DACT1在人乳腺癌中的表观遗传学调控及其抑制乳腺癌细胞生长和转移的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据2011年全球癌症统计(Global cancer statistics,2011)报道,乳腺癌(Breast cancer, BRCA)的发病率和死亡率在女性人群中位居第一。尽管目前在乳腺癌的综合治疗方面已经取得了很大的进展,但是晚期乳腺癌的治疗效果依然不佳,其无病生存(Disease free survival,DSF)和总生存(Overall survival, OS)时间远低于早期乳腺癌患者。因此,积极有效地提高乳腺癌的早期诊断率对于乳腺癌的治疗及预后有着非常重要作用。表观遗传学是当今医学基础研究的热点,深入其机制的探讨有利于了解乳腺癌的发生和发展。其中,抑癌基因(Tumorsuppressor gene, TSG)启动子甲基化的研究为乳腺癌的早期诊断及预后评估提供了潜在的可能。
     DACT1(dapper, antagonist of beta-catenin, homolog1Xenopuslaevis),又名HDPR1,属于DAPPER家族,文献提示它在肝癌、肺癌、胃结肠癌中的表达水平低于其正常对照组织并具有抑制肿瘤细胞生长和转移的能力。由此我们推测DACT1可能作为一个新的抑癌基因从而影响乳腺癌的发生和发展。本研究以DACT1为研究目标,通过逆转录聚合酶链式反应(Reverse transcription polymerase chain reaction,RT-PCR)、实时荧光定量聚合酶链式反应(Real-time fluorescencequantitative polymerase chain reaction, Real-time PCR)、免疫组织化学(Immunohistochemistry, IHC)、甲基化特异性聚合酶链式反应(Methylation specific PCR, MSP)方法,分析人乳腺癌细胞株、乳腺癌组织和正常乳腺组织中DACT1基因的表达差异及其甲基化状态;通过细胞体外及体内实验评估DACT1对乳腺癌细胞增殖及迁移性能力的影响,并进一步采用蛋白免疫印迹法(Western blot,WB)方法检测DACT1对Wnt/β-catenin信号通路的影响。研究结果显示,在88.9%(8/9)的乳腺癌细胞株和乳腺癌组织中,DACT1的表达水平都有不同程度的下调。同时,55.6%(5/9)的乳腺癌细胞株和29.9%(40/134)的乳腺癌组织存在DACT1基因启动子甲基化。通过采用5-氮杂-2-脱氧胞苷(5-aza-2’-deoxycytidine,5-Aza-dC)联合组蛋白去乙酰化酶抑制剂曲古菌素A(TrichostatinA, TSA)的方法处理DACT1表达沉默或是下调的乳腺癌细胞株(MB231、MCF7和T47D)。结果显示,DACT1基因启动子去甲基的同时伴随其mRNA表达水平的上调,从而证实了DACT1启动子甲基化是导致其表达下调的原因之一。细胞功能试验结果显示,DACT1能够通过促进凋亡从而有效地抑制乳腺癌细胞体外和体内的生长,并且能够通过调控Wnt/β-catenin信号通路从而抑制乳腺癌的迁移能力。
     综上所述,DACT1作为一个新的抑癌基因,参与了乳腺癌的发生和发展。
According to global cancer statistics, the morbidity and mortality ofbreast cancer have ranked the top in females worldwide. Although thecomprehensive therapies for breast cancer had been improved during thepast decade, there is no promising therapy for advanced breast cancer inwhich Disease-Free Survival and Overall survival is worse than that in breastcancer at early stage. Actively and effectively improving the early diagnosisof breast cancer had been proved to be the key element of treatment of breastcancer. Epigenetic is the hot spot of the medical basic scientific research, andvery important for better understanding the occurrence and development ofbreast cancer. Among them, the studies of DNA methylation of tumorsuppressor genes (TSGs) have provided a potentially possibility for the earlydiagnosis of breast cancer.
