多电机驱动增程式车辆动力匹配与非线性转向动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着车辆行驶高速化的发展,车辆高速、大转角转向稳定性的问题越来越突出,且该问题在车辆动力学的研究中也越来越重要,而4轮转向技术可在很大程度上改善车辆高速、大转角转向的稳定特性。论文依托国家863计划现代交通技术领域重大项目增程/插电式重型商用车底盘开发(批准号:2012AA111106),以多电机驱动增程式环卫垃圾车辆为研究对象,研究多电机驱动增程式车辆的匹配方法;并从车辆非线性动力学模型、非线性动力学运动稳定性理论及非线性动力学结构稳定性理论3个不同的方面,对4电机驱动增程式车辆非线性转向动力学进行研究;通过建模仿真与非线性动力学理论研究,得到多电机驱动增程式车辆的匹配方法与4轮非线性转向的变化特性规律,为完善多电机驱动增程式车辆动力系统匹配研究及4轮转向技术在车辆上的应用提供了理论基础与研究依据。文章的主要工作如下:
     在传统动力匹配方法的理论基础上,提出多电机驱动增程式车辆的匹配原则与方法。以多电机驱动增程式环卫垃圾车辆为研究对象,基于传统车辆动力系统匹配理论,获得所研究车辆的初步动力匹配结果;根据传统匹配结果,研究驱动方式对所研究车辆动力匹配设计的影响,发现所研究车辆在多电机驱动时,其电机数目至少大于4个,否则车辆连启动都可能无法实现,并确定增程式环卫垃圾车辆由4个电机驱动;分别对驱动电机与增程发动机的工作效率区进行分析,获得多电机驱动增程式车辆运行协调的高效区,以改善所研究车辆的经济性。
     建立4电机驱动增程式车辆的高维纵侧向耦合非线性动力学模型,进行转向仿真研究,研究结果如下:由操稳性仿真揭示,模型跟随效果好,且可进行车辆操稳性控制策略的研究;通过车辆转向动力学仿真发现,车辆高速转向稳定性比低速转向稳定性差;无论车辆高速、低速行驶,随着前轮转角的增加,转向稳定性降低;进行4轮转向仿真发现,车辆低速转向时,车辆稳定性可以保证,应控制车辆后轮与前轮反向转向,有助于提高车辆低速转向灵活性;车辆高速转向的稳定性比低速转向时的稳定性差,当车辆高速转向时,应控制后轮与前轮同向转向,增加车辆高速转向的稳定性。
     基于非线性动力学运动稳定性理论,构造4电机驱动增程式车辆李雅普诺夫函数,对车辆非线性运动稳定性进行定性研究,发现车辆转向在初态邻域内李雅普诺夫意义下渐进稳定;从数学平衡点角度对所研究车辆的非线性运动稳定性进行定量研究,研究表明在初始状态的邻域内,车辆非线性转向渐进稳定;从数学平衡点角度分析前轮转角对车辆非线性转向的影响,发现随着前轮转角增加,车辆转向系统平衡点越容易失去,车辆转向稳定性降低;研究4轮转向对车辆非线性转向的影响,发现车辆高速运行,后轮与前轮反向转向时,车辆转向系统平衡点容易失去,车辆转向稳定性降低;后轮与前轮同向转向时,随着后轮转角的增加,所研究车辆的转向系统越不易达到平衡点失去状态,转向稳定性增加;基于以上研究还发现,低速转向系统的平衡点不易失去,车辆低速转向稳定性高。
     对4电机驱动增程式车辆进行非线性动力学结构稳定性研究,通过非线性动力学静态分岔与动态Hopf分岔理论,发现所研究车辆在4轮稳态转向时不发生Hopf分岔,但发生静态鞍结分岔;研究车速对车辆非线性稳态转向分岔的影响,发现随着车速增加,车辆越易达到分岔临界值,转向稳定性降低;研究前轮转角对车辆非线性稳态转向分岔影响,结果表明随着前轮转角的增加,车辆转向分岔的临界值减小,车辆转向的稳定性降低;研究后轮转角对车辆非线性稳态转向分岔影响,结果表明车辆高速行驶,当车辆后轮与前轮反向转向时,车辆转向分岔的临界值变小,车辆越容易发生不稳定转向,车辆转向的稳定性降低;当车辆后轮与前轮同向转向时,车辆转向分岔的临界值增加,车辆转向的稳定性增加;从非线性转向平衡域角度进行研究,发现当车辆前轮与后轮反向转向时,车辆转向的平衡域减小,车辆发生不稳定转向的可能性增加,车辆转向稳定性降低;当车辆前轮转角与后轮转角同向转向时,车辆转向的平衡域增加,车辆转向不易发生不稳定转向,车辆转向的稳定性提高;通过平衡域分析还发现,后轮转向对速度分岔值的影响与前轮转角大小有关,前轮转角越大,后轮转向对车辆非线性转向的影响越小。
With the higher speed of the travelling vehicle, the more important for theproblem of the stability of the vehicle high speed and large angle steering, nd that isalso more serious in the study of vehicle dynamics, while the vehicle with four wheelsteering can largely improve the stability of the high speed and the large anglesteering. This paper based on the national863program major projects of moderntraffic technology’’ the extended-range/plug-in heavy commercial vehicle chassisdevelopment’’(Approval no.:2012AA111106), takes the extended-range sanitationgarbage vehicle with four-motor driving as the object, studies the matching method ofthe extended-range vehicle with multi-motor driving and the dynamics features of thefour wheel nonlinear steering vehicle from3different aspects, which are the vehiclenonlinear model, the motion stability and the structural stability of nonlinear dynamic.From the studies, gets the matching method of the extended-range vehicle withmulti-motor driving and the rules of four wheel steering, provides theoretical basisand the research gist for the study of dynamic system matching of the extended-rangevehicle with multi-motor driving and the application of four wheel steeringtechnology in vehicles. The main work is as follows:
