几种具有生物活性糖缀合物的全合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皂甙和糖脂是自然界广泛存在的糖缀合物,他们是许多药用植物的有效成分,具有多种生物活性。本论文完成了几个有生物活性、结构独特的皂甙和糖脂的合成,对类似物的合成有借鉴意义,同时为测试其生物活性、研究构效关系奠定了基础。
     氨基葡萄糖皂甙是一类重要的皂甙,虽然发现的数目不多,但均具有较好的生物活性,特别是具有抗癌活性。到目前为止,还没有发现关于氨基葡萄糖皂甙合成的报道。本论文利用三氟乙酰亚胺酯给体,采取线性逐步合成的策略完成了氨基葡萄糖皂甙的全合成。由于氨基葡萄糖皂甙结构变化具有规律性,因此论文中目标分子的合成将会对其它氨基葡萄糖皂甙的合成具有借鉴意义。
     Caminoside A是从海绵中分离出的新的四糖糖脂抗生素,研究发现,它是第三类分泌系统(TTSS)的第一个抑制剂。本论文以葡萄糖、半乳糖及L鼠李糖为初始原料,经57步反应完成了Caminoside A的全合成。在合成过程中利用氧化还原反应立体选择性地构建了1,2顺式糖苷键。同时揭示了“匹配”“不匹配”原理在寡糖合成中的重要性,研究结果对预测糖苷化反应具有一定的指导意义。
     Anemoclemoside B是一类结构独特的分子,在这类分子中存在着环状缩醛糖苷键,到目前为止没有有关合成的报道。利用我们自己发展的构建链状糖苷键的方法,方便高效地合成了目标分子。在合成过程中,利用苄基保护28位羧基,在脱除过程中并没用影响到甙元中的双键,并且可以和糖链上的苄基保护基一并脱除,这样就简化了保护基操作,提高了合成效率。目标分子的高效合成为研究该分子的生物活性及其构效关系奠定了基础。
Steroidal glycosides widely occur as natural products. They act as active compounds of many medical plants and exhibit various bioactivities. In this thesis three molecules of steroidal glycosides and glycolipid which either have good bioactivities or have unique structure were synthesized. The methods and strategies used in this thesis can be used again in the synthesis of these types of molecules and the synthesis can serves as a basis for testing their bioactivities, revealing the relationships between structure and bioactivity.
     Saponins containing N-acetylglucosamine are very important saponins. Though N-acetylglucosamine containing saponins are rare, they all have good bioactivities, especially anticancer activities. So far no paper was published about the synthesis of this type of saponins. Employing glycosyl trifluroacetimidates and thioglycoside, we finished the synthesis of the target molecule in a stepwise fashion. Because the structures of this type of saponins are highly conservative, the synthesis of target molecule can be regardde as reference to the synthesis of N-acetylglucosamine containing saponins.
     Caminoside A, a novel antimicrobial tetrasaccharide glycolipid from marine sponge, which represents the first bacterial type III secretion system inhibitor (TTSS), is synthesized in a total of 57 steps starting from D-glucose, D-galactose, L-rhamnose, and 9-decenal. In the synthesis of Caminoside A, construction of the 1,2-cis-β-manopyranoside-type linkage of the 6-deoxy-talose is achieved by oxidation-reduction sequence. From the results which are get from my experiments and from references, we draw some primary conclusion about
引文
1. a) 糖的化学和生物科学,俞飚,金城,21 世纪有机化学发展战略,杜灿屏等主编,化学工业出版社,2002,298-306; b) 化学糖生物学―新兴的前沿研究领域,叶新山,21 世纪有机化学发展战略,杜灿屏等主编,化学工业出版社,2002,307-316.
