候选抑癌基因MAPK10在原发性肝细胞肝癌中表达的表观遗传学调控机制及临床意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝细胞肝癌(Hepatocellular carcinoma, HCC)是人类最常见、最凶险的恶性肿瘤之一,其发生发展涉及到遗传学、表观遗传学调控及多基因改变的级联过程,最终导致癌基因的激活或抑癌基因的失活。近年来研究表明,通过表观遗传学调控机制导致的抑癌基因功能丢失与各种肿瘤包括HCC的发生发展密切相关,抑癌基因甲基化有望作为一种特异性的分子标志物在肿瘤的早期诊断、预后评估中发挥重要作用。发现更多新的有价值的抑癌基因、建立完善的HCC甲基化谱,对HCC的早期诊断、预测转移复发、提示预后和个性化治疗均具有重要的价值。
     MAPK10又名JNK3,从属于促分裂素原活化蛋白激酶(mitogen-activated protein kinases, MAPK)大家族中的JUN氨基末端激酶(Jun N-terminal kinase, JNK)亚群,最近的研究提示其可能为一候选抑癌基因。在本文中,我们以MAPK10为研究目标,通过其启动子区甲基化水平与该基因在HCC细胞表达的关系来揭示MAPK10在HCC中表达的表观遗传学调控机制,同时通过载体的构建和转染、亚细胞定位、克隆的筛选和计数、流式细胞仪及TUNEL法对细胞凋亡的检测、凋亡相关基因表达的观察、联合常规化疗药物对HCC细胞毒作用的分析等方法来明确该基因对人HCC细胞的作用,并进一步在临床标本中探讨MAPK10表达沉默的临床意义。结果表明:MAPK10基因在几乎所有的正常组织包括肝组织中表达,但在HCC细胞株中却有67%被沉默或表达显著降低(8/12),且与相应的启动子区甲基化状态具有良好的相关性(58%,7/12)。从HCC的石蜡标本中也观察到,MAPK10在HCC组织中往往表达阴性或弱阳性,较癌旁组织显著降低(63%,29/46; p=0.000, Wilcoxon signed rank test)。我们进一步检测了临床收集的18例HCC标本的MAPK10基因启动子甲基化水平,发现12例存在启动子甲基化(67%)。在这18例HCC冰冻标本中同时进行了免疫组化染色检测MAPK10表达(其中15例染色成功),观察到其中11例标本的MAPK10表达缺失,而相应的这些标本的甲基化状态检测结果恰好均为阳性。为了进一步证实MAPK10基因沉默与启动子甲基化之间的关系,我们利用去甲基化药物5-氮杂-2-脱氧胞苷(5-aza-2’-deoxycytidine,5-Aza-dC)联合组蛋白去乙酰化酶抑制剂曲古菌素A(Trichostatin A,TSA)作用于MAPK10沉默的HCC细胞株HepG2和Hep3B,结果提示:伴随MAPK10基因甲基化状态的改变,其在HCC细胞中的表达也得以恢复,说明MAPK10在HCC细胞中的丢失与其启动子高甲基化密切相关。细胞功能试验则表明,通过载体构建、基因转染后,MAPK10可显著抑制HCC细胞的克隆形成、诱导凋亡发生、并能增强HCC细胞对化疗药物5-氟尿嘧啶(5-Fluorouracil,5-Fu)的敏感性。更有意义的是,我们观察到MAPK10转入HCC细胞后,凋亡相关基因p53及Caspase家族的mRNA表达及蛋白表达均较前明显增强。最后,我们研究了59例HCC病人中MAPK10表达与临床特点、预后的关系。结果表明,MAPK10表达缺失与HCC进展分期、肝内转移灶发生、高水平甲胎蛋白(AFP)显著相关;MAPK10沉默的HCC患者较MAPK10表达的患者预后更差,生存时间明显缩短。
     总之,我们的研究表明,MAPK10是HCC发生发展中的一个重要抑癌基因,表观遗传学-DNA甲基化机制是其表达的调控机制之一;MAPK10在HCC中的表达与HCC患者的临床分期及预后密切相关,其表达丢失往往提示HCC病人预后更差。针对MAPK10在HCC的甲基化研究将为HCC的早期诊断、临床治疗提供有价值的新靶点。
Hepatocellular carcinoma (HCC) is one of the most lethalmalignancies for humans. Given that patients with HCC are alwaysdiagnosed at the advanced stage and HCC is one of the well identifiedcancers that are most resistant to systemic chemotherapy, efficacy ofcurative surgery or chemotherapy on HCC remains very poor, whichhighlights the need for reliable biomarkers in the early diagnosis of HCC.As for many other tumors, development of HCC is the consequence of amultistep process with genetic and epigenetic alterations in regulatorygenes, resulting in activation of oncogenes and inactivation of TSG.Promoter CpG methylation, one of the epigenetic alterations which occurfrequently during tumor development and progression, causes the loss ofTSG functions. Recent studies have evidenced the importance of promoterCpG methylation in initiating carcinogenesis and it has been hypothesizedthat TSG methylation can be used as epigenetic biomarkers for tumor diagnosis or prognosis prediction clinically. To find more valuable TSGsfrequently methylated in HCC and establish a specific methylation profilewould be helpful to provide new and reliable biomarkers for HCCmanagement.