     First the paper puts forward the power matching principles and methods of theextended-range vehicle with multi-motor driving based on the traditional powermatching method. Takes the extended-range sanitation garbage vehicle withmulti-motor driving as the object, gets the initial power matching results of theextended-range sanitation garbage vehicle with multi-motor driving base on thetraditional matching theory of the dynamic system; it researches the driving methodeffects on the power system matching of the studied vehicle, finds that when thestudied sanitation garbage vehicle drives by multi-motor the number of motor is noless than four, or the vehicle may not be able to realize the start; Then analyses theefficiency area of the driving motor and the range extender, obtains the high efficiencyarea which the extended-range vehicle with multi-motor driving works coordinated toameliorate the vehicle efficiency.
     Takes the extended-range heavy vehicle with four wheel driving as example,builds the nonlinear steering dynamic model with a multidimensional and thelongitudinal and lateral coupling, carries on steering simulation for the extended-rangevehicle with four-motor driving, obtains the results as follows: finds that the model is with good following effect and can be used to research the control strategy of thevehicle handling stability from handling performance simulation; From the vehiclesteering dynamics simulation knows that the steering stability of vehicle at a lowspeed is better than that at a high speed, regardless of the vehicle high speed and lowspeed, the steering stability becomes lower with the increasing angles. Then conductsthe four wheel steering simulation, when the vehicle steers at a low speed, controls therear wheel and the front wheel steering with reverse direction to advance the steeringflexibility because the steering stability is not the main influence factors now; whenthe vehicle steers at a high speed, controls the rear wheel and the front wheel steeringwith homodromous direction to enhance the steering stability because the vehiclestability at a high steering speed is worse than that at a low steering speed.
     Based on the movement stability theory of nonlinear dynamic, constructs theLyapunov function of the extended-range heavy vehicle with four-motor driving, doesthe qualitative research on the nonlinear movement stability of the extended-rangeheavy vehicle with four-motor driving, gets that the vehicle at the initial status isasymptotically stable in the sense of Lyapunov; conducts the mensurable research onthe vehicle nonlinear steering is asymptotically stable in the initial state of theneighborhood, which is in accord with the Lyapunov results. Studies the four wheelsteering effect on the equilibrium point of the vehicle nonlinear steering, and knowsthat when the vehicle steers with a high speed, the steering stability is depravationwith the rear wheel and the front wheel steering reversely; as the increasing of the rearwheel angle, when the rear wheel and the front wheel steering with homodromousdirection, the dynamic system of heavy vehicle can not easily reach the instabilitystate of the equilibrium point, the steering stability increases; Analyses the front wheelangle impacts on the equilibrium point of the vehicle steering dynamic system, withthe increasing of the front wheel angle, the vehicle steering stability reduces; And alsogets that the steering stability is not easy to the instability with a low steering speed.The conclusion is in conformity with the3rdchapter.