    2. Schnaar, R. L.; Adv. Pharmacol. (San Diego), 1992, 23, 35-84.
    3. Carbohydrate in drug design, edited by Witezak, Z. J.; Nieforth, K. A. M.; Dekker Press, New York, 1977;
    4. Review from Science, Carbohydrate Chemistry And Glycobiology. 2001, 291, 2337-2378;
    5. 徐任生 主编,天然药物化学,科学出版社,1993 年;
    6. a) Faulkner, D. J. Natural Products Report, 1984; 1, 251; 551; ibid., 1986; 3, 1; ibid., 1987; 4, 539; ibid., 1988; 5, 613; ibid., 1990; 7, 269; ibid., 1991; 8, 97; ibid., 1993; 10, 497; ibid., 1995; 12 (3), 223; b) Garson, M. J., ibid., 1992; 9, 323;
    7. a) Shashi B.; Sudip, M.; Sarkar, K.; and Poddar, G. Triterpenoid saponins Phytochem. 1988; 27 (10), 3037-3067; b) Chandel, R. S. and Rastogi,R. P. Triterpenoid saponins and sapogenins: 1973–1978. Phytochem. 1980; 19, 1889-1908;
    8. Tanimura,T.; Pisano,J, J.; Ito, Y.; and Bowman,R. L. Science, 1970; 169, 54;
    9. Ding, Y.; Tian, R. H.; Yang,C. R.; Chen, Y. Yong and Nohara, T. 2 New Steroidal Saponins From Dried Fermented Residues of Leaf-Juices of Agavesisalana Forma Dong No 1. Chem. Pharm. Bull., 1993; 41 (3), 557-560;
    10. Rouhi,A. M. C & EN, 1995; sept; 11, 28-35;
    11. a) Tekeda, T,; Nakamura, Y.; Takashima, S.; Yano, O.; Ogihara, Y. Chem. Pharm. Bull. 1993, 41, 2132-2137; b) Tani, C.; Ogihara, Y.; Mutuga, M.; Nakamura, T.; Tekeda, T. Studies On the Constituents of Calliandra Anomala (Kunth) .3. Structure Elucidation of Six Acylated Triterpenoidal Saponins Chem. Pharm. Bull. 1996, 44, 816-822;
    12. a) Abdel-Kader, M.; Hich, J.; Berger, J, M.; Evans, R.; Miller, J. S.; Wisse, J. H.; Manber, S. W.; Dalton, J. M.; Kingston, D. G. I. Two Bioactive Saponins from Albizia subdimidiata from the Suriname Rainforest. J. Nat. Prod. 2001, 64, 536-539; b) Seo, Y.; Hoch, J.; Abdel-Kader, M.; Malone, S.; Derveld, I.; Adams, H.; Werkhoven, M. C. M.; Wisse, J. H.; Mamber, S. W.; Dalton, J. M.; Kingston, K. G. I. Bioactive Saponins from Acacia tenuifolia from the Suriname Rainforest. J. Nat. Prod. 2002, 65, 170-174;
    13. Konoshima, T.; Yaduda, I.; Kashiwada, Y.; Cosentino, L. M.; Lee, K. H. Anti-AIDS Agents, 21. Triterpenoid Saponins as Anti-HIV Principles from Fruits of Gleditsia japonica and Gymnocladus chinesis, and a Structure-Activity Correlation. J. Nat. Prod. 1995, 58, 1372-1377;
    14. Havala, C.; Hylands, P. I. Planta. Med. 1978, 33, 180;
    15. Chande, R. S.; Rastogi. R. P. Triterpenoid saponins and sapogenins: 1973–1978. Phytochem. 1980, 19, 1889-1908;
    16. a) Masayuki, T.; Yasuo, T. Structure—activity relationships of synthetic methyl ursolate glycosides. Phytochem. 1993, 34, 675-677; 1241-1243; ibid., 1993, 32, 1173-1175; ibid., 1992, 31, 3789-3791; ibidm., 1990, 29, 451-452; b) Yoshikawa, M.; Harada, E.; Matsuda, H.; Murakami, T.; Yamahara, J.; Mrurakami, N. Elatoside-A and Elatoside-B, Potent Inhibitors of Ethanol inRats From the Bark of Aralia-Elata Seem-the Structure-Activity-Relationship of Oleanolic Acid Oligoglycosides. Chem. Pharm. Bull., 1993, 41 (11), 2069-2071;