     DACT1(dapper, antagonist of beta-catenin, homolog1Xenopuslaevis) belongs to DAPPER family. Previous study had indicated thatDACT1was downregulated and regarded as a TSG in hepatic carcinoma, lung cancer and gastric cancer. These results had suggested that DACT1could act as a new TSG in breast cancer. To demonstrate our hypothesis,RT-PCR, immunohistochemistry, MSP were performed to examine DACT1expression and its promoter methylation status in breast cancer cell lines,primary breast carcinomas and normal breast tissues, and then cellularfunction assays were used to verify whether DACT1could inhibit breastcancer cell proliferation and migration. Besides, we had use western blot toanalyse the effect of DACT1on Wnt/β-catenin signaling pathway. Resultsshowed that mRNA expression level of DACT1was frequentlydownregulated or silenced in89%(8/9) of breast cancer cell lines andprimary breast tumors, and the protein level was also lower in primary breastcancers when compared to paired adjacent tissues. Furthermore, promotermethylation of DACT1was detected in55.6%(5/9) of breast cancer celllines and29.9%(40/134) of primary tumors, but not in any tumor adjacenttissues or normal breast tissues. Treatment of breast cancer cell lines with5-aza-2’-deoxycytidine and trichostatin A can activate DACT1expressionalong with promoter demethylation. The functional assays showed thatectopic expression of DACT1can inhibit cell proliferation and migrationthrough antagonizing Wnt/β-catenin signaling pathway.
     In summary, our study demonstrated that DACT1was epigeneticallyinactivated by promoter methylation and could be considered as a TSG inbreast cancer
引文
[1] Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA Cancer J Clin.2011,61:69-90.
    [2] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer [J]. NatRev Genet.2002,3:415-428.
    [3] Skvortsova TE, Rykova EY, Tamkovich SN, et al. Cell-free and cell-boundcirculating DNA in breast tumours: DNA quantification and analysis oftumour-related gene methylation [J]. Br J Cancer.2006,94:1492-1495.
    [4] Parrella P, Poeta ML, Gallo AP, et al. Nonrandom distribution of aberrant promotermethylation of cancer-related genes in sporadic breast tumors [J]. Clin Cancer Res.2004,10:5349-5354.
    [5] Astolfi A, Nannini M, Pantaleo MA, et al. A molecular portrait of gastrointestinalstromal tumors: An integrative analysis of gene expression profiling andhigh-resolution genomic copy number [J]. Lab Invest.2010,90:1285-1294.
    [6] Karnolsky IN. Cytogenetic abnormalities in chronic lymphocytic leukemia [J].Folia Med (Plovdiv).2000,42:5-10.
    [7] Wang S, Kang W, Go MY, et al. Dapper homolog1is a novel tumor suppressor ingastric cancer through inhibiting the nuclear factor-kappab signaling pathway [J].Mol Med.2012,18:1402-1411.
    [8] Yang ZQ, Zhao Y, Liu Y, et al. Downregulation of hdpr1is associated with poorprognosis and affects expression levels of p120-catenin and beta-catenin innonsmall cell lung cancer [J]. Mol Carcinog.2010,49:508-519.
    [9] Yau TO, Chan CY, Chan KL, et al. Hdpr1, a novel inhibitor of the wnt/beta-cateninsignaling, is frequently downregulated in hepatocellular carcinoma: Involvement ofmethylation-mediated gene silencing [J]. Oncogene.2005,24:1607-1614.
    [10]Gao X, Wen J, Zhang L, et al. Dapper1is a nucleocytoplasmic shuttling protein thatnegatively modulates wnt signaling in the nucleus [J]. J Biol Chem.2008,283:35679-35688.
    [11]Zhang L, Gao X, Wen J, et al. Dapper1antagonizes wnt signaling by promotingdishevelled degradation [J]. J Biol Chem.2006,281:8607-8612.
