生物柴油制备的反应过程强化方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益枯竭和环境问题的突显,寻求可再生能源作为补充越来越受到世界各国的重视。生物柴油作为一种可再生能源,具有来源广泛、对环境友好、可生物降解,以及能够与当前的柴油混合使用或直接使用而不需要对发动机做改进的诸多优点。目前大部分生物柴油都是在均相催化作用下通过间歇式搅拌反应器制备的。使用间歇式搅拌反应器不仅生产时间长,而且效率低,不能实现连续化生产。除此之外,使用均相催化剂会造成额外的环境问题,这与发展绿色能源的初衷相悖。除此之外,生物柴油的最终价格和其原料来源的关系极大。因此,寻求价格相对低廉的原料来发展生物柴油有利于降低成本。基于上述考虑,本文的主要研究内容与创新成果有以下几个方面:
     (1)微槽道反应器强化合成生物柴油的研究
     设计了应用于强化生物柴油合成的Zigzag型微槽道反应器,研究不同的微槽道尺度和形状对两相不相溶液体混合的影响,初步探讨了其强化传质的相关机理。微槽道当量直径的减小和流道弯曲数的增加将会形成更小的混合液滴粒径,从而使得生物柴油产率提高。与普通的间歇式搅拌反应器相比,Zigzag型微槽道反应器能够在28s的停留时间下达到99.5%的生物柴油产率,而间歇式搅拌反应器则需要1h以上。此外,研究了微槽道反应器和间歇式搅拌反应器之间的能耗比较,发现使用微槽道合成单位质量的生物柴油所需要的能耗约为间歇式搅拌反应器的1/3。这些结果表明Zigzag型微槽道反应器可作为小型紧凑分布式能源制备系统来发展。
     (2)泡沫金属反应器强化合成生物柴油的研究
     鉴于微槽道反应器的生产容量小的弱点,设计使用泡沫金属反应器作为强化传质工具来进行生物柴油的合成。研究了20PPI、30PPI和50PPI三种不同规格的泡沫金属反应器对甲醇/豆油两相不相溶液体之间的混合效果。实验结果表明使用50PPI的泡沫金属反应器得到最小的混合液滴粒径,从而得到最高的生物柴油产率。与间歇式搅拌反应器和微槽道反应器相比,50PPI的泡沫金属展现出更小的能耗,在生产单位质量生物柴油所需能耗仅为1.14 Jg-1,约为微槽道反应器的1.69%和间歇式搅拌反应器的0.77%。因此,泡沫金属反应器有望能够成为小型高效的生物柴油制备系统被广泛应用。
     (3) Li掺杂MgO固体催化剂合成生物柴油的研究
     使用浸渍法设计了应用于酯交换制备生物柴油的Li掺杂MgO系列固体碱催化剂,研究不同的制备条件如Li/Mg摩尔比和煅烧温度对催化剂性能的影响。研究发现,Li的掺杂造成了MgO晶格的畸变,从而使得该催化剂能够在较温和的条件下能够达到高的生物柴油产率,而MgO本身在温和条件下几乎为惰性。除此之外,研究了催化剂的反应工艺参数和可再利用性。实验结果表明该催化剂在甲醇中易流失活性组分,因此形成了部分均相催化行为,催化剂的稳定性需要做更多的改进以便应用于规模化的生物柴油生产。
     (4) CaO-CeO2混合氧化物催化转化黄连木油为生物柴油的研究
     设计了CaO-CeO2混合氧化物催化剂,应用于催化转化黄连木油为生物柴油。催化剂的活性和稳定性与Ce/Ca摩尔比以及煅烧温度密切相关。与纯CaO催化剂相比,Ce的加入显著地提高了催化剂的稳定性。催化剂的表征表明该类催化剂的良好的活性和稳定性源自于Ce取代CaO中的Ca离子,从而形成了晶格缺陷,这些缺陷对于非均相催化是有利的。该系列中的最佳催化剂在重复利用性能上也有着良好表现,重复使用四次之后,仍然能够达到80%以上的生物柴油产率,而当催化剂在清洗煅烧再生后再次使用时,生物柴油的产率达到了91.1%,接近催化剂初始使用的水平。
     (5) TiO2-MgO混合氧化物催化转化废弃煎炸油为生物柴油的研究
     使用价格低廉的废弃煎炸油作为原料,设计了非均相固体催化剂TiO2-MgO混合氧化物催化剂用于转换其为生物柴油,研究不同的Mg/Ti摩尔比以及煅烧温度对于催化剂性能的影响。当使用纯MgO作为催化剂时,金属离子的流失是很严重的,而通过Ti的加入,则显著地提高了催化剂的稳定性。当Mg/Ti的摩尔比为1,煅烧温度为923 K时,催化剂的活性和稳定性达到最佳。生物柴油的产率随着重复利用次数的增加而逐次降低,但是当催化剂经过煅烧再生后,生物柴油的产率却比第一次使用时高,主要是源自于其更高的比表面积、孔容以及平均孔径。这些结果表明TiO2-MgO混合氧化物催化剂作为规模化生产生物柴油时具有良好的前景。
Due to the depletion of petroleum-based sources and environmental concern, alternative renewable energy sources have attracted more attention in many countries. Biodiesel is non-toxic, bio-degradable and can be used directly or blended with conventional diesel, without modification of current engine systems. Generally, biodiesel is produced by a batch stirred reactor via homogeneous catalysis, which needs a long time of reaction leading to low efficiency and batch production. Using homogeneous catalysts would bring new environmental issue, e.g. waste water that will not fit the philosophy of "Green energy" Besides, the feedstock of biodiesel plays an important role since the price of biodiesel is closely related to the feedstock. Therefore, seeking for low-price feedstock is significant for reducing the cost of biodiesel. production. Considering of these points, the main contents and novel results are as follows:
     (1) Intensification of biodiesel synthesis using zigzag micro-channel reactors
     Zigzag micro-channel reactors have been fabricated and used for continuous biodiesel production. The influences of main geometric parameters on the performance of the micro-channel reactors were experimentally studied. It has been found that the zigzag micro-channel reactor with small channel size and more turns produces smaller droplets which result in higher efficiency of biodiesel synthesis. Compared to conventional batch stirred reactor, the zigzag micro-channel reactor could get the biodiesel yield of 99.5% in residence time of 28 s. Besides, the energy consumption of micro-channel reactor was 1/3 of that originated by batch stirred reactor. These results indicate micro-channel reactors can be designed as compact mini-fuel processing plant for distributive applications.
     (2) Intensification of biodiesel synthesis using metal-foam reactors
     As the production volume of micro-channel reactor is low, it is necessary to design a new continuous reactor for synthesizing biodiesel. Here, the metal-foam reactor was firstly designed as a tool for continuous biodiesel production. Three types (20PPI,30PPI,50PPI) of metal foam reactors were evaluated according to the mixing result of methanol/oil. It has been found that the metal foam reactor with the higher pore density produces smaller droplets which result in higher efficiency of biodiesel synthesis. Compared with the batch stirred reactor and micro-channel reactor, the metal foam reactor (50PPI) exhibited lower energy consumption per gram biodiesel of 1.14 J g-1, only 1.69% and 0.77% those of micro-channel reactor and batch stirred reactor.
     (3) Synthesis of biodiesel catalyzed by Li-doped MgO catalysts
     The Li-doped MgO catalysts were prepared by incipient wetness impregnation method and used for biodiesel synthesis. The Li/Mg molar ratios and calcination temperatures on the performance of catalysts were investigated. It has been found that the catalytic activity is improved by Li doping, which is attributed by the defects of MgO lattice. The active sites were leached into the reactants leading to the deactivation of catalysts, indicating more studies are needed to stabilize the catalysts for its large-scale application.
     (4) Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO-CeO2 mixed oxides
     CaO-CeO2 mixed oxides were prepared for producing biodiesel from Pistacia chinensis oil. The molar ratios of Ce/Ca and calcination temperatures of catalysts were optimized. It has been found the replacing of Ca2+ for Ce4+ would enhance the stability of catalyst due to the defects. After the fourth reuse, the biodiesel yield exceeded 80% yet. Interestingly, after calcination of the used catalyst, the biodiesel yield could still reached 91.1%, which is close to the level of fresh use.
