凯里地区煤矿废水污染分析及微生物处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭产业是目前人类生存和经济社会发展的一个重要能源支柱。在煤炭大量产出的同时,生态环境也遭受严重破坏,其中以煤矿废水所引发的环境问题最为严重。作者在两年时间内五次深入贵州凯里鱼洞村到江口寨这一区域进行实地调查,开展了凯里地区煤矿废水污染分析及微生物处理试验研究。
     运用土壤富集因子、单项污染指数法、内梅罗综合污染指数法和HQ(人类健康潜在危害评价)等一系列评价方法与污染评价标准,分析了该煤矿地区河流——土壤——植被中的重金属污染特征。研究表明,重安江上游河段已受到煤矿废水严重污染,多项水质指标均已超出国家二级排放标准;矿区土壤潜在酸度较大,伴有锌轻度污染,汞重度污染,重金属综合污染程度深;废水污染流域所采集的植物样品蜈蚣蕨、水稻幼苗和蔬菜等都受到了煤矿废水不同程度污染的影响,其中与人类密切相关的蔬菜受污染最严重,豆角、西红柿和茄子含铅量分别超过国家食品卫生标准含量的53.00倍、30.35倍和15.20倍;辣椒、黄瓜、豆角、西红柿和茄子含汞量分别超过国家食品卫生标准含量的49.00倍、33.50倍、61.70倍、88.30倍和60.70倍。
     通过微生物吸附法以硅酸盐细菌BM03菌株展开对受煤矿废水污染水体的微生物治理初步研究。结果表明,处理后絮凝率可以达到97.94%,SS去除率也高达99.43%,总铁、zn~(2+)和Ti~(4+)的最大去除率分别为91.94%,90.93%和90%,效果显著。在此基础上,结合Plackett-Burman法、最陡爬坡法和中心组合设计法(central composite design)对微生物吸附过程进行优化。得到6个因素对总铁去除率的影响依次为:静态处理时间>菌液投加量>动态处理时间>摇床转速>动态处理温度≈静态处理温度,其中只有前两个因素及其交互作用影响显著,其余因素影响均不显著。由实验结果进行二次拟合方程,经求导得到当菌液投加量和静态处理时间分别为42.35mL和9.13h时,总铁去除率达到最大,即92.88%。
     结合前面开展的环境污染评价以及微生物吸附法治理煤矿废水的研究,设计较为可行的生物修复方案,提出通过农耕法、投菌法、植物修复法等一系列措施逐渐改善凯里地区的生态环境状况。
     贵州是产煤大省,煤矿众多,并且多数矿区污染严重,亟待治理。因此,研究采用微生物法治理煤矿废水具有广阔的应用前景;同时,加强煤矿地区的综合治理,不仅有利于矿山地区环境污染状况的根本改善,而且也是煤炭行业健康发展的必然选择。
As an important part of energy resource, coal has enormous negative effects on the ecological environment, although it offers energy. In the course of coal production, acid mine drainage brought by mines, coal washing process, tailing dump and abandoned mine pits etc., has endangered the peripheral ecosystem of mining area particularly seriously. During two years, the author carried on the field work and the study about the analysis of acid mine drainage pollution and biological treatment examination in the area from Yudong village to Jiangkou stockaded village of Kaili in Guizhou province.
     By using a series of assessment methods and pollution evaluation criteria, such as soil enrichment factor, individual pollution index, N.C.Nemerow integrated pollution index, HQ (hazard quotient to human health) and so on, this paper describes the heavy metal pollution characteristics of Fe, Pb, Zn and Hg in the river-soil-vegetation system in the coal mining region of Kaili. The research shows that the upper reaches of the Chongan River have been polluted seriously by colliery wastewater. A number of water quality indices, such as pH, SS, chromaticity color, content of heavy metal, etc., have already overrun the second Chinese discharge standard. The potential acidity of soil in the mining district is relatively large, and the soil has been slightly polluted by Zn and seriously polluted by Hg. On the whole, the soil has been deeply polluted by heavy metals. Moreover, plant samples such as Pteris vittata, rice seedling and vegetables have all been affected by colliery wastewater. Among them, the vegetables closely related to human beings are most seriously polluted. Lead contents of kidney bean, tomato and eggplant have overrun the regulated contents by 53.00, 30.35 and 15.20 times of the Chinese Food Hygiene Standards, respectively. Mercury contents of capsicum, cucumber, kidney bean, tomato and eggplant have also preponderated over the regulated contents by 49.00, 33.50, 61.70, 88.30 and 60.70 times, respectively.