    [12]Cheyette BN, Waxman JS, Miller JR, et al. Dapper, a dishevelled-associatedantagonist of beta-catenin and jnk signaling, is required for notochord formation [J].Dev Cell.2002,2:449-461.
    [13]Hou J, Li EM, Shen JH, et al. Cytoplasmic hdpr1is involved in regional lymphnode metastasis and tumor development via beta-catenin accumulation inesophageal squamous cell carcinoma [J]. J Histochem Cytochem.2011,59:711-718.
    [14]Gloy J, Hikasa H, Sokol SY. Frodo interacts with dishevelled to transduce wntsignals [J]. Nat Cell Biol.2002,4:351-357.
    [15]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification oftumorigenic breast cancer cells [J]. Proc Natl Acad Sci U S A.2003,100:3983-3988.
    [16]Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (emt) intumor-initiating cells and its clinical implications in breast cancer [J]. J MammaryGland Biol Neoplasia.2010,15:253-260.
    [17]Menard S, Tagliabue E, Campiglio M, et al. Role of her2gene overexpression inbreast carcinoma [J]. J Cell Physiol.2000,182:150-162.
    [18]Carlsson J, Nordgren H, Sjostrom J, et al. Her2expression in breast cancer primarytumours and corresponding metastases. Original data and literature review [J]. Br JCancer.2004,90:2344-2348.
    [19]Baldus SE, Monig SP, Huxel S, et al. Muc1and nuclear beta-catenin arecoexpressed at the invasion front of colorectal carcinomas and are both correlatedwith tumor prognosis [J]. Clin Cancer Res.2004,10:2790-2796.
    [20]Kennedy SM, O'Driscoll L, Purcell R, et al. Prognostic importance of survivin inbreast cancer [J]. Br J Cancer.2003,88:1077-1083.
    [21]Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysisof the brca1and brca2genes in breast cancer families. The breast cancer linkageconsortium [J]. Am J Hum Genet.1998,62:676-689.
    [22]Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and brca1inactivation in sporadic breast and ovarian tumors [J]. J Natl Cancer Inst.2000,92:564-569.
    [23]Suriben R, Fisher DA, Cheyette BN. Dact1presomitic mesoderm expressionoscillates in phase with axin2in the somitogenesis clock of mice [J]. Dev Dyn.2006,235:3177-3183.
    [24]Xiang T, Li L, Yin X, et al. The ubiquitin peptidase uchl1induces g0/g1cell cyclearrest and apoptosis through stabilizing p53and is frequently silenced in breastcancer [J]. PLoS One.2012,7:e29783.
    [25]Clevers H. Wnt/beta-catenin signaling in development and disease [J]. Cell.2006,127:469-480.
    [26]Gao C, Chen YG. Dishevelled: The hub of wnt signaling [J]. Cell Signal.2010,22:717-727.
    [27]Katoh M. Identification and characterization of human dapper1and dapper2genesin silico [J]. Int J Oncol.2003,22:907-913.
    [28]Yuan G, Wang C, Ma C, et al. Oncogenic function of dact1in colon cancer throughthe regulation of beta-catenin [J]. PLoS One.2012,7:e34004.
    [29]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature.2000,406:747-752.
    [30]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breastcarcinomas distinguish tumor subclasses with clinical implications [J]. Proc NatlAcad Sci U S A.2001,98:10869-10874.
    [31]Bos JL. Ras oncogenes in human cancer: A review [J]. Cancer Res.1989,49:4682-4689.
    [32]Garzon R, Calin GA, Croce CM. Micrornas in cancer [J]. Annu Rev Med.2009,60:167-179.
    [33]Berger SL. Histone modifications in transcriptional regulation [J]. Curr Opin GenetDev.2002,12:142-148.
    [34]Momparler RL, Bovenzi V. DNA methylation and cancer [J]. J Cell Physiol.2000,183:145-154.