     (5) Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides
     Mixed oxides of TiO2-MgO were used as solid catalysts to convert waste cooking oil into biodiesel. The preparation parameters such as Mg/Ti molar ratios and calcination temperatures were studied. The metal leaching was serious when using MgO as catalyst. However, the catalyst stability was improved by Ti addition. The optimal result was obtained as the Mg/Ti molar ratio of 1 and calcination temperature of 923 K. The biodiesel yield reduced as the reuse time increased. Nevertheless, the biodiesel yield could exceed the fresh use after regeneration, which might be attributed to its larger BET surface area, pore volume and average pore diameter. The mixed oxides catalyst, TiO2-MgO, showed good potential in large-scale biodiesel production from waste cooking oil.
引文
[1]闵恩泽,姚志龙.我国发展生物柴油产业的挑战与对策.天然气工业,2008,28(7):125-129
    [2]曹湘洪.我国炼油工业可持续发展的对策思考.中外能源,2010,15(7):65-72
    [3]Ma F, Hanna M A. Biodiesel production:a review. Bioresource Technology,1999,70(1): 1-15
    [4]张智颖,张遒玮.车用生物柴油的应用现状与展望.现代农业科技,2010,9:263-264
    [5]闵恩泽.发展我国生物柴油产业的探讨.当代石油石化,2005,13(11):8-10
    [6]闵恩泽,杜泽学,胡建波.利用植物油发展生物炼油化工厂的探讨.科技导报,2005,23(5):15-17
    [7]Darnoko D, Cheryan M. Continuous production of palm methyl esters. JAOCS,2000, 77(12):1269-1272
    [8]Boucher M B, Weed C, Leadbeater N E, et al. Pilot scale two-phase continuous flow biodiesel production via novel laminar flow reactor-separator. Energy & Fuels,2009, 23(5):2750-2756
    [9]Chen Y H, Huang Y H, Lin R H, et al. A continuous-flow biodiesel production process using a rotating packed bed. Bioresource Technology,2010,101(2):668-673
    [10]Dube M A, Tremblay A Y, Liu J. Biodiesel production using a membrane reactor. Bioresource Technology,2007,98(3):639-647
    [11]Behzadi S, Farid M M. Production of biodiesel using a continuous gas-liquid reactor. Bioresource Technology,2009,100(2):683-689
    [12]Barnard T M, Leadbeater N E, Boucher M B, et al. Continuous-flow preparation of biodiesel using microwave heating. Energy & Fuels,2007,21(3):1777-1781
    [13]Stavarache C, Vinatoru M, Maeda Y, et al. Ultrasonically driven continuous process for vegetable oil transesterification. Ultrasonics Sonochemistry,2007,14(4):413-417
    [14]Canter N. Making biodiesel in a microreactor. Tribol Lubr Technol,2006,62:15-17
    [15]Sun J, Ju J, Ji L, et al. Synthesis of biodiesel in capillary microreactors. Industrial & Engineering Chemical Research,2008,47(5):1398-1403
    [16]马鸿宾,固体碱催化合成生物柴油的基础研究,天津大学博士论文,2008
    [17]Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology,1999,70(3):249-253
    [18]Liu X, He H, Wang Y, et al. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel,2008,87(2):216-221
    [19]Reddy C R V, Oshel R, Verkade J G. Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy & Fuels, 2006,20(3):1310-1314
    [20]Granados M L, Alonso D M, Sadaba I, et al. Leaching and homogeneous contribution in liquid phase reaction catalysed by solids:The case of triglycerides methanolysis using CaO. Applied Catalysis B:Environmental,2009,89(1-2):265-272
    [21]Kouzu M, Yamanaka S, Hidaka J, Tsunomori M. Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A:General,2009,355(1-2):94-99
    [22]Verziu M, Cojocaru B, Hu J, et al. Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts. Green Chemistry,2008,10(4): 373-381
    [23]Montero J M, Gai P, Wilson K, et al. Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chemistry,2009,11(2):265-268
    [24]Liu X, He H, Wang Y, et al. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications,2007,8(7):1107-1111
    [25]Mootabadi H, Salamatinia B, Bhatia S, et al. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel,2010,89(8):1818-1825
    [26]Xie W, Peng H, Chen L. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A:General,2006,300(1):67-74
    [27]Alonso D M, Mariscal R, Tost R M, et al. Potassium leaching during triglyceride transesterification using K/y-Al2O3 catalysts. Catalysis Communications,2007,8(12): 2074-2080