     Mitogen-Activated Protein Kinase10(MAPK10) is a member of thec-Jun N-terminal kinases (JNK) subgroup in MAP kinase superfamily,recently suggested as a tumor suppressor inactivated epigenetically. Here,we investigated its role as a tumor suppressor in HCC from the epigeneticway. MAPK10was expressed in almost all normal tissues including liver,however, it was low or silenced in67%(8/12) of HCC cell lines. For thoseclinical samples, MAPK10expression was also significantly lower in HCCthan that in adjacent non-tumor tissues (63%,29/46; p=0.000, Wilcoxonsigned rank test). Promoter methylation of MAPK10was further detectedin58%(7/12) of the HCC cell lines and in66%(12/18) of primary HCCtissues by methylation specific PCR (MSP), which was well correlated withits silenced or downregulated expression. Moreover, the transcriptionalsilencing of MAPK10could be reversed by pharmacologic demethylationand ectopic expression of MAPK10in silenced HCC cell lines couldsignificantly inhibit colony formation ability, induce apoptosis or enhancethe chemosensitivities of HCC cells to5-Fu. In addition, the expression ofp53, caspase3and caspase8could be increased after the ectopicexpression of MAPK10in these silenced HCC cells. Finally, the clinical significance of MAPK10in a cohort of59HCC cases was assessed. Inthese cases examined, negative expression of MAPK10was significantlyassociated with advanced tumour stage (p=0.001), more microsatellitenodules (p=0.025), higher serum AFP (p=0.05) and shorter overall survivaltime of HCC patients (p=0.008).
     Thus, MAPK10appears to be a functional tumor suppressor gene (TSG)frequently methylated in HCC, which could be a valuable biomarker or anew therapy target clinically.
引文
[1] Seeff LB, Hoofnagle JH. Epidemiology of hepatocellular carcinoma in areas of lowhepatitis B and hepatitis C endemicity [J]. Oncogene.2006,25(27):3771-7. Review.
    [2] Mazzanti R, Gramantieri L, Bolondi L. Hepatocellular carcinoma: epidemiologyand clinical aspects [J]. Mol Aspects Med.2008,29(1-2):130-43. Epub2007Oct24.Review.
    [3] EI-Houseini ME, EI-Sherbiny M, Awad ME, et al. Serum alpha-L-fucosidaseenzyme activity as a marker for hepatocellular carcinoma: comparison with AFPusing ROC analysis [J]. J Egypt Natl Cancer Inst.2001,13-4:277-283.
    [4] Nakatsura T, Yoshitake Y, Senju S, et al. Glypican-3overexpressed specifically inhuman hepatocellular carcinoma, is a novel tumor marker [J]. Biochem BiophysRes Commun.2003,306:16-25.
    [5] Stefaniuk P, Cianciara J, Wiercinska-Drapalo A.Present and future possibilities forearly diagnosis of hepatocellular carcinoma [J].World J Gastroenterol.2010,16(4):418-24.
    [6] EI-Serag HB, Marrero JA, Rudolph L, et al. Diagnosis and treatment ofhepatocellular carcinoma [J].Gastroenterology.2008,134(6):1752-63. Review.
    [7] Jones PA, Baylin SB. The epigenomics of cancer [J]. Cell.2007,128(4):683-92.Reveiw.
    [8] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. Nat Rev Genet.2007,8(4):286-98.
    [9] Vucic EA, Brown CJ, Lam WL. Epigenetics of cancer progression.Pharmacogenomics [J].2008,9(2):215-34. Review.
    [10]Seng TJ, Low JS, Li H, et al. The major8p22tumor suppressor DLC1is frequentlysilenced by methylation in both endemic and sporadic nasopharyngeal, esophageal,and cervical carcinomas, and inhibits tumor cell colony formation [J]. Oncogene.2007,26(6):934-44.
    [11]Cui Y, Ying Y, Hasselt A,et al. OPCML is a broad tumor suppressor for multiplecarcinomas and lymphomas with frequent epigenetic inactivation [J]. PLOSONE.2008,3(8): e2990.
    [12]Balmain A, Gray J, Ponder B. The genetics and genomics of cancer [J]. Nat Genet,2003,33Suppl:238-244.
    [13]Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer [J].Nat Rev Cancer.2004,4(9):707-17. Review.
    [14]Laird PW. The power and the promise of DNA methylation markers. Nat RevCancer.2003;3(4):253-66.
