characterization in membrane bioreactors[J].Separation and Purification Technology,2001,22-23:123-124.
    [38]Yamamoto,K, Hiasa,M., Mahmood,T., et al., Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank[J].Water Science and Technology,1989, 21(4-5):43-54.
    [39]Liu,R.,Huang,X.,Sun,Y.F.,et al. Hydrodynamic effect on sludge accumulation over membarne surfaces in a sumberged membrane bioreactor [J].Process Biochemistry,2003, 39(2):157-163.
    [40]Churchouse,S. Membrane bioreactors for wastewater treatment-operating experiences with the Kubota submerged membrane activated sludge proeess[J].Membrane Technology,1997, 1997(83):5-9.
    [41]Lee,J., Ahn, W.-Y., and Lee. C.-H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research,2001,35(10):2435-2445.
    [42]Bura.R, Cheung.M, Liao B., et al.,Compositon of extracellular polymeric substances in the activated sludge floc matrix[J]. Water Science and Technology,1998,37(4-5):325-333.
    [43]Nagaoka, H.,Yamanishi,S.and Miya, A. Modeling of biofouling by extra cellular polymers in a membrane separation activated sludge system[J]. Water Science and Technology,1998, 38(4-5):497-504.
    [44]Lee,Y., Cho,J.,Seo,Y. Modeling of submerged membrane bioreactor process for wasterwater treatment.[J].Desalination,2002,146(1-3):451-457.
    [45]Lee, W.,Chua, H.C., Zhou,J., et al. Effect of sludge characteristics and their contribution to microfiltration in a submerged membrane bioreactor[J]. Journal of Membrane Science, 2003,216(1-2):217-227.
    [46]Chang, I.-S. and Lee, C.-H. Membrane filtration characteristics in membrane-coupled activated sludge system—the effect of physiological states of activated sludge on membrane fouling[J].Desalination,1998,120(3):221-233.
    [47]Nagaoka,H., Ueda, S., and Miya,A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process[J]. Water Science and Technology,1996,34(9 pt 5):165-172.
    [48]Huang,X., Liu,R., and Qian,Y. Behaviour of soluble microbial products in a membrane bioreactor[J].Process Biochemistry,2003,36(5):401-406.
    [49]Hong,S.P.,Bae,T.H.,Tak, T.M., et al. Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J].Desalination,2002,143(3):219-228.
    [50]Tam,L.S., Tang, Tang,T.W., Leung. W. Y., et al. A pilot study on performance of a membrane bio-reactor in treating fresh water sewage and saline sewage in Hong Kong [J].Separation Science and Technology,2006,41(7):1253-1264.
    [51]纪磊.膜生物反应器中微生物聚合物的代谢与膜污染.[D].大连:大连理工大学,2006.
    [52]Chang, L.S., Kim, S. N.,Wastewater treatment using membrane filtration-Effect of biosolids concentration on cake resistance[J].Process Biochemistry,2005,40(3-4):1307-1314.
    [53]Yu, K., Wen, X., Bu, Q., et al.Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater.[J]. Journal of Membrane Science,2003,224(1-2):69-79.
    [54]Devereux, N. and Hoare,Membrane separation of protein precipitates:sludge with cross flow in hollow fibers.[J].Biotechnology and Bioengineering.1986.28(3):422.
    [55]Field, R.W., Wu, D., and Howell, J..A. Critical flux concept for microfiltration fouling. [J]. Journal of Membrane Science,1995,100:259-272.
    [56]Jefferson, B., Laine,A.L.,Judd.S.J., et al. Membrane bioreactors and their role in wasterwater reuse.[J].Water Science and Technology,2004,41(1):197-204.
    [57]Gui, P., Huang, X.,Chen, Y., et al. Effect of operational parameters on sludge accumulation on membrane surfaces in a submerged membrane bioreactor.[J]. Desalination,2003,21(6): 279-290.
    [58]莫罹,黄霞,吴金玲,张力平.混凝-微滤膜净水工艺的膜污染特征及其清洗[J].中国环境科学,2002,22(3):258-262.
    [59]Lim.A.L., RenbiBai. Membrane fouling and cleaning in microfiltration of activated sludge wastewater [J]. Journal of Membrane Science,1995,100:259-272.