    [28]Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K. Al2O3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal,2009,145(3):468-474
    [29]Umdu E S, Tuncer M, Seker E. Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresource Technology,2009,100(11):2828-2831
    [30]Ni J, Rooney D, Meunier F C. CsF and alumina:A mixed homogeneous- heterogeneous catalytic system for the transesterification of sunflower oil with methanol. Applied Catalysis B:Environmental,2010,97(1-2):269-275
    [31]Verziu M, Florea M, Simon S, et al. Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides-Evidence of the nature of the active site and catalytic performances. Journal of Catalysis,2009,263(1):56-66
    [32]Xie W, Li H. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of molecular catalysis A:Chemical,2006, 255(1-2):1-9
    [33]Akbar E, Binitha N, Yaakob Z, et al. Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chemistry,2009, 11(11):1862-1866
    [34]Samart C, Chaiya C, Reubroycharoen P. Biodiesel production by methanolysis of soybean oil using calcium supported on mesoporous silica catalyst. Energy conversion and management,2010,51(7):1428-1431
    [35]Salinas D, Guerrero S, Arya P. Transesterification of canola oil on potassium-supported TiO2 catalysts. Catalysis Communications,2010,11(8):773-777
    [36]Hamad B, Perard A, Figueras F, et al. Zirconia modified by Cs cationic exchange: Physico-chemical and catalytic evidences of basicity enhancement. Journal of catalysis, 2010,269(1):1-4
    [37]Cosimo J I D, Diez V K, Xu M, et al. Structure and surface and catalytic properties of Mg-Al Basic oxides. Journal of Catalysis,1998,178(2):499-510
    [38]Cantrell D G, Gillie L J, Lee A F, et al. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied catalysis A:General,2005,287(2): 183-190
    [39]Xie W, Peng H, Chen L. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Applied catalysis A:General,2006,246(1-2):24-32
    [40]Xi Y, Davis R J. Influence of water on the activity and stability of activated Mg-Al hydrotalcites for the transesterification of tributyrin with methanol. Journal of Catalysis, 2008,254(2):190-197
    [41]Li E, Xu Z P, Rudolph V. MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Applied Catalysis B:Environmental,2009, 88(1-2):42-49
    [42]Albuquerque M C G, Azevedo D C S, Cavalcante Jr C L, et al. Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal of molecular catalysis A: Chemical,2009,300(1-2):19-24
    [43]Kawashima A, Matsubara K, Honda K. Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology,2008,99(9):3439-3443
    [44]Ngamcharussrivichai C, Totarat P, Bunyakiat K. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General,2008,341(1-2):77-85
    [45]Yan S, Kim M, Salley S O, et al. Oil transesterification over calcium oxides modified with lanthanum. Applied Catalysis A:General,2009,360(2):163-170
    [46]Babu N S, Sree R, Prasad P S S, et al. Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels,2008, 22(3):1965-1971
    [47]Yan S, Salley S O, Ng K Y S. Simultaneous transesterification and esterification of unrefined or waste oils over Zn-La2O3 catalysts. Applied Catalysis A:General,2009, 353(2):203-212
    [48]Kozlowski J T, Aronson M T, Davis R J. Transesterification of tributyrin with methanol over basic Mg:Zr mixed oxide catalysts. Applied Catalysis B:Environmental,2010, 96(3-4):508-515
    [49]Olutoye M A, Hameed B H. KyMg1-xZn1+xO3 as a heterogeneous catalyst in the transesterification of palm oil to fatty acid methyl esters. Applied Catalysis A:General, 2009,371(1-2):191-198
    [50]Suppes G J, Dasari M A, Doskocil E J, et al. Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A:General,2004,257(2):213-223
    [51]Noiroj K, Intarapong P, Luengnaruemitchai A, et al. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy,2009,34(4):1145-1150
    [52]Kitakawa N S, Honda H, Kuribayashi H, et al. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresource Technology,2007,98(2): 416-421
    [53]Tanabe K, Misono M, Ono Y, et al. New solid acids and bases. Elsevier, Amsterdam.