     On the basis of the analysis about the hazard to the circumjacent ecological environment,which was caused by the colliery wastewater of this area. Treat the river polluted by the coal mine's wastewater using silicate bacterium BM03 with the result that it has better treatment effect that the microbial flocculant treats coal mine's wastewater by means of microbial adsorption. It was shown that the maximum flocculation ratio was 97.94% ,the maximum SS removal ratio was 99.43%, and the maximum removal ratios was 91.94%, 90.93 %, and 90% for the total Fe, Zn~(2+), and Ti~(4+).Further more, the process of microbial adsorption is optimized by Plackett-Burman method, the most steep hill climling and the central composite design. The factor effect for the total iron removing ratio is that: static handing time> dosage of bacteria solution>dynamic handling time>the rotation rate of shaking table>dynamic handling temperature≈static handing temperature. In these factors, there are only two factors about static handing time and dosage of bacteria solution with their interaction whose influence are distinct. Others effect are not marked. Using the testing result it can obtain the twain order fitting equation. After differentiate, it can be known that when the dosage of bacteria solution is 42.35mL and the static handing time is 9.13h, the maximum total iron removal ratio is 92.88%.
     Combined with the research on the analysis of acid mine drainage pollution and biological treatment examination, this article designs the doable biological rehabilitation scheme about land farming, bioaugmentation, phytoremediating and so on, which can gradually get ecological environment better.
     Guizhou Province possesses abundant coal resources, and all kinds of coal mines are distributed in all parts of the whole province. Pollution is serious in majority of them, which needs governing. Thus, it has the wide application foreground in studying and exploiting microbe method for governing the colliery wastewater. Enhancing the comprehensive treatment of the coal mine area is not only in favour of the melioration of environment status, but also the necessary selection for the salubrious development of coal industry.
引文
[1]马尧,孙占学.矿山废水的危害及其治理中的微生物作用[J].科技情报开发与经济.2006,16(10):166-167.
    [2]马曦,王里奥,林建伟.受污染地表水体生物修复技术研究进展[J].环境科学与管理,2006,31(2):34-37.
    [3]王龙贵,欧泽深.分析燃媒污染危害及其防治[J].选煤技术,2004,1:12-15.
    [4]王庆仁,崔岩山,董艺婷.植物修复重金属污染土壤整治有效途径[J].生态学报,2001,21(2):326-331.
    [5]王志宏,李爱国,范良千.海州露天煤矿排土场土壤现状评价[J].安全与环境学报,2006,6(4):70-73.
    [6]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990.330-382.
    [7]王钧扬.矿山废水的治理与利用[J].中国资源综合利用,2000,(3):4-7.
    [8]韦朝阳,张立城,何书金.我国煤矿区生态环境现状及综合治理对策[J].地理学报,1997,52(4):300-307.
    [9]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [10]王雅静,戴惠新.生物吸附法分离废水中重金属离子的研究进展[J].冶金分析,2006,26(1):40-45.
    [11]丛志远,赵峰华.酸性矿山废水研究的现状及展望[J].中国矿业,2003,12(3):15-18.
    [12]孙家寿.世界生物处理矿山废水技术的进展[J].国外金属矿选矿,1998,(1):39-43.
    [13]冯颖,康勇,范福洲,孔琦.酸性矿山废水形成与处理中的微生物作用[J].有色金属,2005,57(3):103-108.
    [14]田翱宇,陈吉春.氧化亚铁硫杆菌及其在环境工程中的应用[J].环境技术,2003,4(16):16-18.
    [15]任子平,杨赞中.矿物的环保功能及其应用研究进展[J].矿产保护与利用,2001,(3):44-49.
    [16]匡少平,徐仲,张书圣.水稻对土壤中环境重金属激素铅的吸收效应及污染 防治[J].环境科学与技术,2002,25(2):32-34.
    [17]李圭白,刘超.地下水除铁除锰(第二版)[M].北京:中国建筑工业出版社.1989,27-29.
    [18]刘成.生物法处理矿山酸性废水技术的应用[J].有色会属:矿山部分,2001,(4):39-44.