    [60]隋鹏哲,文湘华,黄霞.厌氧膜-生物反应器中超声控制膜污染研究[J].环境污染治理技术·与设备,2006.7(04):25-29.
    [61]刘昕,陈福泰,黄霞等.在线超声对膜生物反应器膜污染的控制[J].中国环境科学,2008,28(6):517-521.
    [62]曹效鑫,魏春海,黄霞.投加粉末活性炭对一体式膜-生物反应器膜污染的影响研究[J]环境科学学报,2005.25(11):1443-1447.
    [63]Wu J L, Chen F T, Huang X, et al. Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor[J]. Desalination,2006.197:124-136.
    [64]布多,张颖,顾平.氯化铁絮凝法减轻膜污染[J].城市环境与城市生态,2003.16(06)46-48.
    [65]张永宝,姜佩华,冀世锋,等.投加氢氧化铁对膜生物反应器性能的改善[J].给水排水,2004.30(07):46-49.
    [66]邹海燕,奚旦立.生物铁法-SMBR性能的研究[J].环境科学,2005.26(06):65-70.
    [67]Chen GH, An KJ, Saby S, Brois E, Djafer M. Possible cause of excess sludge reduction in an oxic-settling anaerobic activated sludge process (OSA process)[J].Water Res 2003;37(16): 3855-66.
    [68]王嵘.臭氧破解污泥的溶出机制及同步臭氧氧化对污泥减量效能的影响研究.[D].南昌:南昌大学,2008.
    [69]沈鹤柏,张五昌,张挺芳.水中溶解臭氧分解反应动力学研究[J].环境化学,1985,4(1):62-66
    [70]Takizawa.S.,Fujita.K., Soo.K.H., Membrane fouling decrease by microfiltration with ozone scrubbing[J]. Desalination,1996.(106):423-426.
    [71]Kim.J.O.,Shin.E.B.,Bae.W.,et al.Effect of intermittent back ozonation for membrane fouling reduction in microfiltration using a metal membrane [J]. Desalination.2002.(143):269-278
    [72]Williams M D, Pirbazari M.Membrane bioreactor process for removing biodegradable organic matter from water [J].Water Research,2007,41:3880-3893. removing biodegradable organic matter from water [J]. Water Research,2007,41:3880-3893
    [73]王磊,王旭东,刘莹,段文松.臭氧预氧化对城市二级处理水中残留有机物分子量分布的 影响及超滤膜阻力变化分析[J].膜科学与技术,2000,26(2):27-31.
    [74]Mori.Y., Oota.T, Hashino.M, et al. Ozone-microfiltration system[J].Desalination,1998, (117):211-218.
    [75]张中华,邓冬阳,徐东耀.臭氧控制膜污染的研究进展[J].内蒙古环境科学,2007,19(4):34-37.
    [76]Schlichter B, MavrovB V, Chmiel H. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for drinking water production from surface water[J]. Desalination,2004, (168):307-317.
    [77]Schlichter B, MavrovB V, Chmiel H. Study of a hybrid process combining ozonation and membrane filtration-Filtration of model solutions[J]. Elsevier,2003,156 (08):257-265.
    [78]Lee.S., Jang.N., Watanabe. Y. Effect of residual ozone on membrane fouling reduction in ozone resisting microfiltration membrane system[J].Water Science and Technology, 2004,50(12):287-292.
    [79]吴金玲,汪诚文,黄霞.臭氧作用改善膜-生物反应器混合液膜过滤性[J].中国环境科学.2006,26(4):427-431.
    [80]梁鹏,黄霞,钱易,等.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44-52.
    [81]万金保,吴声东,江水英.臭氧化污泥减量技术的研究进展[J],2007,26(11):1583-1586.
    [82]Yasui H.,Shibata M.An innovative approach to reduce excess sludge production in the activated sludge process[J].Water Science and Technology,1994,30(9):11~12.
    [83]Yasui H.,Nakamura K.,Sakuma S.,Iwaasaki M.,Sakai Y.,A full-scale operation of a novel activated sludge process without excess sludge production[J],Water Science and Technology,1996,34(3):395~404.
    [84]Sakai Y, Fukase T, Yasui H, Shibata M. An activated sludge process without excess sludge production[J],Water Science and Technology,1997,36(11):163-170.
    [85]Kamiya T, Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment[J].Water Science and Technology,1998, 38(8-9):145-153.