    [15]Board RE, Knight L, Greystoke A, et al. DNA methylation in circulating tumourDNA as a biomarker for cancer. Biomark Insights.2008Jan25;2:307-19.
    [16]Giasuddin AS, Jhuma KA, Haq AM. Applications of free circulating nucleic acidsin clinical medicine: recent advances. Bangladesh Med Res Counc Bull.2008Apr;34(1):26-32. Review.
    [17]Tao Q, Chan ATC. Nasopharyngeal carcinoma-molecular pathogenesis andtherapeutic developments.Expert Rev Mol Med,2007;9:1-24.
    [18]Momparler RL. Epigenetic therapy of cancer with5-aza-2’-deoxycytidine(decitabine). Semin Oncol.2005,32(5):443-51.Review.
    [19]Ruter B, Wijermans PW, Lubbert M. DNA methylation as a therapeutic target inhematologic disorders: recent results in older patients with myelodysplasia andacute myeloid leukemia[J]. Int J Hematol,2004,80(2):128-135.
    [20]Tischoff I, Tannapfe A. DNA methylation in hepatocellular carcinoma. World JGastroenterol.2008Mar21,14(11):1741-8. Review.
    [21]Teufel A, Staib F, Kanzler S, et al. Genetics of hepatocellular carcinoma. World JGastroenterol.2007Apr28,13(16):2271-82. Review.
    [22]Chan KC, Lai PB, Mok TS, et al. Quantitative analysis of circulating methylatedDNA as a biomarker for hepatocellular carcinoma. Clin Chem.2008,54(9):1528-36.Epub2008Jul24.
    [23]Wang J, Qin Y, Li B, et al. Detection of aberrant promoter methylation of GSTP1inthe tumor and serum of Chinese human primary hepatocellular carcinoma patients.Clin Biochem.2006,39(4):344-8. Epub2006Mar9.
    [24]Wong IH, Zhang J, Lai PB, et al. Quantitative analysis of tumor-derived methylatedp16INK4a sequences in plasma, serum, and blood cells of hepatocellular carcinomapatients. Clin Cancer Res.2003,9(3):1047-52.
    [25]Ying J, Li H, Cui Y, et al. Epigenetic disruption of two proapoptotic genesMAPK10/JNK3and PTPN13/FAP-1in multiple lymphomas and carcinomasthrough hypermethylation of a common bidirectional promoter. Leukemia.2006,20(6):1173-5.
    [26]Yoshida S, Fukino K, Harada H, et al. The c-Jun NH2-terminal kinase3(JNK3)genes: genomic structure, chromosomal assignment, and loss of expression in braintumors. J Hum Genet.2001,46:182-187.
    [27]Yang DD, Kuan CY, Whitmarsh AJ, et al.Absence of excitotoxicity-inducedapoptosis in the hippocampus of mice lacking the JNK3gene. Nature.1997,389:865-870.
    [28]Hibi M, Lin A, Smeal T, et al. Identification of an oncoprotein-and UV-responsiveprotein kinase that binds and potentiates the c-Jun activation domain. Genes Dev.1993,7:2135-2148.
    [29]Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell.2000,103:239-252.
    [30]Chang L, Karin M. Mammalian MAP kinase signaling cascades. Nature.2001,410:37-40.
    [31]Shaulian E, Karin M. AP-1as a regulator of cell life and death. Nat Cell Biol.2002,4: E131-E136.
    [32]Lin A. Activation of the JNK signaling pathway: breaking the brake on apoptosis.Bioessays.2003,25:17-24.
    [33]Dougherty CJ, Kubasiak LA, Frazier DP, et al. Mitochondrial signals initiates theactivation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J.2004,18:1060-1070.
    [34]Vallerie SN, Hotamisligil GS. The role of JNK proteins in metabolism. Sci TranslMed.2010,2:60rv5.
    [35]Johnson GL, Nakamura K. The c-jun kinase/stressactivated pathway: regulation,function and role in human disease. Biochim Biophys Acta.2007,1773:1341-1348.
    [36]Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature.2006,443:787-795.
    [37]Heasley LE, Han SY. JNK regulation of oncogenesis. Mol Cells2006;21:167-173.
    [38]Dunn C, Wiltshire C, MacLaren A, et al. Molecular mechanism and biologicalfunctions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor[J].Cell Signal.2002,14:585-593.
    [39]Karin M. The regulation of AP-1activity by mito-gen-activated protein kinases [J].J Biol Chem.1995,270:16483-16486.
    [40]Widmann C, Gibson S, Jarpe MB, et al. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human[J]. Physiol Rev.1999,79:143-180.
    [41]Tournier C, Whitmarsh AJ, Cavanagh J, et al. Mitogen-activated protein kinasekinase7is an activator of the c-Jun NH2-terminal kinase[J]. Proc Natl Acad Sci US A.1997,94:7337-7342.
    [42]Lin A, Minden A, Martinetto H, et al. Identification of a dual specificity kinase thatactivates the Jun kinases and p38-Mpk2[J]. Science.1995,268:286-290.