    [35]Muller HM, Widschwendter A, Fiegl H, et al. DNA methylation in serum of breastcancer patients: An independent prognostic marker [J]. Cancer Res.2003,63:7641-7645.
    [36]Umbricht CB, Evron E, Gabrielson E, et al. Hypermethylation of14-3-3sigma(stratifin) is an early event in breast cancer [J]. Oncogene.2001,20:3348-3353.
    [37]Xiang T, Li L, Fan Y, et al. Plcd1is a functional tumor suppressor inducing g(2)/marrest and frequently methylated in breast cancer [J]. Cancer Biol Ther.2010,10:520-527.
    [38]Feinberg AP, Tycko B. The history of cancer epigenetics [J]. Nat Rev Cancer.2004,4:143-153.
    [39]Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer[J]. Nat Rev Cancer.2008,8:387-398.
    [40]Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms ofbeta-catenin-independent wnt signaling [J]. Dev Cell.2003,5:367-377.
    [41]Seidensticker MJ, Behrens J. Biochemical interactions in the wnt pathway [J].Biochim Biophys Acta.2000,1495:168-182.
    [42]Moon RT, Kohn AD, De Ferrari GV, et al. Wnt and beta-catenin signalling:Diseases and therapies [J]. Nat Rev Genet.2004,5:691-701.
    [43]He TC, Sparks AB, Rago C, et al. Identification of c-myc as a target of the apcpathway [J]. Science.1998,281:1509-1512.
    [44]Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin d1in coloncarcinoma cells [J]. Nature.1999,398:422-426.
    [45]Kolligs FT, Bommer G, Goke B. Wnt/beta-catenin/tcf signaling: A critical pathwayin gastrointestinal tumorigenesis [J]. Digestion.2002,66:131-144.
    [46]Luu HH, Zhang R, Haydon RC, et al. Wnt/beta-catenin signaling pathway as anovel cancer drug target [J]. Curr Cancer Drug Targets.2004,4:653-671.
    [47]Paul S, Dey A. Wnt signaling and cancer development: Therapeutic implication [J].Neoplasma.2008,55:165-176.
    [48]Boutros M, Mlodzik M. Dishevelled: At the crossroads of divergent intracellularsignaling pathways [J]. Mech Dev.1999,83:27-37.
    [49]Nieuwenhuis MH, Vasen HF. Correlations between mutation site in apc andphenotype of familial adenomatous polyposis (fap): A review of the literature [J].Crit Rev Oncol Hematol.2007,61:153-161.
    [50]Zhu CQ, Shih W, Ling CH, et al. Immunohistochemical markers of prognosis innon-small cell lung cancer: A review and proposal for a multiphase approach tomarker evaluation [J]. J Clin Pathol.2006,59:790-800.
    [51]Wong CM, Fan ST, Ng IO. Beta-catenin mutation and overexpression inhepatocellular carcinoma: Clinicopathologic and prognostic significance [J]. Cancer.2001,92:136-145.
    [52]Ying Y, Tao Q. Epigenetic disruption of the wnt/beta-catenin signaling pathway inhuman cancers [J]. Epigenetics.2009,4:307-312.
    [53]Yanagawa S, van Leeuwen F, Wodarz A, et al. The dishevelled protein is modifiedby wingless signaling in drosophila [J]. Genes Dev.1995,9:1087-1097.
    [54]Axelrod JD, Matsuno K, Artavanis-Tsakonas S, et al. Interaction between winglessand notch signaling pathways mediated by dishevelled [J]. Science.1996,271:1826-1832.
    [55]Alvares LE, Winterbottom FL, Jorge EC, et al. Chicken dapper genes are versatilemarkers for mesodermal tissues, embryonic muscle stem cells, neural crest cells,and neurogenic placodes [J]. Dev Dyn.2009,238:1166-1178.
    [56]Gillhouse M, Wagner Nyholm M, Hikasa H, et al. Two frodo/dapper homologs areexpressed in the developing brain and mesoderm of zebrafish [J]. Dev Dyn.2004,230:403-409.