     Studies the structural stability of nonlinear dynamic, knows that the extended-range vehicle with four-motor driving does not occurs Hopf bifurcation but raises thestatic saddle-node bifurcation base on the nonlinear dynamic theory of the staticbifurcation and the dynamic Hopf bifurcation when steady steering; Analyses thevehicle speed effect on the bifurcation of the nonlinear steady steering vehicle, gets asthe vehicle speed increasing, the bifurcation critical value can be easily reached, the steering stability of the vehicle reduces; Studies the front wheel angle effect on thebifurcation of the nonlinear steady steering vehicle, knows that with the increasing ofthe front wheel angle, the bifurcation critical value of the vehicle steering decreases,the steering stability of the vehicle lowers; Analyses the rear wheel angle effect on thebifurcation of the nonlinear steady steering vehicle, gets the bifurcation critical valueof the vehicle steering becomes lessen when the rear wheel and the front wheelsteering with reverse direction, the steering instability can be easily attain and thesteering stability of the vehicle reduces. the bifurcation critical value of the vehiclesteering adds and the steering stability of the vehicle increases when the rear wheeland the front wheel steering with homodromous direction. Then from the balancedomain to analyses the nonlinear steering vehicle of the extended-range vehicle withfour-motor driving, gets that when the rear wheel and the front wheel steering withhomodromous direction, the balance domain of steering vehicle reduces, thepossibility of the equilibrium instability state raises when vehicle steering, it is easilyfor the steering vehicle to be instability; When the rear wheel and the front wheelsteering with reverse direction, the balance domain of steering vehicle raises, it is hardfor the steering vehicle to be instability and the stability improves; And the rear wheelsteering effect on the speed bifurcation relates to the size value of the front wheelangle, the greater the front wheel angle, the rear wheel steering has the smaller effecton vehicle nonlinear steering.
引文
[1]魏雅华.眺望新世纪第二个十年的中国汽车工业[J].上海企业.2011,(7):34-35
    [2]彭裕平.电动车辆技术的发展方向及混合动力车辆性能评价标准研究[D].武汉:武汉理工大学.2003.
    [3]吴憩棠.《乘用车燃料消耗量限值》标准出台高油耗车将受制约[J].汽车与配件.2004,(51):32-34.
    [4]张泊.展望中国汽车工业的明天[J].上海经济.2011,(7):50-52.
    [5]马冬.我国乘用车燃料经济性发展研究[J].节能与环保.2013,(8):56-58.
    [6]欧阳明高.我国节能与新能源汽车发展战略与对策[J].汽车工程,2006,28(4):317-321.
    [7]万钢.中国十五电动汽车重大科技专项进展综述[J].中国科技产业,2006,(2):110-117.
    [8]马东,安锋等.中国乘用车企业平均燃料消耗量发展研究报告[R].北京:能源与交通创新中心,2012.
    [9]童晓光,赵林等.对中国石油对外依存度问题的思考[J].经济与管理研究.2009,(1):60-65
    [10] Ramesh S. Remanufacturing for the automotive aftermarket-strategic factors:literature review and future research needs[J]. Journal of Cleaner Production,2009,17(13):1163-1174.
    [11]兰召华,黄妙华.对国内外几个电动汽车发展计划及相关策略的研究[J].汽车研究与开发,2000,(5):43-48.
    [12] Lenny B, Peter B, Osvaldo C, et al. Climate change2007: synthesis report,summary for policymakers[R].Valencia, Spain: Intergovernmental Panel onClimate Change (IPCC),2007.
    [13]徐耀宗.关于汽车行业如何落实国家二氧化碳减排战略的思考[J].汽车工业研究.2010,(9):12-14
    [14]倪计民.汽车内燃机原理[M].上海:同济大学出版社.1999:10-17
    [15]李连升.我国新能源汽车发展研究[J].中小企业管理与科技.2011,(6):94.
    [16]田德文.微型纯电动汽车电驱动系统的基础研究[D].哈尔滨:哈尔滨工业大学,2006.
    [17]叶卫国.增程式电动汽车应用前景分析[J].汽车科技.2013,(1):209-213
    [18]吴韶建,陶元芳.增程式电动汽车的概念与设计方案[J].机械工程与自动化.2010,(5):28-30
    [19]佚名.通用汽车推出增程型电动汽车[J].经济导报.2009,(1):12-17.
    [20]张雄.浅谈增程器开发[J].机电工程技术.2012,(7):113-114.
    [21]王建峰,杨甲辉等.电动汽车燃料电池增程器的系统集成设计[J].上海汽车.2011,(7):2-4.
    [22]喻厚宇.基于四轮协调的电动轮车辆纵横向耦合动力学控制研究[D].武汉:武汉理工大学,2011.
    [23]李信梅.基于磁阻转矩的高功率密度永磁轮毂电机的设计研究[D].哈尔滨:哈尔滨工业大学,2008.
    [24]张翔.电动汽车建模与仿真的研究[D].安徽:合肥工业大学,2004.