    [43]Fleming Y, Armstrong CG, Morrice N, et al.Synergistic activation ofstress-activated protein kinase1/c-Jun N-terminal kinase (SAPK1/JNK) isoformsby mitogen-activated protein kinase kinase4(MKK4) and MKK7[J]. Biochem J.2000,352Pt1:145-154.
    [44]Tournier C, Dong C, Turner TK, et al. MKK7is an essential component of the JNKsignal transduction pathway activated by proinflammatory cytokines [J]. Genes Dev.2001,15:1419-1426.
    [45]Barr RK, Bogoyevitch MA. The c-Jun N-terminal protein kinase family ofmitogen-activated protein kinases (JNK MAPKs)[J]. Int J Biochem Cell Biol.2001,33:1047-1063.
    [46]Weston CR, Davis RJ. The JNK signal transduction pathway [J]. Curr Opin GenetDev.2002,12:14-21.
    [47]Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38MAPkinases on apoptosis[J]. Science.1995,270:1326-1331.
    [48]Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling forsuicide and surviva[J]l. J Cell Physiol.2002,192:1-15.
    [49]Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of thec-Jun N-terminal kinases [J]. Microbiol Mol Biol Rev.2006,70:1061-1095.
    [50]Carboni S, Antonsson B, Gaillard P, et al.Gillon JY, Vitte PA. Control of deathreceptor and mitochondrial-dependent apoptosis by c-Jun N-terminal kinase inhippocampal CA1neurones following global transient ischaemia [J]. J Neurochem.2005,92:1054-1060.
    [51]Pan J, Zhao YX, Wang ZQ, et al.Expression of FasL and its interaction with Fas aremediated by c-Jun N-terminal kinase (JNK) pathway in6-OHDA-induced ratmodel of Parkinson disease [J]. Neurosci Lett.2007,428:82-87.
    [52]Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis [J]. Nat RevCancer.2003,3:859-868.
    [53]Morishima Y, Gotoh Y, Zieg J, et al. Beta-amyloid induces neuronal apoptosis viaa mechanism that involves the c-Jun N-terminal kinase pathway and the inductionof Fas ligand [J]. J Neurosci.2001,21:7551-7560.
    [54]Guan QH, Pei DS, Xu TL, et al. Brain ischemia/reperfusion-induced expression ofDP5and its interaction with Bcl-2, thus freeing Bax from Bcl-2/Bax dimmers aremediated by c-Jun N-terminal kinase (JNK) pathway[J]. Neurosci Lett.2006,393:226-230.
    [55]Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-inducedactivation of the cytochrome c-mediated death pathway[J]. Science.2000,288:870-874.
    [56]Weston CR, Davis RJ. The JNK signal transduction pathway[J]. Curr Opin CellBiol.2007,19:142-149.
    [57]Perier C, Bové J, Wu DC, et al. Two molecular pathways initiatemitochondria-dependent dopaminergic neurodegeneration in experimentalParkinson's disease [J]. Proc Natl Acad Sci U S A.2007,104:8161-8166.
    [58]Kim BJ, Ryu SW, Song BJ. JNK-and p38kinase-mediated phosphorylation of Baxleads to its activation and mitochondrial translocation and to apoptosis of humanhepatoma HepG2cells [J]. J Biol Chem.2006,281:21256-21265.
    [59]Solovyan VT. Characterization of apoptotic pathway associated withcaspase-independent excision of DNA loop domains [J]. Exp Cell Res.2007,313:1347-1360.
    [60]NJ Kennedy, RJ Davis. Role of JNK in tumor development [J]. Cell Cycle.2003,2(3):199-201.
    [61]Rivenbark AG, Coleman WB. The use of epigenetic biomarkers for preclinicaldetection of hepatocellular carcinoma: potential for noninvasive Screening ofhigh-risk populations of hepatocellular carcinoma [J]. Clin Cancer Res.2007,13:2309-2312.
    [62]Bestor TH. The DNA methyltransferases of mammals [J]. Hum Mol Genet.2000,9:2395-402.
    [63]Paulsen M, Ferguson-Smisth AC. DNA methylation in genomic imprinting,development, and disease [J]. J pathol.2001,195:97-110.
    [64]Wajed SA, Laird PW, DeMeester TR. DNA methylation: an alternative pathway tocancer [J]. Ann Surg.2001,234(1):10-20.
    [65]Jones P A, Baylin S B. The fundamental role of epigenetic events in cancer [J]. NatRev Genet.2002,3(6):415-428.
    [66]Su PF, Lee TC, Lin PJ, et al. Differential DNA methylation associated withhepatitis B virus infection in hepatocellular carcinoma[J]. Int J Cancer.2007,121(6):1257-1264.
    [67]Shim YH, Yoon GS, Choi HJ, et al. p16hypermethylation in the early stage ofhepatitis B virus-associated hepatocarcinogenesis [J]. Cancer Lett.2003,190(2):213-219.