    [57]Shi Y, Ding Y, Lei YP, et al. Identification of novel rare mutations of dact1inhuman neural tube defects [J]. Hum Mutat.2012,33:1450-1455.
    [58]Okerlund ND, Kivimae S, Tong CK, et al. Dact1is a postsynaptic protein requiredfor dendrite, spine, and excitatory synapse development in the mouse forebrain [J].J Neurosci.2010,30:4362-4368.
    [59]Kettunen P, Kivimae S, Keshari P, et al. Dact1-3mrnas exhibit distinct expressiondomains during tooth development [J]. Gene Expr Patterns.2010,10:140-143.
    [60]Wen J, Chiang YJ, Gao C, et al. Loss of dact1disrupts planar cell polarity signalingby altering dishevelled activity and leads to posterior malformation in mice [J]. JBiol Chem.2010,285:11023-11030.
    [61]Suriben R, Kivimae S, Fisher DA, et al. Posterior malformations in dact1mutantmice arise through misregulated vangl2at the primitive streak [J]. Nat Genet.2009,41:977-985.
    [62]Teran E, Branscomb AD, Seeling JM. Dpr acts as a molecular switch, inhibitingwnt signaling when unphosphorylated, but promoting wnt signaling whenphosphorylated by casein kinase idelta/epsilon [J]. PLoS One.2009,4:e5522.
    [1] Knudson AG. Two genetic hits (more or less) to cancer [J]. Nat Rev Cancer.2001,1:157-162.
    [2] Jemal A, Bray F, Center MM, et al. Global cancer statistics [J]. CA Cancer J Clin.2011,61:69-90.
    [3] Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer [J]. NatRev Genet.2002,3:415-428.
    [4] Hinshelwood RA, Clark SJ. Breast cancer epigenetics: Normal human mammaryepithelial cells as a model system [J]. J Mol Med (Berl).2008,86:1315-1328.
    [5] Parrella P, Poeta ML, Gallo AP, et al. Nonrandom distribution of aberrant promotermethylation of cancer-related genes in sporadic breast tumors [J]. Clin Cancer Res.2004,10:5349-5354.
    [6] Giacinti L, Claudio PP, Lopez M, et al. Epigenetic information and estrogenreceptor alpha expression in breast cancer [J]. Oncologist.2006,11:1-8.
    [7] Leu YW, Yan PS, Fan M, et al. Loss of estrogen receptor signaling triggersepigenetic silencing of downstream targets in breast cancer [J]. Cancer Res.2004,64:8184-8192.
    [8] Feng W, Shen L, Wen S, et al. Correlation between cpg methylation profiles andhormone receptor status in breast cancers [J]. Breast Cancer Res.2007,9:R57.
    [9] Dworkin AM, Huang TH, Toland AE. Epigenetic alterations in the breast:Implications for breast cancer detection, prognosis and treatment [J]. Semin CancerBiol.2009,19:165-171.
    [10]Fiegl H, Millinger S, Mueller-Holzner E, et al. Circulating tumor-specific DNA: Amarker for monitoring efficacy of adjuvant therapy in cancer patients [J]. CancerRes.2005,65:1141-1145.
    [11]Hoque MO, Prencipe M, Poeta ML, et al. Changes in cpg islands promotermethylation patterns during ductal breast carcinoma progression [J]. CancerEpidemiol Biomarkers Prev.2009,18:2694-2700.
    [12]Yan PS, Venkataramu C, Ibrahim A, et al. Mapping geographic zones of cancerrisk with epigenetic biomarkers in normal breast tissue [J]. Clin Cancer Res.2006,12:6626-6636.
    [13]Feinberg AP, Tycko B. The history of cancer epigenetics [J]. Nat Rev Cancer.2004,4:143-153.