    [25]周超.中国展览业营销问题研究[D].上海:上海交通大学,2005.
    [26]薛兆俭.线控转向系统实验台研究[D].西安:长安大学,2008.
    [27] Chan C. C., Wong Y. S.. The State of the Art of Electric Vehicles Technology[C]. the4th International Conference on Power Electronics and MotionControl.2004, pp:46-57.
    [28] Chau K. T., Wong Y. S., Chan C. C. An overview of energy sources for electricvehicles[J]. Energy Conversion and Management.1999,40(10):1021-1039.
    [29] Cheng Fangxiao, Xu Hongguo, Sunying. Study on optimization for vehiclepower train parameters[C]. The Ninth Internation Conference on ElectronicMeasurement&Instruments.2009,(3):989-992.
    [30] Ossama Mokhiamar, Masato Abe. How the four wheels should share forces inan optimum cooperative chassis control[J].Control Engineering Practice.2006,(14):295-304.
    [31] P. LUGNER, M. PLOCHL. Additional4WS and Driver Interaction[J].VehicleSystem Dynamics.1995,(24):639-658.
    [32] YOUNG H. CHO, J. KIM. Design of Optimal Four-Wheel Steering System[J].Vehicle System Dynamics.1995,(24):661-682.
    [33] H. INOUE, F. SUGASAWA.Comparison of Feedforward and FeedbackControl for4WS[J].Vehicle System Dynamics.1993,(22):425-436.
    [34] Laszlo Palkovics.Effect of the Controller Parameters on the Steerability of theFour Wheel Steered Car[J].Vehicle System Dynamics.1992,(21):109-128.
    [35] LIU. PAYRE, P. Bourassa. Nonlinear Oscillations and Chaotic Motions in aRoad Vehicle System with Driver Steering Control[J]. Nonlinear Dynamics.1996,(9):281-304.
    [36] Allan Y. Lee. Performance of Four-Wheel-Steering Vehicles in Lane ChangeManeuvers[J].California Institute of Technology. SAE950316:161-173.
    [37]王洪礼,张琪昌.非线性动力学理论及应用[M].天津:天津科学技术出版,2002.
    [38]乔宇.汽车四轮转向的动力学特性与混杂控制研究[D].天津:天津大学,2002.
    [39]赫奕.基于纵横向耦合的车辆动力学控制与仿真[D].重庆:重庆大学,2007.
    [40]杨福广.4WID/4WIS电动车辆防滑与横摆稳定性控制研究[D].山东:山东大学,2010.
    [41]董红亮.汽车四轮转向和主动悬架的综合控制研究[D].重庆:重庆大学,2009.
    [42]胡国强.汽车四轮转向系统转向特性的研究[D].武汉:武汉理工大学,2012.
    [43]沈扬凤.四轮转向汽车的建模与仿真分析[D].武汉:武汉理工大学,2011.
    [44]杨秀林.四轮转向汽车的动特性及其鲁棒控制研究[D].武汉:武汉理工大学,2008.
    [45]樊香梅.基于Matlab/Simulink和神经网络的四轮转向仿真研究[D].武汉:武汉理工大学,2011.
    [46]杜峰.基于线控技术的四轮主动转向汽车控制策略仿真研究[D].西安:长安大学,2009.
    [47]张伯俊.四轮转向汽车横向动力学特性及控制研究[D].天津:天津大学,2006.
    [48]刘丽.车辆三自由度平面运动稳定性的非线性分析及控制策略评价[D].长春:吉林大学,2010.
    [49]彭涛.半挂汽车列车非线性稳定性控制研究[D].长春:吉林大学,2012.
    [50]胡平,张浩.基于用户接受度的增程式混合动力汽车控制策略研究[J].汽车工程.2011,1(5):455-463.
    [51] Uebbing, Lahey. Electrical Automobile for the Environment Federal Ministry[J].Nature Conservation and Safety,2008,(3):35-42.
    [52]周苏,牛继高等.增程式电动汽车动力系统设计与仿真研究[J].汽车工程.2011,33(11):924-929.
    [53] Al-Adsani As, Jarushi A M. An ICE/HPM Generator Range Extender in aSeries Hybrid Electric Vehicle[C].5thIET International Conference on PowerElectronics, Machines and Drives, PEMD2010,2010
    [54]吴韶建,陶元芳.增程式电动汽车的概念与设计方案[J].机械工程与自动化.2010,(5):209-210.
    [55]付辉.Volt通用汽车全球转身底特律登月在即[J].轻型汽车技术,2008,(5):73-75
    [56]佚名.通用汽车推出增程型电动汽车[J].经济导报,2009,(1):62-67.
