小分子化合物2BROP对神经干细胞发育的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究发现,作为胞内生命活动的主要执行者,许多蛋白质只有经历翻译后的加工才能具有生物活性。蛋白质的棕榈酰化是蛋白质翻译后修饰的重要方式之一。DHHC蛋白家族是最早在酿酒酵母中发现与棕榈酰化修饰作用相关的一类蛋白,它们大多具有蛋白质酰基转移酶(protein acyltransferase, PAT)活性。2004年随着Bredt DS研究小组完成人类和小鼠基因组23种DHHC蛋白基因的克隆与鉴定,人们对于这类蛋白功能的了解也逐渐深入。目前,有关棕榈酰化蛋白质组学和棕榈酰化转移酶DHHC家族的遗传学分析结果,暗示蛋白质的棕榈酰化在神经系统发育和相关神经疾病的病发过程中可能起到重要的调控作用。因此,阐明棕榈酰化修饰作用在神经系统中的作用及分子调控机制成为了近些年神经科学领域的研究热点。
     在中枢神经系统中,神经干细胞(neural stem cells, NSCs)属于多潜能干细胞,具有自我更新能力,并且在胚胎发育及成年脑中均能分化产生神经元、星形胶质细胞和少突胶质细胞。NSCs的分化成熟,可以大致分为如下3个阶段:1)NSCs自我更新;2)NSCs被赋予具有分化潜能的神经前体细胞;3)退出周期,处于有丝分裂静止期,分化形成具有特殊形态和功能的神经细胞。其实,在NSCs分化过程中,这些细胞形态和功能的改变很大程度上是由细胞所处不同阶段的特定基因表达模式所决定的。其中,主要包括多潜能因子Sox2、原神经基因bHLH (basic Helix-Loop-Helix, bHLH)家族和细胞周期依赖激酶抑制因子(cyclin-dependent kinase inhibitors, CKIs)。 NSCs自我更新能力及干性维持的内部机制主要是通过多潜能因子的表达和分化命运决定因子的沉默而实现的。NSCs分化命运决定的内部机制也是通过时间和空间上高度精确的调控机制完成的,即分化命运决定因子的激活与表达以及多潜能因子的沉默。
     目前,研究发现真核基因的表达在多个层次上受到精确的调控,而染色质的修饰是真核基因转录的第一调控靶点。其中,组蛋白的共价修饰对染色质的动态结构具有核心调节作用,它是表观遗传学重要的调节方式之一。在神经细胞命运决定过程中常常伴随着组蛋白乙酰化修饰水平的改变。组蛋白乙酰化转移酶(histone acetyltransferase, HAT) P300在神经系统中表达丰富,它参与了神经系统在形式和功能上的发生、可塑性和稳态的建立。P300通过自身的HAT活性,乙酰化组蛋白赖氨酸,染色质发生重塑,使转录因子易于与DNA结合,从而促进基因转录。其中,组蛋白H3和H4就是其乙酰化共价修饰的底物之一。
     本研究中,我们通过建立视黄酸(retinoic acid, RA)诱导的P19细胞定向分化为神经样细胞的体外模型,利用棕榈酰转移酶抑制剂——小分子化合物2-bromopalmitate (2BROP),探讨棕榈酰化修饰在NSCs发育中的作用及相关表观遗传分子机制。
     第一部分棕榈酰化修饰相关蛋白在神经干细胞发育过程中的表达
     为了揭示棕榈酰化修饰作用是否参与NSCs发育过程,于NSCs发育的各阶段,包括P19细胞多潜能状态、NSCs增殖和NSCs分化等三个阶段,分别检测23个棕榈酰转移酶即DHHC家族成员的表达情况。结果显示,在NSCs发育阶段,共有20个DHHC家族成员的mRNA表达。其中,DHHC1、4、7、9、24于NSCs发育各阶段的mRNA表达无明显变化。DHHC5、13、14、16、17、20、21成员于NSCs增殖阶段mRNA的表达量获得增高,并且DHHC5、17、21在NSCs分化阶段也将持续性高表达。而DHHC2、6、8、11、15、18、19、23成员的mRNA仅于NSCs分化阶段高表达。