    [14]Xiang T, Li L, Fan Y, et al. Plcd1is a functional tumor suppressor inducing g(2)/marrest and frequently methylated in breast cancer [J]. Cancer Biol Ther.2010,10:520-527.
    [15]Ying J, Li H, Seng TJ, et al. Functional epigenetics identifies a protocadherinpcdh10as a candidate tumor suppressor for nasopharyngeal, esophageal andmultiple other carcinomas with frequent methylation [J]. Oncogene.2006,25:1070-1080.
    [16]Boumber Y, Issa JP. Epigenetics in cancer: What's the future?[J]. Oncology(Williston Park).2011,25:220-226,228.
    [1] Jenuwein T, Allis CD. Translating the histone code [J]. Science.2001,293:1074-1080.
    [2] Kouzarides T. Histone acetylases and deacetylases in cell proliferation [J]. CurrOpin Genet Dev.1999,9:40-48.
    [3] Blander G, Guarente L. The sir2family of protein deacetylases [J]. Annu RevBiochem.2004,73:417-435.
    [4] Landry J, Sutton A, Tafrov ST, et al. The silencing protein sir2and its homologs arenad-dependent protein deacetylases [J]. Proc Natl Acad Sci U S A.2000,97:5807-5811.
    [5] Fulco M, Schiltz RL, Iezzi S, et al. Sir2regulates skeletal muscle differentiation as apotential sensor of the redox state [J]. Mol Cell.2003,12:51-62.
    [6] Picard F, Kurtev M, Chung N, et al. Sirt1promotes fat mobilization in whiteadipocytes by repressing ppar-gamma [J]. Nature.2004,429:771-776.
    [7] Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging,and calorie restriction [J]. Genes Dev.2006,20:2913-2921.
    [8] Kim D, Nguyen MD, Dobbin MM, et al. Sirt1deacetylase protects againstneurodegeneration in models for alzheimer's disease and amyotrophic lateralsclerosis [J]. EMBO J.2007,26:3169-3179.
    [9] Saunders LR, Verdin E. Sirtuins: Critical regulators at the crossroads betweencancer and aging [J]. Oncogene.2007,26:5489-5504.
    [10]Skokowa J, Lan D, Thakur BK, et al. Nampt is essential for the g-csf-inducedmyeloid differentiation via a nad(+)-sirtuin-1-dependent pathway [J]. Nat Med.2009,15:151-158.
    [11]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53by sir2alpha promotescell survival under stress [J]. Cell.2001,107:137-148.
    [12]Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloidleukaemia show a distinctive pattern of expression that changes selectively inresponse to deacetylase inhibitors [J]. Leukemia.2005,19:1751-1759.
    [13]Huffman DM, Grizzle WE, Bamman MM, et al. Sirt1is significantly elevated inmouse and human prostate cancer [J]. Cancer Res.2007,67:6612-6618.
    [14]Stunkel W, Peh BK, Tan YC, et al. Function of the sirt1protein deacetylase incancer [J]. Biotechnol J.2007,2:1360-1368.
    [15]Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdr1andcancer resistance to chemotherapy by the longevity gene sirt1[J]. Cancer Res.2005,65:10183-10187.
    [16]Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genomeinstability, and tumorigenesis in sirt1mutant mice [J]. Cancer Cell.2008,14:312-323.
    [17]Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of nf-kappab-dependenttranscription and cell survival by the sirt1deacetylase [J]. EMBO J.2004,23:2369-2380.
    [18]Perez D, White E. Tnf-alpha signals apoptosis through a bid-dependentconformational change in bax that is inhibited by e1b19k [J]. Mol Cell.2000,6:53-63.
    [19]Ma XJ, Salunga R, Tuggle JT, et al. Gene expression profiles of human breastcancer progression [J]. Proc Natl Acad Sci U S A.2003,100:5974-5979.
    [20]Zaffaroni N, Pennati M, Daidone MG. Survivin as a target for new anticancerinterventions [J]. J Cell Mol Med.2005,9:360-372.