    [19]李仲根,冯新斌,何天容,阎海鱼,Liang Lian.王水水浴消解-冷原子荧光法测定土壤和沉积物中的总汞[J].矿物岩石地球化学通报,2005,24(2):140-143.
    [20]李法云,曲向荣,吴龙华.污染土壤生物修复理论基础与技术[M].北京:化学工业出版社,2006:152-154.
    [21]刘建忠,熊亚红,翁丽萍,计亮年.生物过程的优化[J].中山大学学报(自然科学版),2002,41(增刊):132-137.
    [22]刘娜,杨云龙.生物修复技术在污染坏境修复中的应用研究[J].科技情报开发与经济,2005,15(3):173-175.
    [23]李前,杨世杰,杨德志.煤矿废水的净化处理与工艺革新[J].甘肃环境研究与监测,2002,15(1):31-32.
    [24]李贵宝,周怀东.水陆交错带芦苇根孔及其净化污水的初步研究[J].中国水利,2003,(3):67-69.
    [25]刘洪莲,李艳慧,李恋卿,金亮,潘根兴.太湖地区某地农田土壤及农产品中重金属污染及风险评价[J].安全与环境学报,2006,6(5):60-63.
    [26]刘萍,曾光明,黄瑾辉,牛承岗.生物吸附在含重金属废水处理中的研究进展[J].工业用水与废水,2004,35(5):1-5.
    [27]杜乃林,董滨奎.粉煤灰净化污水中重金属离子的研究[J].黑龙江环境通报,1996,20(4):10-13.
    [28]宋书巧.矿山开发的环境响应与资源环境一体化研究-以广西刁江流域为例[D].2004,6:128-129.
    [29]陈文敏,李文华.洁净煤技术基础[M].北京:煤炭工业出版社,1996,3.
    [30]宋世炜,黄韵,冯本秀.微生物吸附废水中金属的研究进展[J].化学工业与工程技术,2006,27(1):53-56.
    [31]张明星,洪青,何健,管晓进,虞方伯,郭鹏,李顺鹏.BHC-A与CDS-1降解菌对六六六、呋喃丹污染土壤的原位生物修复[J].土壤学报,2006,43(4):693-696.
    [32]连宾.硅酸盐细菌的解钾作用研究[M].贵州:贵州科技出版社,1998,55-65.
    [33]连宾,付平秋,莫德明,刘丛强.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报,2002,22(2):179-183.
    [34]连宾,陈烨,袁生,刘丛强.硅酸盐细菌GY03菌株的絮凝特性[J].矿物学报,2003,23(4):303-307.
    [35]余涛,杨忠芳,唐金荣,宗思锋,朱翠娟,张娇,张建新,申志军.湖南洞庭湖区土壤酸化及其对土壤质量的影响[J].地学前缘,2006,13(1):98-104.
    [36]陈烨,连宾.微生物絮凝剂研究和应用进展[J].矿物岩石地球化学通报,2004,23(1):83-89.
    [37]陈烨,陈勤怡,连宾.啤酒厂废水的生物处理[J].食品科学,2004,25(10):148-150.
    [38]周风帆,王新光.利用凤眼莲(Eichhornia crassipes)净化水中重金属放射性核素~(60)钴、(65)~锌和(137)~铯的研究[J].中国环境科学,1989,9(1):26-30.
    [39]苑文颖,丁庭华.地下水及土壤污染现场强化生物恢复技术[J].中国给水排水,2000,16(7):46-49.
    [40]林治庆,黄会一.木本植物对土壤汞污染防治功能的研究[J].中国环境科学,1988,8(3):35-40.
    [41]尚爱安,党志,漆亮,文震.两类典型重金属土壤污染研究[J].环境科学学报,2001,21(4):501-503.
    [42]祝玉学.矿山酸性水的处理[J].安全与环保,1998,(5):62-68.
    [43]祝玉学,桂誉漓.硫酸盐还原菌示范工程概述[J].国外金属矿山,2000,(4):62-68.
    [44]姚运先,王艺娟.人工湿地在酸性矿山废水处理中的应用[J].湖南有色金属,2005,21(4):26-29.
    [45]郝学财,余晓斌,刘志钰,王蓓.响应面方法在优化微生物培养基中的应用[J].食品研究与开发,2006,27(1):38-41.
    [46]郭远凯.污染场地的生物修复技术[J].嘉应大学学报,2001,19(3):33-35.
    [47]赵金.胶质芽胞杆菌絮凝剂的絮凝作用与絮凝机理研究[D].2006,36-37.