    17. Nakamura, O.; Mimaki, Y.; Sashida, Y.; Nikaido, T.; Ohmoto, T. Agapanthussaponins A-D, New Potent Camp-Phosphodiesterase Inhibitors From the Underground Parts of Agapanthus-Inapertus. Chem. Pharm. Bull., 1993, 41 (10), 1784-1789;
    18. Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957;
    19. Review: Pausen, H. Advances in selective chemical synthesis of complex oligosaccharide. Angew. Chem. Int. Ed. Eng., 1982, 21, 155-178;
    20. Schmidt, R. R., Michel, J. Facile Synthesis of α- and β-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides. Angew. Chem. Int. Ed. 1980, 19 (9), 731-732;
    21. a) Yu, B.; Tao, H. Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Lett. 2001, 42, 2405-2407; b) Yu, B.; Tao, H. Glycosyl Trifluoroacetimidates. 2. Synthesis of Dioscin and Xiebai Saponin I J. Org. Chem. 2002, 67, 9099-9102;
    22. Cai, S. T.; Yu, B. Efficient Sialylation with Phenyltrifluoroacetimidates as Leaving Groups. Org. Lett. 2003, 5, 3827-3830;
    23. 俞飚,惠永正 甾体皂甙的化学合成, 甾体化学进展,周维善 庄治平 主编 第一版,上海, 科学出版社, 2002,pp231-250;
    24. Review: Boons,G -J. Strategies in oligosaccharide synthesis. Tetrahedron, 1996, 52, 1095-1121;
    25. Kahne, D. A one-step synthesis of the Ciclamycin trisaccharide, S.Raghavan. J. Am. Chem. Soc., 1993, 115, 1580-1581;
    26. a) Burgey, C. S.; Vollerthun, R.; Fraser-Reid, B. Armed/disarmed effects in the solvolysis of caged 1,6-anhydro pyranoses. Tetrahedron Lett., 1994, 35, 2637-2640; b) Mootoo, D. R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. “Armed”and “disarmed” n-pentenyl glycosides in saccharide couplings leading to oligosaccharides. J. Am. Chem. Soc., 1988, 110, 5583-5584; c) Fraser-Reid, Wu, B. Z.; Udodong, U. E.; Ottosson, H. Armed/Disarmed effects in glycosyl donors: rationalization and sidetracking. J. Org. Chem., 1990, 55, 6068-6070;
    27. a), Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N. A potentially versatile synthesis of glycosides. Carbohydr. Res., 1973, 27, 55-61; b) Fraser-Reid, B.; Merritt, J. R.; Handlon, A. L.; Andrews, C. W. The chemistry of N-penteyl glycosides: Synthetic, theoretical, and mechanistic ramifications. Pure Appl.Chem. 1993, 65, 779-786; c) Fraser-Reid, B.; Konradsson, P.; Mootoo, D. E.; Udodong, U. Direct elaboration of pent-4-enyl glycosides into disaccharides. J. Chem. Soc., Chem. Commun., 1988, 823-825; d) Kartha, K. P. R.; Cura, P.; Aloui, M.; Readman, S. K.; Rutherford, T. J.; Field, R. A. Observations on the activation of methyl thioglycosides by iodine and its interhalogen compounds. Tetrahedron: Asymmertry, 2000, 11, 581-593;