    [21]Wang RH, Zheng Y, Kim HS, et al. Interplay among brca1, sirt1, and survivinduring brca1-associated tumorigenesis [J]. Mol Cell.2008,32:11-20.
    [22]Tsukamoto Y, Kato J, Ikeda H. Silencing factors participate in DNA repair andrecombination in saccharomyces cerevisiae [J]. Nature.1997,388:900-903.
    [23]Dinant C, Houtsmuller AB, Vermeulen W. Chromatin structure and DNA damagerepair [J]. Epigenetics Chromatin.2008,1:9.
    [24]Senawong T, Peterson VJ, Leid M. Bcl11a-dependent recruitment of sirt1to apromoter template in mammalian cells results in histone deacetylation andtranscriptional repression [J]. Arch Biochem Biophys.2005,434:316-325.
    [25]Vaziri H, Dessain SK, Ng Eaton E, et al. Hsir2(sirt1) functions as an nad-dependentp53deacetylase [J]. Cell.2001,107:149-159.
    [26]Langley E, Pearson M, Faretta M, et al. Human sir2deacetylates p53andantagonizes pml/p53-induced cellular senescence [J]. EMBO J.2002,21:2383-2396.
    [27]Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53hyperacetylation in sir2homolog (sirt1)-deficient mice [J]. Proc Natl Acad Sci U SA.2003,100:10794-10799.
    [28]Chen WY, Wang DH, Yen RC, et al. Tumor suppressor hic1directly regulates sirt1to modulate p53-dependent DNA-damage responses [J]. Cell.2005,123:437-448.
    [29]Sundararajan R, Chen G, Mukherjee C, et al. Caspase-dependent processingactivates the proapoptotic activity of deleted in breast cancer-1during tumornecrosis factor-alpha-mediated death signaling [J]. Oncogene.2005,24:4908-4920.
    [30]Kim JE, Chen J, Lou Z. Dbc1is a negative regulator of sirt1[J]. Nature.2008,451:583-586.
    [31]Potente M, Ghaeni L, Baldessari D, et al. Sirt1controls endothelial angiogenicfunctions during vascular growth [J]. Genes Dev.2007,21:2644-2658.
    [32]Potente M, Urbich C, Sasaki K, et al. Involvement of foxo transcription factors inangiogenesis and postnatal neovascularization [J]. J Clin Invest.2005,115:2382-2392.
    [33]Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of foxotranscription factors by the sirt1deacetylase [J]. Science.2004,303:2011-2015.
    [34]Zhang Y, Zhang M, Dong H, et al. Deacetylation of cortactin by sirt1promotes cellmigration [J]. Oncogene.2009,28:445-460.
    [35]Lin SJ, Defossez PA, Guarente L. Requirement of nad and sir2for life-spanextension by calorie restriction in saccharomyces cerevisiae [J]. Science.2000,289:2126-2128.
    [36]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuinsextend saccharomyces cerevisiae lifespan [J]. Nature.2003,425:191-196.
    [37]Firestein R, Blander G, Michan S, et al. The sirt1deacetylase suppresses intestinaltumorigenesis and colon cancer growth [J]. PLoS One.2008,3:e2020.
    [38]Ford J, Jiang M, Milner J. Cancer-specific functions of sirt1enable humanepithelial cancer cell growth and survival [J]. Cancer Res.2005,65:10457-10463.
    [39]Ota H, Tokunaga E, Chang K, et al. Sirt1inhibitor, sirtinol, induces senescence-likegrowth arrest with attenuated ras-mapk signaling in human cancer cells [J].Oncogene.2006,25:176-185.
    [40]Sandor V, Bakke S, Robey RW, et al. Phase i trial of the histone deacetylaseinhibitor, depsipeptide (fr901228, nsc630176), in patients with refractoryneoplasms [J]. Clin Cancer Res.2002,8:718-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700