    [57]胡明寅,杨福源等.增程式电动车分布式控制系统的研究[J].汽车工程.2012,34(3):197-202.
    [58]宋柯,章桐.增程式纯电驱动汽车动力系统研究[J].汽车技术.2011,(7):14-18.
    [59]尤寅,宋珂等.带Range-Extender纯电动汽车动力系统设计[J].北京汽车:2010,(3):41-43
    [60]杨杨.增程式电动汽车产业技术路线图[D].安徽:合肥工业大学.2011.
    [61]黄真.电动汽车驱动控制系统及CAN总线网络控制系统[D].北京:北京交通大学.2010.
    [62]周炜冬.基于Advisor的增程式电动汽车性能仿真及试验研究[D].安徽:合肥工业大学.2012.
    [63]杨其华.双电机独立驱动电动汽车的电子差速自调节功能的分析研究[J].北京汽车.2008,41(9):74-77.
    [64]周明珂,袁昌明.电动车增程器控制单元的硬件在环仿真系统设计[J].中国计量学院学报.2012,23(2):160-164.
    [65] Morteza M G, Poursamad A. Application of genetic algorithm for optimizationof control strategy in parallel hybrid electric vehicles[J].Journal of the FranklinInstitute.2006,4(343):420-435.
    [66] Cajander D, Hoang L H. Design and optimization of a torque controller for aswitched reluctance motor drive for electric vehicles by simulation[J].Mathematics and Computers in Simulation.2006,(71):333-344.
    [67] Schouten N J, Salman MA. Energy management strategies for parallel hybridvehicles using fuzzy logic[J].Control Engineering Practice.2003,2(11):171-177
    [68] Sung. RyongHong, Seung.BokChoi. Vibration Control of a Structural SystemUsing Magneto rheological Fluid Mount[J]. Journal of Intelligent MaterialSystemsand Struetures.2005,(16):931-936.
    [69] Kannan S, Sloehanal S M R, Subbaraj P, et al. Application of Particle SwarmOptimization Technique and Its Variants to Generation Expansion PlanningProblem [J].Electric Power Systems Research.2004,70(3):203-210.
    [70] Fleming P J, Purshouse R C. Evolutionary Algorithms in Control SystemsEngineering A Survey [J]. Control Engineering Practice.2002,(10):1223-1241.
    [71]葛英辉.轮式驱动电动车控制系统的研究[D].杭州:浙江大学,2004.
    [72]宋佑川.新一代电动汽车中电动轮设计方法研究[D].武汉:华中科技大学,2004.
    [73] Lyshevshi, Sinha.Analysis and control of hybrid electric vehicles withindividual wheel brushless traction motors[C].American Control Conference.2000,2(6):28-30.
    [74]罗建武,詹琼华等.开关磁阻电机电动轮驱动系统[J].华中科技大学学报(自然科学版).2007,35(1):60-62.
    [75]钱立军,赵韩,高立新.电动汽车开发的关键技术及技术路线[J].合肥工业大学学报(自然科学版).2002,25(1):14-18.
    [76]冯镇.小型电动场地教练车动力系统匹配设计与仿真研究[D].西安:长安大学,2011.
    [77]陈勇,张建荣等.电动轮技术在电动汽车中的应用及发展趋势[J].机械设计与制造.2006,(10):169-171.
    [78]孙逢春,程夕明.电动汽车动力驱动系统的现状及发展[J].汽车工程.2004,(4):220-225.
    [79]靳立强,王庆年,张缓缓等.电动轮驱动电动汽车差速技术研究[J].汽车工程.2007,29(8):700-704.
    [80]靳立强,王庆年,宋传学.电动轮驱动电动汽车动力学仿真模型及试验验证[J].吉林大学学报(工学版),2007,37(4):745-750.
    [82]张兴宇.轮毅式电动汽车电子差速的研究[D].武汉:武汉理工大学,2008.
    [83]马海峰.轮毅式电动汽车的研究与开发[D].武汉:武汉理工大学,2008.
    [84] Huei Peng, Jwu-Sheng Hu. Traction/braking force distribution for optimallongitudinal motion during curve following [J].Vehicle System Dynamics.1996,26(4):301-320.
    [85]王庆年,张缓缓,靳立强.四轮独立驱动电动车转向驱动的转矩协调研究[J].吉林大学学报(工学版).2007,37(5):985-989.
    [86]余卓平,姜炜,张立军.四轮轮毂电机驱动电动汽车转矩分配控制[J].同济大学学报(自然科学版).2008,366(8):1115-1119.