    28. a) Martin, T. J.; Schimdt, R. R. Efficient sialylation with phosphite as leaving group. Tetrahedron Lett., 1992, 33, 6123-6126; b) Kondo, H.; Ichikawa, Y.; Wong, C. -H. β-Sialy phosphite and phosphoramidite. Synthesis and application to the chemoenzymatic synthesis of CMP-sialic acid and sialyl oligosaccharides. J. Am. Chem. Soc., 1992, 114, 8748-8750;
    29. a) Nicolaou, K. C.; Dolle, R. E.; Papahatjis, D. P.; Randall, J. L. Practical synthesis of oligosaccharide. Partial synthesis of Avermectin B1a. J. Am. Chem. Soc., 1984, 106, 4189-4192; b) Nicolaou, K. C.; Randall, J. L.; Furst, G. T. Stereospecific synthesis of Rhynchosporosides. A family of fungal metabolites causing scald disease in barley and other grasses. J. Am. Chem. Soc., 1985, 107, 5556-5558;
    30. Konradsson, P.; Udodong, U. Fraser-Reid, E.; B. Iodonium promoted reactions of disarmed thioglycosides. Tetrahedron Lett., 1990, 31,4313-4316;
    31. Yoshida, M.; Kiyoi, T.; Tsukida, T.; Kondo, H. One-pot synthesis of lewis x oligosaccharide derivatives using “armed-disarmed”coupling method. J. Carbohyd. Chem., 1998, 17, 673-681;
    32. Jiang, Z. H. Dissertation der Universit?t Konstanz, Fakult?t fur Chemie, 1995;
    33. Davies, L. A.; Adaml, R. A New Method for Preparing Arylsuccinonitriles J. Amer. Chem. Soc., 1958, 50, 1752-1753;
    34. Pereda-Miranda, R.; Mata, R.; Anaya, A. L.; Wackramaratne, D. B. M.; Pezzuto, J. M.; Inghom, A, D. Tricolorin A, Major Phytogrowth Inhibitor from Ipomoea tricolor. J. Natural Products, 1993, 56, 571-582;
    35. Noda, N.; Jsuji, K.; Miyahara, K.; Yang, C. R. Resin glycosides .21. Tuguajalapins-I-X, the Resin Glycosides Having Long-Chain Fatty-Acid Groups From the Root of Merremia-Hungaiensis. Chem. Pharm. Bull., 1994, 42, 2011-2016;
    36. Enriquez, R. G.; Leon, I.; Peuez, F.; Walls, F.; Carpenter, K. A.; Puzzuoli, F. V.; Reynolds, W. F. Characterization, by 2-Dimensional NMR-Spectroscopy, of a Complex Glycoside Isolated from Ipomoea-Stain. Can. J. Chem., 1992, 70, 1000-1008;
    37. Power, F. B.; Rogerson, H. Chem. Zbl., 1908, II, 887;
    38. Shibuya, H.; Kawahima, K.; Baed, I. N.; Narita, N.; Yoshikawa, M.; Kitagawa, I. Chem. Pharm. Bull., 1989, 37, 260;
    39. a) Bah, M., Pereda-Miranda, R. Detailed FAB-mass spectrometry and high resolution NMR investigations of tricolorins A-E, individual oligosaccharides from the resins of Ipomoea tricolor (Convolvulaceae). Tetrahedron, 1996, 52, 13063-13080; b) Bah, M., Pereda-Miranda, R. Isolation and structural characterization of new glyclipid ester type dimers from the resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron, 1997, 53, 9007-9022;
    40. Fürstner, A. Total Syntheses and Biological Assessment of Macrocyclic Glycolipids. Eur. J. Chem., 2004, 943-958;
    41. Lu, S. F., Z. W. Gou, Yu. B., Y. Z. Hui, The First Total Synthesis of Tricolorin A. Angew. Chem. Int. Ed. Engl. 1997, 109, 2344-2346;