    [54]Garcia C M, Teixeira S, Marciniuk L L, et al. Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresource Technology,2008,99(14):6608-6613
    [55]Yu G X, Zhou X L, Li C L, et al. Esterification over rare earth oxide and alumina promoted SO42-/ZrO2. Catalysis Today,2009,148(1-2):169-173
    [56]Chen X R, Ju Y H, Mou C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification. The Journal of Physical Chemistry C,2007,111(50):18731-18737
    [57]Suwannakarn K, Lotero E, Goodwin Jr J G, et al. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis,2008,255(2):279-286
    [58]Almeida R M, Noda L K, Goncalves N S, et al. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Applied Catalysis A:General,2008, 347(1):100-105
    [59]温朗友,闵恩泽.固体杂多酸催化剂研究新进展.石油化工,2000,29(1):49-55
    [60]Chai F, Cao F, Zhai F, et al. Transesterification of vegetable oil to biodiesel using a heteropolyacid solid catalyst. Advanced Synthesis & Catalysis,2007,349(7):1057-1065
    [61]Narasimharao K, Brown D R, Lee A F, et al. Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. Journal of Catalysis,2007,248(2): 226-234
    [62]Zieba A, Matachowski L, Lalik E, et al. Methanolysis of castor oil catalysed by solid potassium and cesium salts of 12-tungstophosphoric acid. Catalysis Letters,2009, 127(1-2):183-194
    [63]Pesaresi L, Brown D R, Lee A F, et al. Cs-doped H4SiW12O40 catalysts for biodiesel production. Applied Catalysis A:General,2009,360(1):50-58.
    [64]Srilatha K, Lingaiah N, Devi B P, et al. Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts. Applied Catalysis A: General,2009,365(1):28-33.
    [65]Alsalme A, Kozhevnikova E F, Kozhevnikov I V. Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Applied Catalysis A:General,2008, 349(1-2):170-176
    [66]Zieba A, Matachowski L, Gurgul J, et al. Transesterification reaction of triglycerides in the presence of Ag-H3PW1240. Journal of molecular catalysis A:Chemical,2010, 316(1-2):30-44
    [67]Zhang X, Li J, Chen Y, et al. Heteropolyacid nanoreactor with double acid sites as a highly efficient and reusable catalyst for the transesterification of waste cooking oil. Energy & Fuels,2009,23(9):4640-4646
    [68]Toda M, Takagaki A, Okamura M, et al. Biodiesel made with sugar catalyst. Nature,2005, 438:178
    [69]Dhainaut J, Dacquin J P, Lee A F, et al. Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chemistry,2010,12(2):296-303
    [70]Wang X, Liu R, Waje M M, et al. Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst. Chem. Mater,2007,19(10):2395-2397
    [71]Devi B A, Gangadhar K N, Sai Prasad P S, et al. A glycerol-based carbon catalyst for the preparation of biodiesel. ChemSusChem,2009,2(7):617-620
    [72]Mo X, Lopez D E, Suwannakarn K, et al. Activation and deactivation characteristics of sulfonated carbon catalysts. Journal of Catalysis,2008,254(2),332-338
    [73]Park Y M, Chung S H, Eom H J, et al. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresource Technology,2010,101(17): 6589-6593
    [74]Lopez D E, Suwannakarn K, Bruce D A, et al. Esterification and transesterification on tungstated zirconia:Effect of calcination temperature. Journal of catalysis,2007,247(1): 43-50
    [75]Park Y M, Lee D W, Kim D K, et al. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel. Catalysis Today,2008,131(1-4):238-243