    [48]饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景[J].矿业工程,2005,3(3):47-49.
    [49]姚春霞,陈振楼,张菊,侯进.上海浦东部分蔬菜重金属污染评价[J].农业环境科学学报,2005,24(4):761-765.
    [50]赵素丽,谯华.生物修复技术的发展现状[J].重庆工业高等专科学校学报,2004,19(5):14-16.
    [51]胡振琪,凌海明.会属矿山污染土地修复技术及实例研究[J].金属矿山,2003,(6):53-56.
    [52]赵媛,宋燕艳.煤矿废水回用可行性分析[J].煤,2002,11(6):47-48.
    [53]郭路,李云峰,姬亚东.矿业开发与环境保护关系综述[J].西北地质,2005,38(2):94-98.
    [54]胡稳奇,张志光.微生物方法在重金属污染处理中的应用现状及展望[J].大自然探索,1995,14(52):58-62.
    [55]徐亚同,史家梁,张明.生物修复技术的作用机理和应用[J].上海化工,2001,(20):4-6.
    [56]高修功,王超,章克昌.数学统计法快速优化假单胞菌脂肪酶发酵条件[J].微生物学通报,1998,25(2):94-97.
    [57]崔龙鹏,白建峰,史永红,颜事龙,黄文辉,唐修义.采矿活动对煤矿区土壤中重金属污染研究[J].土壤学报,2004,41(6):896-904.
    [58]黄会一,蒋德明,张春兴.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323-330.
    [59]黄廷林,李梅,高晓梅.结团絮凝工艺处理洗煤废水的研究[J].工业用水与废水,2002,33(4):23-25.
    [60]谢光炎,戴文灿,孙水裕.硫化沉淀浮选法处理矿山井下废水研究[J].有色金属,2003,(2):41-43.
    [61]彭清涛.植物在环境污染治理中的应用[J].污染防治技术,1998:24-27.
    [62]潘向军.生物过程优化的研究进展[J].化工时刊,2006,20(3):54-57.
    [63]戴兴春,徐亚同,黄民生.污染环境中微生物修复的几种办法[J].上海化工, 2004,(1):10-12.
    [64]魏榕,黄健.酸性矿山废水的污染与处理研究[J].能源与环境,2006,(2):31-33.
    [65]GB11901-89,水质-悬浮物的测定-重量法[S].中华人民共和国国家标准.
    [66]GB11903-89,水质-色度的测定[S].中华人民共和国国家标准.
    [67]GB12283-90,水果、蔬菜及制品有机物的分解方法[S].中华人民共和国国家标准.
    [68]GB13106-1991,食品中锌限量卫生标准[S].中华人民共和国国家标准.
    [69]GB14935-1994,食品中铅限量卫生标准[S].中华人民共和国国家标准.
    [70]GB15200-1994,食品中铁限量卫生标准[S].中华人民共和国国家标准.
    [71]GB15618-1995,土壤环境质量标准[S].中华人民共和国国家标准.
    [72]GB2762-2005,食品中污染物限量[S].中华人民共和国国家标准.
    [73]GB6920-86,水质-pH值的测定-玻璃电极法[S].中华人民共和国国家标准.
    [74]GB8978-1996,污水综合排放标准[S].中华人民共和国国家标准.
    [75]HJ/T166-2004,土壤环境监测技术规范[S].中华人民共和国环境保护行业标准.
    [76]HJ322-2006,食用农产品产地环境质量评价标准[S].中华人民共和国国家标准.
    [77]NY 5115-2002,无公害食品大米[S].中华人民共和国农业标准.
    [78]A.K.Donkor,J.C.Bonzongo,V.K.Nartey,D.K.Adotey.Mercury in different environmental compartments of the Pra River Basin,Ghana[J].Science of the Total Environment,2006,368(1):164-176.
    [79]Alex Godoy-Fa'undez,Blanca Antizar-Ladislao,Lorenzo Reyes-Bozo,Andr'es Cama~no,Cesar Sa'ez-Navarrete.Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region[J].Journal of Hazardous Materials,2007,6(38):1-30.
    [80]Amanda Black,Dave Craw.Arsenic,copper and zinc occurrence at the Wangaloa coal mine,southeast Otago,New Zealand[J].International Journal of Coal Geology,2000,45(1):181 - 193.