    42. Recent review: a) Trnka, T. M., Grubbs, R. H. The Development of L2X2Ru=CHR Olefin Metathesis Catalysts: An Organometallic Success Story. Acc. Chem. Res. 2001, 34, 18-29; b) Fürstner, A. Angew. Chem. Int. Ed. Engl. 2000, 39, 3012-3043; c) Armstrong, S. K. Ring Closing Diene Metathesis in Organic Synthesis. J. Chem. Soc., Perkin Trans. 1, 1998, 371-388;
    43. a) Linington, R. G.,; Robertson, M.; Gauthier, A.; Finlay, B. B.; Soest, R. V.; Andersen, R. J. Caminoside A, an Antimicrobial Glycolipid Isolated from the Marine Sponge Caminus sphaeroconia. Org. Lett, 2002, 4, 4089-4092; b) Warabi, K.; Zimmerman, W. T.; Shen, J.; Gauthier, R. M.; Finlay, B. B.; Soest, R. V.; Anderson, R. J. Pachymoside A – A novel glycolipid isolated from the marine sponge Pachymatisma johnstonia. Can. J. Chem., 2004, 82, 102-112;
    1. a) Hostettmann, K.; Marston, A. Saponins; Cambridge University Press: New York, 1995; b) Waller, G. R.; Yamasaki, K. Saponins Used in Traditional and Modern Medicine; Plenum Press: New York, 1996; c) Waller, G. R.; Yamasaki, K. Saponins Used in Food and Agriculture; Plenum Press: New York, 1996;
    2. a)Ripperger, H.; Preiss, A.; Schmidt, J. O (3)-(2-Acetylamino-2-deoxy-β-D-glucopyranosyl)-oleanolic acid, a novel triterpenoid glycoside from two Pithecellobium species. Phytochemistry 1981, 20, 2434-2435; b) Okada, Y.; Shibata, S.; Ikekawa, T.; Javellana, A. M. J.; Kamo, O. Entada saponin-III, a saponin isolated from the bark of Entada phaseoloides. Phytochemistry 1987, 26, 2789-2796; c) Okada, Y.; Shibata, S.; Javellana, A. M. J.; Kamo, O. Chem. Pharm. Bull., 1988, 36, 1264-1269; d) Cappani, G.; Orsini, F.; Sisti, M.; Verotta, L. Saponins from Albizzia anthelmintica. Phytochemistry 1989, 28, 863-866; e) Maillard, M.; Adewunmi, O. O.; Hostettmann, K. Helv. Chim. Acta 1989, 72, 668-674; f) Orsini, F.; Pelizzoni, F.; Verotta, L. Saponins from Albizzia lucida. Phytochemistry 1991, 30, 4111-4115; g) Ikeda, T.; Fujiwara, S.; Araki, K.; Kinjo, J.; Nohara, T.; Miyoshi, T. Cytotoxic Glycosides from Albizia julibrissin. J. Nat. Prod. 1997, 60, 102-107; h) Tezuka, Y.; Honda, K.; Banskota, A. H.; Thet, M. M.; Kadota, S. Kinmoonosides A-C, Three New Cytotoxic Saponins from the Fruits of Acacia concinna, a Medicinal Plant Collected in Myanmar. J. Nat. Prod. 2000, 63, 1658-1664;
    3. a) Abdel-Kader, M.; Hoch, J.; Berger, J. M.; Evans, R.; Miller, J. S.; Wisse, J. H.; Mamber, S. W.; Dalton, J. M.; Kingston, D. G. I. Two Bioactive Saponins from Albizia subdimidiata from the Suriname Rainforest. J. Nat. Prod. 2001, 64, 536-539; b) Seo, Y.; Hoch, J.; Abdel-Kader, M.; Malone, S.; Derveld, I.; Adams, H.; Werkhoven, M. C. M.; Wisse, J. H.; Manber. S. W.; Dalton, J. M.; Kingston, D. G. I. Bioactive Saponins from Acacia tenuifolia from the Suriname Rainforest. J. Nat. Prod. 2002, 65, 170-174;