    [86]蒋轶锋,王琳,王宝贞等.污泥臭氧化对MBR运行效能的影响[J].中国环境科学,2005,25(5):519-522.
    [87]王琳,孙德栋,黄海萍.利用臭氧氧化实现复合膜生物反应器污泥减量[J].中国海洋大学学报,2006,36(5):799-803.
    [88]Paul E, Camacho P, Sperandio M, et al. Technical and econmomical evaluation of a thermal and two oxidative techniques for the reduction of excess sludge production. Process safety and environment protection,2006,84(B4):247-252.
    [89]何圣兵,薛罡,王宝贞.影响臭氧化污泥减量工艺的因子[J].化学工程,2006,34(4):51-54.
    [90]吴声东.臭氧化对污泥特性的影响机理及原位污泥减量新工艺的研究.[D].南昌:南昌大学,2008.
    [91]Karnik B S,Davies S H,Chen K C,et al. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes [J].Water research,2005,39:728-734.
    [92]《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.
    [93]Kamma Raunkjer, Thorkild. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater [J].Water Research,1994,28(2):251-262.
    [94]唐丽琴,陈礼明,刘圣等.蒽酮—硫酸比色法测定麦冬多糖的含量[J].安徽医药,2003,7(]):39-40.
    [95]张颖.膜生物反应器中延缓膜污染技术的研究.[D].天津:天津大学,2004.
    [96]石宝强.膜生物反应器膜污染行为研究与预测控制.[D].大连:大连理工大学,2006.
    [97]Egemen E, Corpening J, Padilla J, et al. Evaluation of ozonation and cryptic growth for biosolids management in wastewater treatment [J].Water Science and Technology,1999, 39(10-11):155-158.
    [98]郭雅妮,同帜,于翔.MBR工艺处理印染废水中膜的污染和清洗[J].水处理技术,2007,33(4):72-74.
    [99]Dziurla M A, Salhi M, Leroy P. Variations of respiratory activity and glutathione in activated sludges exposed to low ozone doses [J]. Water Research,2005,39:2591-2598.
    [100]Scheminske A, Krull R, Hempel D C. Oxidative treatment of digested sewage sludge with ozone[J]. Water Science and Technology,2000,42(9):151-158.
    [101]徐飞.臭氧-SBR原位污泥减量工艺研究.[D].哈尔滨:哈尔滨工业大学,2006.
    [102]Song K.G.,Chuongy Y.K.,Ahn K.H. Performance of membrane bioreactor system wih sludge ozonation process for minimization of excess sludge production [J]. Desalination, 2003,157:353-359.
    [103]顾夏声,胡洪营,文湘华等.水处理生物学[M].(第四版).北京:中国建设出版社,2006.
    [104]王建龙,彭永臻,王淑莹.膜污染成因及控制对策研究新进展[J].环境科学与技术,2007,30(6):103-106.
    [105]Defrance, L. and Jaffrin, M.Y. Reversibility of fouling formed in activated sludge filtration[J] Journal of Membrane Science,1999,157(1):73-84.
    [106]刘锐,黄霞,王志强,等.一体式膜-生物反应器的水动力学特性[J].环境科学,2000,21(5):47-50.
    [107]Ueda T, Hata K, K ikuoka Y, et al. Effects of aeration on suction pressure in a submerged membrane bioreactor [J].Water Research,1997,31 (3):489-494.
    [108]沈菊李,徐又一,张欣欣等.具有自由端的梳状中空纤维膜-生物反应器中的膜污染控制研究[J].环境科学,2009,30(1):160-164.
    [109]Wicaksana F, Fane A G, Chen V. Fiber movement induced by bubbling using submerged hollow fiber membranes [J].Journal of Membrane Science,2006,271:186-195.
    [110]吴桂萍,杜春慧,徐又一.内置转盘式膜-生物反应器处理污水的工艺条件研究[J].环境科学,2006,27(11):2217-2221.
    [111]张劲松.MBR的膜污染机制与可持续操作原理.[D].大连:大连理工大学.2006.
    [112]孟凡刚.膜生物反应器膜污染行为的识别与表征.[D].大连:大连理工大学.2007.
    [113]Bohler M,Siegrist H.Partial ozonation of activated sludge to reduce excess sludge,improve denitrification and control scumming and bulking[J].Water Science and Technology,2004, 49(10):41~49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700