    [87] Junya Yamakawa, Keiji Watanabe. A method of optimal wheel torquedetermination for Independent wheel drive vehicles [J]. Journal ofTerramechanics.2006,(43):269-285.
    [88]金续曾.电动机选型及应用/电机修理技术丛书[M].北京:中国电力出版社,2003.
    [89]王成元,夏加宽,孙宜标.现代电机控制技术[M].北京:机械工业出版社,2009
    [90]黄妙华.混合动力电动汽车多能源动力总成控制系统的研究与实现[D].武汉:华中科技大学,2002.
    [91]龚海峰.混合动力电动汽车能量存储系统性能分析与仿真[D].武汉:武汉理工大学,2003.
    [92]张富兴.城市车辆行驶工况的研究[D].武汉:武汉理工大学,2005.
    [93]吴晓栋.基于上海市道路运行条件的并联式混合动力汽车部件选型及控制策略设计研究[D].上海:同济大学,2003.
    [94]马志雄,李孟良等.乘用车实际行驶工况开发方法的研究[J].武汉理工大学学报.2004,26(3):182-184.
    [95]李孟良,李消等.道路车辆实际行驶工况解析方法研究[J].武汉理工大学学报.2003,27(l):69-72.
    [96]宋宝珍.西安市实际道路车辆行驶工况的研究[D].西安:长安大学,2009.
    [97] Tong H Y, Hung W T. Development Of a Driving Cycle for Hong Kong[J].Atmospheric Environment.1999,33(14):2323-2335.
    [98] Hung W T, Tong H Y, et al. Development of a Practical Driving Cycleconstruction methodology: A case study in Hong Kong[J]. TransportationResearch D.2007,(12):115-128.
    [99]余志生.汽车理论[M].北京:机械工业出版社,2006.
    [100]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:新华出版社,2004.
    [101]崔胜民.新能源汽车技术[M].北京:北京大学出版社,2009.
    [102]陈全世.先进电动汽车技术[M].北京:化学工业出版社,2007.
    [103]喻厚华.基于四轮协调的电动轮车辆纵横向藕合动力学控制研究[D].武汉:武汉理工大学,2011
    [104]王洪礼,胡斌.汽车四轮转向非线性系统的神经网络控制[J].汽车工程.2003,2(3):236-238.
    [105]张媛媛.采用电动轮驱动的电动汽车转矩协调控制研究[D].长春:吉林大学,2009.
    [106] Rakslneharoensak P, Nagai M, Shino M. Lane keeping control strategy withdirect yaw moment control input by considering dynamics of electric vehicle[J]. Vehiele System Dynamics.2006,44(1):192-201.
    [107] Fujimoto H, Yamauchi Y. Advanced motion control of electric vehicle basedon lateral force observer with active steering[C]. IEEE InternationalSymposium on Industrial Electronics,Bari,Italy,2010:3627-3632.
    [108] Ando N, Fujimoto H. Yaw-rate control for electric vehicle with active front/rear steering and driving/braking force distribution of rear wheels[C].International Workshop on Advanced Motion Control, Nagaoka, Niigata,japan,2010:726-731.
    [109] Sumiya H, Fujimoto H. Range extension control system for electric vehiclewith active front steering and driving/braking force distribution on curvingroad[C].Proceedings of Industrial Electronics, Glendale, AZ, United States,2010:2352-2357.
    [110] Kataoka H, Sado H, Sakail, et al.Optimal slip ratio estimator for tractioncontrol system of electric vehicle based on fuzzy inference[J]. ElectricalEngineering in Japan.2001,135(3):56-63.
    [111] Kawashima K, Uchida T, Hori Y. Rolling stability control of in-wheel electricvehicle based on2-degree-of-freedom control[C]. International Workshop onAdvanced Motion Control, Trento, Italy,2008:751-756.
    [112] Hautier J P, Barre P J. The causal ordering graph-A tool for modelling andcontrol law synthesis[J]. Studies in Informatics and Control Journal.2004,13(4):265-283.
    [113] Chen K,Bouseayro1A, Lhomme W. Energetic macroscopic representation andInversion-based control: application to an electric vehicle with an electricalDifferential[J].Journal of Asian ElectricVehicles.2008,6(l):1097-1102.
    [114] Kang J, Kim W,YI K, et al. Skid steering based driving control of a roboticvehicle with six in-wheel drives[J]. SAE International Journal of PassengerCars-Mechanical Systems.2010,3(l):131-144.
    [115] Fauroux J C, Vaslin P. Modeling, experimenting and improving skid steeringon a6x6All-terrain mobile platform[J]. Journal of Field Robotics.2010,27(2):107-126.