    4. a) Tekeda, T.; Nakamura, T.; Takashima, S.; Yano, O.; Ogihara, Y. Studies on the Constituents of Calliandra-anomala (Kunth) Macbr .1. Structure Elucidation of 2 Acelated Triterpenoidal Saponins. Chem. Pharm. Bull. 1993, 41, 2132-2137; b) Tani, C.; Ogihara, Y.; Mutuga, M.; Nakanura, T.; Tekeda, T. Studies on the Constituents of Calliandra-anomala (Kunth) Macbr .3. Structure Elucidation of six Acelated Triterpenoidal Saponins Chem. Pharm. Bull. 1996, 44, 816-822;
    5. Banoub, J.; Boullanger, P.; Lafont, D. Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chem. Rev. 1992, 92, 1167-1195;
    6. Bernardi, A.; Arosio, D.; Manzoni, L.; Manzoni, D. M.; Posteri, H.; Potenza, D.; Mari, S.; Jesús, J. B. Mimics of Ganglioside GM1 as Cholera Toxin Ligands: Replacement of the GalNAc Residue. Org. Biomol. Chem. 2003, 92, 785-792;
    7. Nakabayashi, S.; Warren, C. D.; Jeanloz, R. W. Carbohydr. Res. 1992, 92, 1167-1195;
    8. Wittmann, V.; Lennartz, D. Copper(II)-Mediated Activation of Sugar Oxazolines: Mild and Efficient Synthesis of β-Glycosides of N-Acetylglucosamine. Eur. J. Org. Chem. 2002, 1363-1367
    9. Boon, G-J.; Bowers, S.; Coe, D. M. Trityl ethers in oligosaccharide synthesis: A novel strategy for the convergent assembly of oligosaccharides. Tetrahedron Lett. 1997, 38, 3773-3776;
    10. Yu, B.; Xie, J.; Deng, S.; Hui, Y. First Synthesis of a Bidesmosidic Triterpene Saponin by a Highly Efficient Procedure. J. Am. Chem. Soc. 1999, 121, 12196-12197;
    11. Hüning, S.; Müller, H. R.; Their, W. The Chemistry of Diimine. Angew. Chem. Int. Ed.. 1965, 4, 271-280;
    12. Nitz, M.; Bundle, D. R. Synthesis of Di to Hexasaccharide 1,2-Linked-β-Mannopyranan Oligomers, a Terminal S-Linked Tetrasaccharide Congener and the Corresponding BSA Glycoconjugates. J. Org. Chem. 2001, 66, 8411-8423;
    13. Asiger, F.; Fell, B.; Hadik, G.; Steffan, G. Chem. Ber. 1964, 97, 1568;
    1. a) Schmidt, R. R.; Toepfer, A. Glycosalation with highly reactive glycosyl dornors: efficiency of the inverse procedure. Tetrahedron Lett. 1991, 32, 3353-3356; b) Han, X,; Schmidt, R. R. Glycosyl imidates: Synthesis of the pentasaccharide moiety of an asterosaponin. Liebigs. Ann. Chem. 1992, 817;
    2. Lichtenthaler, F. W.; Thomas, S-A. 3,4,6-Tri-O-benzyl-.alpha.-D-arabino-hexopyranos-2-ulosyl Bromide: A Versatile Glycosyl Donor for the Efficient Generation of .beta.-D-Mannopyranosidic Linkages. J. Org. Chem. 1994, 59, 6728-6734;
    3. Lichtenthaler, F. W.; Metz, T. Efficient Generation of β-L-Rhamnosidic Linkages by the 2-Ulosyl Donor Approach: Synthesis of a Trisaccharide with a Central β-L-Rhamnose Unit. Eur. J. Org. Chem. 2003, 3081-3093;
    4. Lichtenthaler, F. W.; Lergenmüller, M.; Peters, S.; Varga, Z. manno- versus gluco-Selectivity in reductions of 2-keto-β-D-arabino-hexopyranosides. Tetrahedron: Asynmetry. 2003, 14, 727-736;