    [68]Zhang JC, YU ZT, LU J, et al. High rate of p16methylation associated withhepatitis B virus infection in hepatocellular carcinoma [J]. The Chinese GermanJournal of Clinical Oncology.2006,5(2):84-89.
    [69]Wu LM, Zhang F, Zhou L, et al. Predictive value of CpG island methylatorphenotype for tumor recurrence in hepatitis B virus-assciated hepatocellularcarcinoma following liver transplantation [J]. BMC Cancer.2010,10:399.
    [70]Belijanski M, Bourgarel P. Correlation between in vitro DNA synthesis, DNAstrand separation and in vitro multiplication of cancer cells [J]. Exp Cell Biol.1981,49:220.
    [71]Mayall F, Jacobson G, Wilkins R, et al. Mutations of p53gene can be detected inthe plasma of patients with large bowel carcinoma [J]. J Clin Pathol.1998,51:611.
    [72]Sanchez-cespedes EM, Rosell M, Sidransky D, et al. Detection of aberrantpromoter hypermethylation of tumor suppressor genes in serum DNA fromnon-small cell lung cancer patients [J]. Cancer Res.1999,2:1035.
    [73]Nawroz H, Koch W, Anker P, et al. Microsatellite alterations in plasma DNA ofhead and neck cancer patients[J]. Nature Med.1996,2:1035.
    [74]Wong IH,Lo YM,Johnson PJ.Epigenetic tumor markers in plasma and serum:biology and applications to molecular diagnosis and disease monitoring [J]. Ann NY Acad Sci.2001,945:36.
    [75]Wong IH, Lo YM, Zhang J, et al. Detection of aberrant p16methylation in theplasma and serum of linver cancer patients[J]. Cancer Res.1999,59:71.
    [76]张吉才,吕军,李海平等.血浆p16启动子异常甲基化在肝癌诊断中的应用价值[J].中华检验医学杂志,2006,29(10):895-898.
    [77]Harder J, Opitz OG, Brabender J, et al. Quantitative promoter methylation analysisof hepatocellular carcinoma, cirrhotic and normal liver [J]. Int J Cancer.2008,122:2800-2804.
    [78]Namgung U, Xia Z. Arsenite-induced apoptosis in cortical neurons is mediated byc-Jun N-terminal protein kinase3and p38mitogen-activated protein kinase [J]. JNeurosci.2000,20:6442-6451.
    [79]Waetzig V, Herdegen T. A single c-Jun N-terminal kinase isoform (JNK3/p54) is aneffector in both neuronal differentiation and cell death [J]. J Biol Chem.2003,278:567-572.
    [80]Kennedy NJ, Sluss HK, Jones SN, et al. Suppresion of Ras-stimulatedtransformation by the JNK signal transduction pathway [J]. Genes Dev.2003,17:629-637.
    [81]Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2is phosphorylated and inactivated byan ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M [J].Mol Cell Biol.1999,19:8469-8478.
    [82]Maundrell K, Antonsson B, Magnenat E, et al. Bcl-2undergoes phosphorylation byc-Jun N-terminal kinase/stress-activated protein kinases in the presence of theconstitutively active GTP-binding protein Rac1[J]. J Biol Chem.1997,272:25238-25242.
    [83]Yu C, Minemoto Y, Zhang J, et al. JNK suppresses apoptosis via phosphorylationof the proapoptotic Bcl-2family protein BAD [J]. Mol Cell.2004,13:329-340.
    [84]Igney FH, Krammer PH. Death and anti-death:tumor resistance to apoptosis [J]. NatRev Cancer.2002,2(4):277-288.
    [85]Shabbits J A, Hu Y, Mayer L D. Tumor chemosensitization strategies based onapoptosis manipulations [J]. Mol Cancer Ther.2003,2(8):805-13.
    [86]Green D R,Kroemer G. Pharmacological manipulation of cell death:clinicalapplicationsin sight?[J]. J Clin Invest,2005,115(10):2610-7.
    [1] Seeff LB, Hoofnagle JH. Epidemiology of hepatocellular carcinoma in areas of lowhepatitis B and hepatitis C endemicity [J]. Oncogene.2006,25(27):3771-7. Review.
    [2] Mazzanti R, Gramantieri L, Bolondi L. Hepatocellular carcinoma: epidemiologyand clinical aspects [J]. Mol Aspects Med.2008,29(1-2):130-43. Epub2007Oct24.Review.
    [3] Jones PA, Baylin SB. The epigenomics of cancer [J]. Cell.2007,128(4):683-92.Reveiw.
    [4] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. Nat Rev Genet.2007,8(4):286-98.
    [5] Vucic EA, Brown CJ, Lam WL. Epigenetics of cancer progression.Pharmacogenomics [J].2008,9(2):215-34. Review.