    [116]赵治国.车辆动力学及其非线性控制理论技术的研究[D].西安:西北工业大学,2002.
    [117]周聪.基于非线性估计理论的线控转向汽车状态估计研究[D].成都:西南交通大学,2012.
    [118]于蕾艳,林逸,施国标.线控转向系统动力学模型的研究[J].计算机仿真.2008,25(6):251-253.
    [119]李强,何仁.键合图理论在汽车线控转向系统建模中的应用[J].农业机械学报.2006,37(10):27-30.
    [120]陈荫三,余强.汽车动力学[M].北京:清华大学出版社,2009.
    [121] Cabrea. J. A, Ortiz. A, Carabias. E. An Alternative Method to Determine theMagic Tyre Model Parameters using Genetic Algorithms[J]. Vehicle SystemDynamics.2004,41(2):109-127.
    [122]关欣,李陆山.空气动力学与汽车外形设计[J].汽车运用.2000(9):21-22.
    [123]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报.2008,39(6):1-7.
    [124]张云清,高斯等.基于多体力学的车辆动力学控制系统仿真及优化[J].动力学与控制学报.2007,5(l):68-74.
    [125]程军.车辆动力学控制的模拟[J].汽车工程.1999,21(4):199-205.
    [126] Shino M, Nagai M. Independent wheel torque control of small scale electricvehiele for handling and stability improvement[J]. JSAE Review.2003,24(4):449-456.
    [127]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [128]李道飞,喻凡.基于最优轮胎力分配的车辆动力学集成控制[J].上海交通大学学报.2008,42(6):887-891.
    [129]郭孔辉.轮胎侧偏特性的一般理论模型[J].汽车工程.1990,12(3):1-12.
    [130] Pacejka H B, Bakker E. The magic formula type model[J]. Vehicle SystemDynamics.1992,21(1):1-18.
    [131]杨柳.高速车辆纵横向动力学耦合控制研究[D].重庆:重庆大学,2006.
    [132]王威.汽车整车与转向系非线性动力学特性及控制仿真研究[D].哈尔滨:哈尔滨工业大学,2010.
    [133]袁忠诚.轮胎稳态侧向半经验模型的研究[D]长春:吉林大学,2003.
    [134]瞿宏敏,程军.汽车动力学模拟中的轮胎模型述评[J].汽车技术,1996,(7):1-8.
    [135]周磊,张向文.基于dugoff轮胎模型的爆胎车辆运动学仿真[J].计算机仿真.2012,29(6):308-311.
    [136] Dugoff H. Fancher P.S. Segel L. An analysis of tire traction properties andtheir influence on vehicle dynamic Performance[J]. SAE Paper700377,1970.
    [137] Pacejka H B, BESSELINK J M. Magic formula tire mode with transitproperties[J]. Vehicle System Dynamics.1997,(27):234-249.
    [138]郭孔辉.预瞄跟随理论与人-车闭环系统大角度操纵运动仿真[J].汽车工程.1992,14(1):1-11.
    [139] Modjtahedzadeh A, Hess R A. A model of driver steering control behavior foruse in assessing vehicle handling qualities[J], Transactions of ASME.1993,115(3):456-464.
    [140]郭孔辉,丁海涛,宗长富.人-车闭环操纵性评价与优化的研究进展[J].机械工程学报.2003,39(10):27-34.
    [141]宗长富,开发型驾驶模拟器逼真度改进与汽车操纵稳定性综合评价研究[D].吉林工业大学,1988.
    [142]郭孔辉,马凤军,孔繁森.人-车-路闭环系统驾驶员模型参数辨识[J].汽车工程.2002,24(l):20-24.
    [143]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [144]刘兴初,张建武,刘奋.四轮转向非线性侧向动力学模型[J].上海交通大学学报.2005,39(9):1466-1469.
    [145]姚永建,韩强.四轮转向汽车的非线性模型及其动力方程[J].华南理工大学学报(自然科学版).2003,31(11):49-52.
    [146]管西强.屈求真等.四轮转向汽车的模型跟踪变结构控制[J].机械工程学报.2002,38(3):54-58.
    [147]殷国栋,陈南,李普.基于降阶观测器的四轮转向车辆随动操纵瞬态稳定性分析[J].中国机械工程.2004,15(14):1298-1301.
    [148]郭孔辉,轧浩.车辆四轮转向系统的控制方法[J].吉林工业大学学报.1998,28(4):l-4.
    [149]祁永宁.4WS车辆直接横摆力矩控制与硬件在环仿真系统[J].东南大学,2005.