    5. a) Barresi, F.; Hindsgaul, O. Synthesis of .beta.-mannopyranosides by intramolecular aglycon delivery. J. Am. Chem. Soc. 1991, 9376-9377; b) Stork, G.; Clair, J. J. L. Stereoselective Synthesis of β-Mannopyranosides via the Temporary Silicon Connection Method. J. Am. Chem. Soc. 1996, 247-248;
    6. a) Crich, D.; Sun, S. Are Glycosyl Triflates Intermediates in the Sulfoxide Glycosylation Method? A Chemical and 1H, 13C, and 19F NMR Spectroscopic Investigation. J. Am. Chem. Soc. 1997, 119, 11217-11223; b)Crich, D.; Smith, M. 1-Benzenesulfinyl Piperidine/Trifluoromethanesulfonic Anhydride: A Potent Combination of Shelf-Stable Reagents for the Low-Temperature Conversion of Thioglycosides to Glycosyl Triflates and for the Formation of Diverse Glycosidic Linkages. J. Am. Chem. Soc. 2001, 123, 9015-9020;
    7. Twaddle, G. W. J.; Yahunsky, D. V.; Nikolaev, A. V. The chemical synthesis of beta-(1 -> 4)-linked D-mannobiose and D-mannotriose. Org. Biomol. Chem. 2003, 1, 623-628;
    8. a) Wada, T.; Ohkubo, A.; Mochizuki, A.; Sekine, M. 2-(Azidomethyl)benzoyl as a new protecting group in nucleosides. Tetrahedron Lett. 2001, 42, 1069-1072; b) Love, K. R.; Andrade, R. B.; Seeberger, P. H. Linear Synthesis of a Protected H-Type II Pentasaccharide Using Glycosyl Phosphate Building Blocks. J. Org. Chem. 2001, 66, 8165-8176;
    9. Demchenko, A.; Stauch, T.; Boon, G-J. Solvent and other effects on the stereoselectivity of thioglycoside glycosidations. SYNLETT. 1997, 818-820;
    10. a) Smith, A. B.; Cho, Y. S.; Fiestad, G. K. Convenient Wacker oxidations with substoichiometric cupric acetate. Tetrahedron Lett. 1998, 39, 8765; b) Nicolaou, K. C.; Gray, D.; Tea, J. Total Synthesis of Hamigerans: Part 2. Implementation of the Intramolecular Diels-Alder Trapping of Photochemically Generated Hydroxy-o-quinodimethanes; Strategy and Completion of the Synthesis. Angew. Chem. Int. Ed. 2001, 3679-3683;
    11. Bilik, V.; Voelter, W.; Bayer, E. Epimerization of Carbohydrates Catalyzed by Molybdate Ions. Angew. Chem. Int. Ed. 1971, 10, 909;
    12. Paulsen, H. Advances in Selective Chemical Syntheses of Complex Oligosaccharides. Angew. Chem. Int. Ed. 1982, 21, 155-173; b) Paulsen, H.in Selectivity a Goal for Synthetic Efficiency (Eds.: Bartmann, W.; Trost, B. M.), Verlag Chemie, Basel, 1984;
    13. see recent review: Fraser-Reid, B.; López, J. C.; Gómez, A. M.; Uriel, C. Eur. J. Org. Chem. 2004, 1387-1395;
    14. Elie, J. J.; Verduyn, C. E.; Dreff, D. M.; Brounts, D. G. A.; Marel, G. A.; van Boon, J. H. Synthesis of 6-0-( -D-mannopyranosyl)-D-myo-inositol: a fragment from mycobacteria phospholipids. Tetrahedron. 1990, 46, 8243-8254;
    15. Bülow, A.; Meyer, T.; Olszewski, T. K.; Bols, M. The C-4 Configuration as a Probe for the Study of Glycosidation Reactions. Eur. J. Org. Chem. 2004, 323-329.