    [76]Komintarachat C, Chuepeng S. Solid acid catalyst for biodiesel production from waste used cooking oils. Industrial & Engineering Chemical Research,2009,48(20):9350-9353
    [77]Faria E A, Marques J S, Dias I M, et al. Nanosized and reusable SiO2/ZrO2 catalyst for highly efficient biodiesel production by soybean transesterification. Journal of the Brazilian Chemistry Society,2009,20(9):1732-1737
    [78]Pugnet V, Maury S, Coupard V, et al. Stability, activity and selectivity study of a zinc aluminate heterogeneous catalyst for the transesterification of vegetable oil in batch reactor. Applied Catalysis A:General,2010,374(1-2):71-78
    [79]Tan T, Lu J, Nie K, et al. Biodiesel production with immobilized lipase:A review. Biotechnology Advances,2010,28(5):628-634
    [80]Lu J, Nie K, Xie F. Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp.99-125. Process Biochemistry,2007,42(9):1367-1370
    [81]Lu J, Deng L, Zhao R, et al. Pretreatment of immobilized Candida sp.99-125 lipase to improve its methanol tolerance for biodiesel production. Journal of Molecular Catalysis B:Enzymatic,2010,62(1):15-18
    [82]Royon D, Daz M, Ellenrieder G, et al. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology,2007,98(3):648-653
    [83]Li NW, Zong M H, Wu H. Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochemistry,2009,44(6): 685-688
    [84]Dizge N, Keskinler B, Tanriseven A. Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochemical Engineering Journal,2009,21(2-3):220-225
    [85]Su E Z, Wei D Z. Improvement in lipase-catalyzed methanolysis of triacyglycerols for biodiesel production using a solvent engineering method. Journal of molecular catalysis B:Enzymatic,2008,55(3-4):118-125
    [86]Leung D Y C, Wu X, Leung M K H. A review on biodiesel production using catalyzed transesterification. Applied Energy,2010,87(4):1083-1095
    [87]Berchmans H J, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology,2008,99(6):1716-1721
    [88]梁斌,闵恩泽.利用西部可再生资源发展生物柴油产业.四川大学学报(工程科学 版),2006,38(5):33-37
    [89]Li Q, Yan Y J. Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapium sebiferum oil in micro-aqueous phase. Applied Energy,2010,87(10): 3148-3154
    [90]Kansedo J, Lee K T, Bhatia S. Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production. Fuel,2009,88(6):1148-1150
    [91]Shang Q, Jiang W, Lu H, et al. Properties of Tung oil biodiesel and its blends with 0# diesel. Bioresource Technology,2010,101(2):826-828
    [92]Naik M, Meher L C, Naik S N, et al. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass and Bioenergy,2008,32(4):354-357
    [93]Vicente G, Martinez M and Aracil J. Optimization of Brassica carinata oil methanolysis for biodiesel production. JAOCS,2005,82(12):899-904
    [94]Dorado M P, Ballesteros E, Arnal J M, et al. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel,2003,82(11):1311-1315
    [95]陈志锋,吴虹,宗敏华.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油.催化学报,2006,27(2):146-150
    [96]Demirbas A. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management,2009,50(4):923-927
    [97]Luque R. Algae biofuels:the eternal promise? Energy & Environmental Science,2010, 3(3):254-257
    [98]李元广,谭天伟,黄英明.微藻生物柴油产业化技术中的若干科学问题及其分析.中国基础科学,2009,11(5):64-70.