    [6] Seng TJ, Low JS, Li H, et al. The major8p22tumor suppressor DLC1is frequentlysilenced by methylation in both endemic and sporadic nasopharyngeal, esophageal,and cervical carcinomas, and inhibits tumor cell colony formation [J]. Oncogene.2007,26(6):934-44.
    [7] Cui Y, Ying Y, Hasselt A,et al. OPCML is a broad tumor suppressor for multiplecarcinomas and lymphomas with frequent epigenetic inactivation [J]. PLOSONE.2008,3(8): e2990.
    [8] Balmain A, Gray J, Ponder B. The genetics and genomics of cancer [J]. Nat Genet,2003,33Suppl:238-244.
    [9] Belinsky SA. Gene-promoter hypermethylation as a biomarker in lung cancer [J].Nat Rev Cancer.2004,4(9):707-17. Review.
    [10]Tischoff I, Tannapfe A. DNA methylation in hepatocellular carcinoma. World JGastroenterol.2008Mar2,14(11):1741-8. Review.
    [11]Teufel A, Staib F, Kanzler S, et al. Genetics of hepatocellular carcinoma[J]. World JGastroenterol.2007,13(16):2271-82. Review.
    [12]Tannapfel A, Wittekind C. Genes involved in hepatocellular carcinoma:deregulation in cell cycling and apoptosis [J]. Virchows Arch.2002,440:345-352.
    [13]Kaneto H, Sasaki S, Yamamoto H, et al. Detection of hypermethylation of thep16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated withhepatitis B or C virus [J]. Gut.2001,48:372-377.
    [14]Tannapfel A, Busse C, Weinans L, et al. INK4a-ARF alterations and p53mutationsin hepatocelllular carcinomas [J]. Oncogene.2001,20:7104-7109.
    [15]Peng CY, Chen TC, Hung SP, et al.Genetic alterations of INK4alpha/ARF locus andp53in human hepatocellular carcinoma [J]. Anticancer Res.2002,22:1265-1271.
    [16]Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association withthe CD95death-inducing signaling complex (DISC)[J]. EMBO J.1997,16:2794-2804.
    [17]Teitz T, Wei T, Valentine MB, et al. Caspase8is detected or silenced preferentiallyin childhood neuroblastomas with amplification of MYCN [J]. Nat Med.2000,6:529-535.
    [18]Banelli B, Casciano I, Croce M, et al. Expression and methylation of CASP8inneuroblastoma: identification of a promoter region [J]. Nat Med.2002,8:1333-1335.
    [19]Yu J, Ni M, Xu J, et al. Methylation profiling of twenty promoter-CpG islands ofgenes which may contribute to hepatocellular carcinogenesis [J]. BMC Cancer.2002,2:29.
    [20]McConnell BB, Vertino PM. TMS1/ASC: the cancer connection. Apoptosis [M].2004,9:5-18.
    [21]Stone AR, Bobo W, Brat DJ, et al. Aberrant methylation and down-regulation ofTMS1/ASC in human glioblastoma [J]. Am J Pathol.2004,165:1151-1161.
    [22]Terasawa K, Sagae S, Toyota M, et al. Epigenetic inactivation of TMS1/ASC inovarian cancer [J]. Clin Cancer Res.2004,10:2000-2006.
    [23]Guan X, Sagara J, Yokoyama T, Koganehira Y, Oguchi M, Saida T, Taniguchi S.ASC/TMS1, a caspase-1activating adaptor, is downregulated by aberrantmethylation in human melanoma [J]. Int J Cancer2003,107:202-208.
    [24]Yokoyama T, Sagara J, Guan X, et al. Methylation of ASC/TMS1, a proapoptoticgene responsible for activating procaspase-1, in human colorectal cancer [J].Cancer Lett.2003,202:101-108.
    [25]Virmani A, Rathi A, Sugio K, et al. Aberrant methylation of TMS1in small cell,non small cell lung cancer and breast cancer. Int J Cancer2003;106:198-204.
    [26]Kubo T, Yamamoto J, Shikauchi Y, et al. Apoptotic speck protein-like, a highlyhomologous protein to apoptotic speck protein in the pyrin domain, is silenced byDNA methylation and induces apoptosis in human hepatocellular carcinoma [J].Cancer Res.2004,64:5172-5177.
    [27]Matsumura T, Makino R, Mitamura K. Frequent downregulation of E-cadherin bygenetic and epigenetic changes in the malignant progression of hepatocellularcarcinomas [J]. Clin Cancer Res2001,7:594-599.
    [28]Kwon GY, Yoo BC, Koh KC, et al. Promoter methylation of E-cadherin inhepatocellular carcinomas and dysplastic nodules[J]. J Korean Med Sci2005,20:242-247.
    [29]Kanai Y, Ushijima S, Hui AM, et al. The E-cadherin gene is silenced by CpGmethylation in human hepatocellular carcinomas [J]. Int J Cancer.1997,71:355-359.