     1. (a) Vinogradov, E.; Bock, K. A New Type of Glycosidic Linkage: An Open-Chain Acetal-Linked N-Acetylgalactosamine in the Core Part of the Lipopolysaccharides from Proteus Microorganisms. Angew. Chem. Int. Ed. 1999, 38, 671-674. (b) Vinogradov, E.; Bock, K. The structure of the core part of Proteus mirabilis O27 lipopolysaccharide with a new type of glycosidic linkage. Carbohydr. Res. 1999, 319, 92-101. (c) Vinogradov, E.; Bock, K. The structure of the core part of Proteus vulgaris OX2 lipopolysaccharide. Carbohydr. Res. 1999, 320, 239-243;
    2. (a) Vinogradov, E.; Sidorczyk, Z.; The structure of the carbohydrate backbone of the core–lipid A region of the lipopolysaccharide from Proteus penneri strain 40: new Proteus strains containing open-chain acetal-linked N-acetylgalactosamine in the core part of the LPS. Carbohydr. Res. 2001, 330, 537-540. (b) Vinogradov, E.; Korenevsky, A.; Beveridge, T. J. The structure of the rough-type lipopolysaccharide from Shewanella oneidensis MR-1, containing 8-amino-8-deoxy-Kdo and an open-chain form of 2-acetamido-2-deoxy--galactose. Carbohydr. Res. 2003, 338, 1991-1997. (c) Moule, A. L.; Galbraith, L.; Cox, A. D.; Wilkinson, S. G. Characterisation of a tetrasaccharide released on mild acid hydrolysis of LPS from two rough strains of Shewanella species representing different DNA homology groups. Carbohydr. Res. 2004, 339, 1185-1188;
    3. Li, X.-C.; Yang, C.-R.; Liu, Y.-Q.; Kasai, R.; Ohtani, K.; Yamasaki, K.; Miyahara, K.; Shingu, K. Triterpenoid glycosides from Anemoclema glaucifolium. Phytochemistry 1995, 39, 1175-1179.
    4. (a) Du, Y.; Lin, J.; Linhardt, R. J. Regioselective synthesis of L-idopyranuronic acid derivatives: Intermolecular aglycon transfer of dithioacetal under standard glycosylation conditions. J. Carbohydr. Chem. 1997, 16, 1327-1344. (b) Yu, H.; Yu, B.; Wu, X.; Hui, Y.; Han, X. Synthesis of a group of diosgenyl saponins with combined use of glycosyl trichloroacetimidate and thioglycoside donors. J. Chem. Soc., Perkin Tran. 1 2000, 1445-1453. (c) D. A. Leigh, J. P. Smart, A. M. Truscello, Intermolecular aglycon transfer of ethyl 1-thiorhamnopyranosides under Koenigs—Knorr and Helferich glycosylation conditions. Carbohydr. Res. 1995, 276, 417-424. (d) Belot, F.; Jacquinet, J. -C. Intermolecular aglycon transfer of a phenyl 1-thiogalactosaminide derivative under trichloroacetimidate glycosylation conditions. Carbohydr. Res. 1996, 290, 79. (e) Zhu, T.; Boons, G. J. Intermolecular aglycon transfer of ethyl thioglycosides can be prevented by judicious choice of protecting groups. Carbohydr. Res. 2000, 329, 709;
    5. 于海,大连化学物理研究所博士论文,2000
    6. Villalobos, A.; Danishefsky, S. J. Stereoselective routes to the C10-C19 fragment of FK-506. J. Org. Chem. 1990, 55, 2776-2786;
    7. Plé, Karen.; Chwalek, M.; Voutquenne-Nazabadioko, L. Synthesis of -Hederin, -Hederin, and Related Triterpenoid Saponins. Eur. J. Org. Chem. 2004, 1588-1603;
    8. Seebacher, W.; Weis, R.; Jurenitsch, J.; Rauchensteiner, K.; Haslinger, E. Synthesis And Hemolytic Properties Of Arvensoside B Isomers.Monatsh. Chem. 2000, 131, 985-996;
    9. (a) Kurihara, M.; Miyata, N. Facile Procedure For Acetalization Using Diols Alkoxysilane And a Catalitic Amount Of Trimethylsilyl Trifluoromethanesulfonate. Chem. Lett. 1995, 263-264. (b) H. Ohtake, N. Ichiba, M. Shiro, S. Ikegami, Synthesis and structure of 4-O, 6-O-glycosylidene glycoside. J. Org. Chem. 2000, 65, 8164-8170. (c) T. Tsunoda, M. Suzuki, R. Noyori, A facile procedure for acetalization under aprotic conditions. Tetrahedron Lett. 1980, 21, 1357-1358;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700