    [99]Chisti Y. Biodiesel from microalgae. Biotechnology Advances,2007,25(3):294-306
    [100]Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology,2006,97(6):841-846
    [101]Demirbas A. Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Conversion and Management,2008,49(1):125-130
    [102]Cao W, Han H, Zhang J. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel,2005,84(4):347-351
    [103]Azcan N, Danisman A. Microwave assisted transesterification of rapeseed oil. Fuel, 2008,78(10-11):1781-1788
    [104]Gunther A, Jensen K F. Multiphase microfluidics:from flow characteristics to chemical and materials synthesis. Lab on a Chip,2006,6(12):1487-1503
    [105]Lob P, Penneman H, Hessel V, et al. Impact of fluid path geometry and operating parameters on 1/1-dispersion in interdigital micromixers. Chemical Engineering Science, 2006,61 (9):2959-2967
    [106]Noureddini H, Zhu D. Kinetics of transesterification of soybean oil. JAOCS,1997, 74(11):1457-1463
    [107]Stamenkovic O S, Todorovic Z B, Lazic M L, et al. Kinetics of sunflower oil methanolysis at low temperatures. Bioresource Technology,2008,99(5):1131-1140
    [108]Taylor G I. The formation of emulsions in definable fields of flow. Proc. Royal Soc Lon. 1934, A143:501-532
    [109]Janssen J M H. Dynamics of liquid-liquid mixing. Ph.D. Thesis, Eindhoven University of Technology
    [110]Elemans P H M, Bos H L, Janssen J M H, et al. Transient phenomenon in dispersive mixing. Chemical Engineering Science,1993,48(2):267-276
    [111]Vincent G, Martinez M, Aracil J. Integrated biodiesel production:a comparison of different homogeneous catalysts systems. Bioresource Technology,2004,92(3):297-305
    [112]Zheng S, Kates M, Dube M A, et al. Acid-catalyzed production of biodiesel from waste frying oil. Biomass & Bioenergy,2006,30(3):267-272
    [113]Alvarez M M, Arratia P E, Muzzio F J. Laminar mixing in eccentric stirred tank systems. Canadian Journal of Chemical Engineering,2002,80(4):546-557
    [114]McNeff C V, McNeff L C, Yan B, et al. A continuous catalytic system for biodiesel production. Applied Catalysis A:General,2008,343(1-2):39-48
    [115]Stavarache C, Vinatoru M, Maeda Y. Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. Ultrasonic Sonochemistry, 2007,14(3):380-386
    [116]Demirbas A. Biodiesel from vegetable oils with MgO catalytic transesterification in supercritical methanol. Energy Source Part A:Recovery, Utilization, and Environmental Effects,2008,30(17):1645-51
    [117]Mason B P, Price K E, Steinbacher J L, et al. Greener approaches to organic synthesis using microreactor technology. Chemical Reviews,2007,107(6):2300-2318
    [118]Fino D, Russo N, Saracco G, et al. Multifunctional filter for treatment of the flue gases from municipal waste incinerators. Industrial & Engineering Chemistry Research,2005, 44(25):9542-9548
    [119]Richardson J T, Garrait M, Hung J K. Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports. Applied Catalysis A:General,2003,255(1): 69-82
    [120]Williams K A, Schmidt L D. Catalytic autoignition of higher alkane partial oxidation on Rh-coated foams. Applied Catalysis A:General,2006,299:30-45
    [121]Stemmet C P, Schaaf V D J, Kuster B F M, et al. Solid foam packings for multiphase reactors modeling of liquid holdup and mass transfer. Chemical Engineering Research and Design,2006,84(12):1134-1141
    [122]Chen H, Yu H, Tang Y, et al. Assessment and optimization of the mass-transfer limitation in a metal foam methanol microreformer. Applied Catalysis A:General,2008, 337(2):155-162
    [123]Taylor G I. The formation of emulsions in definable fields of low. Proc Royal Soc Lond 1934,143:501-532
    [124]Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering,2001,92(5):405-416
    [125]Shu Q, Yang B, Yuan H, et al. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catalysis Communications,2007,8(12): 2159-2165
    [126]Kulakrni M G, Gopinath R, Merher L C, et al. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chemistry,2006,8(12): 1056-1062
    [127]Kotwal M S, Niphadkar P S, Deshpande S S, et al. Transesterification of sunflower oil catalyzed by flyash-based solid catalysts. Fuel,2009,88(9):1773-1778