    [150] Jeonghoon Song, Heungseob Kim, Kwangsuck Boo. A study on an anti-lockbraking system controller and rear-wheel controller to enhance vehicle lateralstability[J]. Automobile Engineering.2007,(221):777-787.
    [151]张威,张景海,等.汽车动力学仿真模型的发展[J].汽车技术,2003,(2):l-4.
    [152]王辉.四轮转向汽车的控制研究和操纵动力学仿真分析[D].上海交通大学,2007.
    [153] Junjie He, D A Crolla, et al. Coordination of active steering, driveline, andBraking for integrated vehicle dynamics control[J]. Automobile Engineering.2006,(220):1401-1421.
    [154]安部正人著,陈辛波译.汽车的运动和操纵[M].北京:机械工业出版社,1998.
    [155]刘小河.非线性系统分析与控制引论[M].北京:清华大学出版社,2008.
    [156]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [157]丁玉琴.几类非线性系统观测器设计研究[D].山东:山东大学,2007.
    [158]刘春美.Lyapunov方法在系统稳定性理论上的应用[D].长春:东北师范大学,2010.
    [159]陆启韶.非线性复杂系统的动力学问题[J].新疆大学学报.2001,18(2):141-146.
    [160]勇俊,郭丽华,吴兴波等.MATLAB在研究非线性混沌中的应用[J].吉林化工学院学报.2003,20(2):41~43.
    [161]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社,2006.
    [162]黎康,方振平.分岔分析在飞机非线性动力学中的应用[J].飞行力学.2003,21(4):5-8.
    [163] Ji J C. Stability and Hopf bifurcation of a magnetic bearing system with timedelays[J]. Journal of Sound and Vibration.2003,259(4):845-856.
    [162]韦笃取.永磁同步电动机控制系统混沌行为分析及抑制和镇定[D].广州:华南理工大学,2011.
    [163]曾京,邬平波.高速列车的稳定性[J].交通运输工程学报.2005,5(2):1-4.
    [164]李立平.一维非对称CNN系统的完全稳定性[D].浙江:浙江师范大学,2003.
    [165] Yu P, Bi Q. Analysis of non-linear dynamics and bifurcations of a doublePendulum[J]. Journal of Sound and Vibration.1998,217(4):580-625.
    [167] Nikolov S, Petrov V. New results about route to chaos in Rossler system[J].Journal of Bifurcation and Chaos.2004,14(1):293-308.
    [168] Malhotra N, Namach chivaya N S. Global dynamics of parametrically excitednonlinear reversible systems with nonsemisimple1:1resonance[J]. PhysicaD.1995,(89):43-70.
    [169] Ortega J M. Rheiboldt W C. Iterative solution of nonlinear equations inseveral variables[M]. New York: Academic Press,1990.
    [170] Hale J, Kocak H. Dynamics and Bifurcations[M]. New York:Springer-Verlag,1994.
    [171]曹树谦,陈予恕,丁千.高维非线性转子系统周期分岔解的数值计算[J].天津大学学报.2006,39(6):637-64.
    [172]勇俊,郭丽华,吴兴波等.MATLAB在研究非线性混沌中的应用[J].吉林化工学院学报.2003,20(2):41~43.
    [173]张德丰. MATLAB控制系统设计与仿真[M].北京:电子工业出版社,2009.
    [174]刘寅立,王剑亮等.MATLAB数值计算案列分析[M].北京:北京航空航天大学出版社,2011.
    [175]姚妙新,陈芳启.非线性理论数学基础[M].天津:天津大学出版社,2005.
    [176]张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2000.
    [177]郭大钧.非线性泛函分析[M].济南:山东科学科技出版社,2001.
    [178]徐仲,张凯院等.矩阵论简明教程[M].北京:科学出版社,2007.
    [179]倪国熙.常用的理论和方法[M].上海:上海科学技术出版社,1984.
    [180]李红.数值分析[M].武汉:华中科技大学出版社,2003.
    [181]李庆扬,王能超等.数值分析[M].武汉:华中科技大学出版社,2001.
    [181]钟益林,彭乐群等.常微分方程及其Maple/Matlab求解[M].北京:清华大学出版社,2007.
    [182]薛定宇,陈阳泉.高等应用数学问题的Matlab求解[M].北京:清华大学出版社,2004.
    [183] Moler, Cleve B. Numerical computing with Matlab[M].Londom: CambridgeUniversity Press,2004.
    [184] Shampine, L.F., S.Thompson,et al.Solving ODEs with Matlab[M].Londom:Cambridge University Press,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700