    [81]A.M.D.van Rotterdam-Los,S.P.Vriend,M.J.van Bergen,P.F.M.van Gaans.The effect of naturally acidified irrigation water on agricultural volcanic soils[J].Journal of Geochemical Exploration,2007,available online.
    [82]B.S.Panov,A.M.Dudik,O.A.Shevchenko,E.S.Matlak.On pollution of the biosphere in industrial areas:the example of the Donets coal Basin[J].International Journal of Coal Geology,1999,40(2-3):199-210.
    [83]Chen Ye,Lian Bin.Ability of bacillus mucilaginosus GY03 strain to adsorb chromium irons[J].Pedosphere,2005,15(2):225-231.
    [84]David K.Jones.A geochemical study of a breccia body in the central Tennessee zinc district[J].Journal of Geochemical Exploration,1988,30(1-3):197-207.
    [85]Dinesh Mohan,Subhash Chander.Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent[J].Journal of Hazardous Materials,2006,(137):1545-1553.
    [86]Edeltrauda Helios Rybicka.Impact of mining and metallurgical industries on the environment in Poland[J].Applied Geochemistry,1996,11:3-9.
    [87]Ian Jarvis,Kym E.Jarvis.Inductively coupled plasma-atomic emission spectrometry in exploration geochemistry[J].Journal of Geochemical Exploration,1992,44(1-3):139-200.
    [88]Kao CM,Lei S E.Using a Peat Biobarrier to Remediate PCE/TCE Contaminated Aquifer[J].Wat Res,2000,34(3):835-845.
    [89]Krzysztof Loska,Danuta Wiechula,Irena Korus.Metal contamination of farming soils affected by industry[J].Environment International,2004,30(2):159-165.
    [90]Lian Bin,Chen Ye,Yuan Sheng,Zhu Li-jun,Liu Cong-qiang.Study on the flocculability of metal ions by bacillus mucilaginosus GY03 Strain[J].Chinese Journal of Geochemistry,2004,23(4):380-386.
    [91]Li Jing,Lian Bin,Hao Jianchao,Zhao Jin and Zhu Lijun.Non parallelism between the effect of microbial flocculants on sewerage disposal and the flocculation rate[J].Chinese Journal of Geochemistry,2006,25(2):139-142.
    [92]Loi Dinh Chinh,Shabbir H.Gheewala,Sébastien Bonnet.Integrated environmental assessment and pollution prevention in Vietnam: the case of anthracite production[J]. Journal of Cleaner Production, 2007,15(18): 1768 — 1777.
    [93] Margarete Kalin, Andrew Fyson, William N.Wheeler. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage[J]. Science of the Total Environment, 2006,(366):395—408.
    [94] M.Muchuweti, J.W. Birkett, E. Chinyanga, R. Zvauya, M.D. Scrimshaw, J.N. Lester. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health[J]. Agriculture Ecosystems & Environment, 2005,112(2006):41 -48.
    [95] N.Sridhara Chary, C.T.Kamala, D. Samuel Suman Raj. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer[J]. Ecotoxicology and Environmental Safety, 2007:1 — 12.
    [96] P.L.Younger. Mine water pollution in Scotland: nature, extent and preventative strategies[J]. The Science of The Total Environment, 2001,265(l-3):309-326.
    [97] Robert G. Verb, Morgan L.Vis. Macroalgal communities from an acid mine drainage impacted watershed [J]. Aquatic Botany, 2001,71(2001):93 —107.
    [98] Sang-Hwan Lee, Bang-Il Oh, Jeong-gyu Kim. Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity[J]. Bioresource Technology, 2007:1-10.
    [99] Singh M, Ansari A A, Muller G. Heavy metals in fresh deposited sediments of the Gomati River (a tributary of the Ganga River): Effects of human activities [J]. Environmental Geology, 1997, 29:246-252.
    [100] Sutapa Bose, A.K. Bhattacharyya. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge[J]. Chemosphere,2007, in press.
    [101] The Drinking Water Standards and Health Advisories[S]. Office of Water U.S. Environmental Protection Agency Washington, DC. 2006.
    [102] V.L. Barbosa, R. Tandlich, J.E. Burgess. Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: A review of potential options[J],chemosphere,2007,1(18):1195-1203.
    [103]Wallace A.Dose response curves for zinc,cadmium and nickel in combinations of one,two or three[J].Soil Science,1989,147(6):401 -410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700