    [30]Yamada S, Nomoto S, Fujii T, et al. Frequent promoter methylation of M-cadherinin hepatocellular carcinoma is associated with poor prognosis [J]. Anticancer Res.2007,27:2269-2274.
    [31]Esteller M, Corn PG, Baylin SB, et al. A gene hypermethylation profile of humancancer [J]. Cancer Res.2001,61:3225-3229.
    [32]Bian J, Wang Y, Smith MR, et al. Suppression of in vivo tumor growth andinduction of suspension cell death by tissue inhibitor of metalloproteinases(TIMP)-3. Carcinogenesis.1996,17:1805-1811.
    [33]Mannello F, Gazzanelli G. Tissue inhibitors of metalloproteinases and programmedcell death: conundrums, controversies and potential implications [J]. Apoptosis.2001,6:479-482.
    [34]Wong CM, Ng YL, Lee JM, et al. Tissue factor pathway inhibitor-2as a frequentlysilenced tumor suppressor gene in hepatocellular carcinoma [J]. Hepatology.2007,45:1129-1138.
    [35]Park JH, Cho SB, Lee WS, et al. Methylation pattern of DNA repair genes andmicrosatellite instability in hepatocelluar carcinoma [J]. Korean J Gastroenterol.2006,48:327-336.
    [36]Matsukura S, Soejima H, Nakagawachi T, et al. CpG methylation of MGMT andhMLH1promoter in hepatocellular carcinoma associated with hepatitis viralinfection [J]. Br J Cancer.2003,88:521-529.
    [37]Wang L, Bani-Hani A, Montoya DP, et al. hMLH1and hMSH2expression inhuman hepatocellular carcinoma [J]. Int J Oncol.2001,19:567-570.
    [38]Zhang CJ, Li HM, Yau LM, et al. Methylation of mismatch repair gene (MMR) inprimary hepatocellular carcinoma [J]. Zhonghua Binglixue Zazhi2004;33:433-436.
    [39]Su PF, Lee TC, Lin PJ, et al. Differential DNA methylation associated withhepatitis B virus infection in hepatocellular carcinoma[J].. Int J Cancer.2007,121:1257-1264.
    [40]Matsukura S, Soejima H, Nakagawachi T, et al. CpG methylation of MGMT andhMLH1promoter in hepatocellular carcinoma associated with hepatitis viralinfection [J]. Br J Cancer.2003,88:521-529.
    [41]Zhang YJ, Chen Y, Ahsan H, et al. Inactivation of the DNA repair geneO6-methylguanine-DNA methyltransferase by promoter hypermethylation and itsrelationship to aflatoxin B1-DNA adducts and p53mutation in hepatocellularcarcinoma [J]. Int J Cancer.2003,103:440-444.
    [42]Le e S, Le e HJ, Kim JH, et al.Aberrant CpG island hypermethylation alongmultistep hepatocarcinogenesis[J].. Am J Pathol.2003,163:1371-1378.
    [43]Zhang YJ, Chen Y, Ahsan H, et al. Silencing of glutathione S-transferaseP1bypromoter hypermethylation and its relationship to environmental chemicalcarcinogens in hepatocellular carcinoma[J]. Cancer Lett.2005,221:135-143.
    [44]Zhong S, Tang MW, Yeo W, et al. Silencing of GSTP1gene by CpG island DNAhypermethylation in HBV-associated hepatocellular carcinomas[J].. Clin CancerRes.2002,8:1087-1092.
    [45]Anzola M, Cuevas N, Lopez-Martinez M, Saiz A, Burgos JJ, de Pancorbo MM. Noassociation between GSTP1gene aberrant promoter methylation and prognosis insurgically resected hepatocellular carcinoma patients from the Basque Country(Northern Spain)[J]. Liver Int.2003,23:249-254.
    [46]Wang J, Qin Y, Li B, et al. Detection of aberrant promoter methylation of GSTP1in the tumor and serum of Chinese human primary hepatocellular carcinomapatients[J]. Clin Biochem.2006,39:344-348.
    [47]Okochi O, Hibi K, Sakai M, et al. Methylation-mediated silencing of SOCS-1genein hepatocellular carcinoma derived from cirrhosis[J]. Clin CancerRes.2003,9:5295-5298.
    [48]Niwa Y, Kanda H, Shikauchi Y, et al. Methylation silencing of SOCS-3promotescell growth and migraby enhancing JAK/STAT and FAK signalings in humanhepatocellular carcinoma[J]. Oncogene.2005,24:6406-6417.
    [49]Miyoshi H, Fujie H, Moriya K, et al. Methylation status of suppressor of cytokinesignaling-1gene in hepatocellular carcinoma[J]. J Gastroenterol.2004,39:563-569.
    [50]Yoshida T, Ogata H, Kamio M, et al. SOCS1is a suppressor of liver fibrosis andhepatitis-induced carcinogenesis[J]. J Exp Med.2004,199:1701-1707.