    [128]Bournay L, Casanave D, Delfort B, et al. New heterogeneous process for biodiesel production:a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today,2005,106(1-4):190-192
    [129]MacLeod C S, Harvey A P, Lee A F, et al. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal,2008,135(1-2):63-70
    [130]Diez V K, Apesteguia C R, Cosimo J I D. Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. Journal of Catalysis,2006,246(2):24-32
    [131]Berger T, Schuh J, Sterrer M, et al. Lithium ion induced surface reactivity changes on MgO nanoparticles. Journal of Catalysis,2007,247(1):61-67
    [132]Hattori H. Heterogeneous basic catalysis. Chemical Reviews,1995,95(3):537-58
    [133]Khairallah F, Glisenti A. XPS study of MgO nanopowders obtained by different preparation procedures. Surface Science Spectra,2006,13(1):58-71
    [134]Camino J I, Holgado M J, Rives V. Li/MgO catalysts, Ⅰ. Effect of precursor salts on their structural and surface properties. Reaction Kinetics and Catalysis Letters,1991, 44(2):469-473
    [135]Camino J I, Holgado M J, Rives V. Li/MgO catalysts:Ⅱ. A DTA and TG study of precursors. Reaction Kinetics and Catalysis Letters,1991,45(1):35-39
    [136]Lopez D E, Goodwin Jr J, Bruce D A, et al. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A:General,2005,295(2): 97-105
    [137]Helwani Z, Othman M R, Aziz N, et al. Solid heterogeneous catalysts for transesterification of triglycerides with methanol:A review. Applied Catalysis A:General, 2009,363(1-2):1-10
    [138]Vujicic D, Comic D, Zarubica A, et al. Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel,2010,89(8):2054-2061
    [139]Sakai T, Kawashima A, Koshikawa T. Economics assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresource Technology,2009,100(13):3268-3276
    [140]Gui M M, Lee K T, Bhatia S. Feasibility of edible oil vs non-edible oil vs waste edible oil as biodiesel feedstock. Energy,2008,33(11):1646-1653
    [141]Shao H, Chu L. Resource evaluation of typical energy plants and possible functional zone planning in China. Biomass & Bioenergy,2008,32(4):283-288
    [142]Qin S, Sun Y, Meng X, et al. Production and analysis of biodiesel from non-edible seed oil of Pistacia Chinensis. Energy Exploration & Exploitation,2010,28(1):37-46
    [143]Fang J, Bi X, Si D, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides. Applied Surface Science,2007,253(22):8952-8961
    [144]Rodriguez J A, Wang X, Hanson J C, et al. The behavior of mixed-metal oxides: Structural and electronic properties of Ce1-xCaxO2 and Ce1-xCaxO2-x. Journal of Chemical Physics,2003,119(11):5659-5669
    [145]Bokhimi X, Boldu J L, Munoz E, et al. Structure and composition of the nanocrystalline phases in a MgO-TiO2 system prepared via sol-gel technique. Chemistry of Materials, 1999,11(10):2716-2721
    [146]Jacobson K, Gopinath R, Meher L C, et al. Solid acid catalyzed biodiesel production from waste cooking oil. Applied Catalysis B:Environmental,2008,85(1-2):86-91
    [147]Brito A, Borges M E, Garin M, et al. Biodiesel production from waste oil using Mg-Al layered double hydroxide catalysts. Energy & Fuels,2009,23(6):2952-2958
    [148]Sun H, Ding Y, Duan J, et al. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresource Technology,2010,101(3):953-958
    [149]Trionfetti C, Babich I V, Seshan K, et al. Presence of lithium ions in MgO lattice: surface characterization by infrared spectroscopy and reactivity towards oxidative conversion of propane. Langmuir,2008,24(15):8220-8228
    [150]Bothe-Almquist C L, Ettireddy R P, Bobst A, et al. An XRD, XPS, and EPR study of Li/MgO catalysts:case of the oxiadative methylation of acetonitrile to acrylonitrile with CH4. Journal of Catalysis,2000,192(1):174-184
    [151]Lopez T, Ventura J H, Aguilar D H, et al. Thermal phase stability and catalytic properties of nanostructured TiO2-MgO sol-gel mixed oxides. Journal of Nanocience and Nanotechnology,2008,8(12):6608-6617
    [152]Inbana R, Fukahori T, Hamamoto M, et al. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase. Journal of Molecular Catalysis A:Chemical,2006,260(1-2):247-254
    [153]Enhessari M, Parviz A, Ozaee K, et al. Magnetic properties and heat capacity of CoTiO3 nanopowders prepared by stearic acid gel method. Journal of Experimental Nanoscience, 2010,5(1):61-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700