    [51]Tischoff I, Markwarth A, Witzigmann H, et al. Allele loss and epigeneticinactivation of3p21.3in malignant liver tumors[J]. Int J Cancer.2005,115:684-689.
    [52]Kuroki T, Trapasso F, Yendamuri S, et al. Allelic loss on chromosome3p21.3andpromoter hypermethylation of semaphorin3B in non-small cell lung cancer [J].Cancer Res.2003,63:3352-3355.
    [53]Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype incolorectal cancer [J]. Proc Natl Acad Sci USA.1999,96:8681-8686.
    [54]Toyota M, Ahuja N, Suzuki H, et al. Aberrant methylation in gastric cancerassociated with the CpG island methylator phenotype[J].. Cancer Res.1999,59:5438-5442.
    [55]Shen L, Ahuja N, Shen Y, et al. DNA methylation and environmental exposures inhuman hepatocellular carcinoma[J]. J Natl Cancer Inst.2002,94:755-761
    [56]Liu WJ, Wang L, Wang JP, et al. Correlations of CpG island methylator phenotypeand OPCML gene methylation to carcinogenesis of hepatocellular carcinoma[J]. AiZheg.2006,25:696-700.
    [57]Zhang C, Li Z, Cheng Y, et al. CpG island methylator phenotype association withelevated serum alpha-fetoprotein level in hepatocellular carcinoma [J]. Clin CancerRes.2007,13:944-952.
    [58]Su PF, Lee TC, Lin PJ, et al. Differential DNA methylation associated withhepatitis B virus infection in hepatocellular carcinoma [J]. Int J Cancer.2007,121(6):1257-1264.
    [59]Jung JK, Arora P, Pagano JS, et al. Expression of DNA methyltransferase1isactivated by hepatitis B virus X protein via a regulatory circuit involving thep16INK4a-cyclin D1-CDK4/6-pRb-E2F1pathway [J]. Cancer Res.2007,67(12):5771-5778.
    [60]Lee JO, Kwun HJ, Jung JK, et al. Hepatitis B virus X protein represses E-cadherinexpression via activation of DNA methyltransferase1[J]. Oncogene.2005,24(44):6617-6625.
    [61]Huang J, Wang Y, Guo Y, et al. Down-regulated microRNA-152induces aberrantDNA methylation in hepatitis B virus-related hepatocellular carcinoma by targetingDNA methyltransferase1[J]. Hepatology.2010,52(1):60-70.
    [62]Su PF, Lee TC, Lin PJ, et al. Differential DNA methylation associated withhepatitis B virus infection in hepatocellular carcinoma[J]. Int J Cancer.2007,121(6):1257-1264.
    [63]Shim YH, Yoon GS, Choi HJ, et al. p16hypermethylation in the early stage ofhepatitis B virus-associated hepatocarcinogenesis [J]. Cancer Lett.2003,190(2):213-219.
    [64]Zhang JC, YU ZT, LU J, et al. High rate of p16methylation associated withhepatitis B virus infection in hepatocellular carcinoma [J]. The Chinese GermanJournal of Clinical Oncology.2006,5(2):84-89.
    [65]Wu LM, Zhang F, Zhou L, et al. Predictive value of CpG island methylatorphenotype for tumor recurrence in hepatitis B virus-assciated hepatocellularcarcinoma following liver transplantation [J]. BMC Cancer.2010,10:399.
    [66]Belijanski M, Bourgarel P. Correlation between in vitro DNA synthesis, DNAstrand separation and in vitro multiplication of cancer cells [J]. Exp Cell Biol.1981,49:220.
    [67]Mayall F, Jacobson G, Wilkins R, et al. Mutations of p53gene can be detected inthe plasma of patients with large bowel carcinoma [J]. J Clin Pathol.1998,51:611.
    [68]Sanchez-cespedes EM, Rosell M, Sidransky D, et al. Detection of aberrantpromoter hypermethylation of tumor suppressor genes in serum DNA fromnon-small cell lung cancer patients [J]. Cancer Res.1999,2:1035.
    [69]Wong IH,Lo YM,Johnson PJ.Epigenetic tumor markers in plasma and serum:biology and applications to molecular diagnosis and disease monitoring [J]. Ann NY Acad Sci.2001,945:36.
    [70]Wong IH, Lo YM, Zhang J, et al. Detection of aberrant p16methylation in theplasma and serum of linver cancer patients[J]. Cancer Res.1999,59:71.
    [71]张吉才,吕军,李海平等.血浆p16启动子异常甲基化在肝癌诊断中的应用价值[J].中华检验医学杂志,2006,29(10):895-898.
    [72]Harder J, Opitz OG, Brabender J, et al. Quantitative promoter methylation analysisof hepatocellular carcinoma, cirrhotic and normal liver [J]. Int J Cancer.2008,122:2800-2804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700