     接下来,我们利用酰基-生物素交换法(Acyl-biotinyl exchange method, ABE)技术,检测NSCs增殖与分化两阶段,蛋白棕榈酰化修饰水平情况。结果显示,多种蛋白在NSCs增殖与分化阶段被棕榈酰化修饰,并在不同的NSCs发育阶段,呈现出一定的特异性,如NSCs增殖阶段,棕榈酰化蛋白条带分布于~10、25、45、50、70、170kDa;而NSCs分化阶段,蛋白分布于~25、55、60、70、100、125、150、290kDa。
     本实验结果显示,大多数DHHC家族成员不同程度的表达于NSCs发育各阶段,并且在不同的NSCs发育阶段,棕榈酰化修饰的蛋白呈现出一定的特异性,暗示DHHC家族成员和它们所介导的棕榈酰化修饰参与NSCs发育过程的调控,棕榈酰化修饰可能通过特异性的影响NSCs发育各阶段中关键蛋白的生物活性,从而参与调控NSCs的命运决定。
     第二部分小分子化合物2BROP对神经干细胞增殖的作用
     为了研究棕榈酰化修饰对NSCs增殖的影响,我们首先利用MTT技术,检测不同剂量的2BROP对于细胞代谢活力的影响。结果显示,与对照组(0μ M)相比,1-15μM加药组中细胞活力表现出一定的增强;尤其是10uM加药组,但是统计学无明显差异。然而,与对照组相比,25μ M和50μM加药组中,细胞活力减弱,MTT值明显降低,并具有统计学显著性差异。与此同时,倒置相差显微镜,观察神经球的结构和形态变化。结果显示,随着RA诱导的进行,对照组中,细胞聚集体不断增大,最终形成一个结构致密、表面规整的细胞团。10μM终浓度加药组组中,细胞聚集体的发生和增长过程与对照组相比,未见异常。但是,25μM加药组中,细胞聚集体的结构发生明显改变,表现为细胞团形态不规则、内部有空隙。
     接下来,我们利用TUNEL技术,在NSCs增殖阶段,检测小分子化学物2BROP对于细胞凋亡的影响。结果显示,2BROP处理48h后,与对照组相比,10μM加药组中,细胞团中TUNEL阳性细胞数没有明显差异;而25u M处理组中,TUNEL阳性细胞数明显增多。随后,我们利用、Vestern Blot和免疫荧光染色技术,检测了相关凋亡信号通路的变化。结果发现,25μM处理组中线粒体相关凋亡通路明显激活。与对照组相比,25μM处理组中抗凋亡Bcl-2的表达量减少,促凋亡的Bax和活化的Caspase3的表达量增多;而10μM加药组中Bcl-2、Bax与活化的Caspase3表达量没有明显变化
     本实验结果,显示在一定的剂量范围内,小分子化合物2BROP对于NSCs增殖过程,并没有产生明显的影响;而高浓度2BROP将会对细胞产生毒性,引发细胞凋亡。
     第三部分小分子化合物2BROP对神经干细胞分化的作用
     为了探究蛋白棕榈酰化修饰在NSCs分化阶段中的相关作用及其分子机制,我们利用免疫荧光技术和Western Blot等技术,检测神经分化标记物MAP2的表达与分布情况。结果显示,与对照组相比,2BROP处理组中,MAP2阳性细胞数明显减少,统计学具有显著性差异;且神经分化各阶段,MAP2蛋白的表达均受到明显抑制。
     接下来,利用Western Blot和qRT-PCR技术,我们检测了NSCs分化命运决定相关因子的表达情况,如多潜能因子Oct4; NSCs标记物Sox2、Nestin;神经前体细胞标记物β-tubulinⅢ和神经分化决定因子Neurogl、NeuroD1。结果显示,随着NSCs命运的获得,对照组与2BROP处理组中,Oct4的表达迅速下降直至消失,无明显差异。与对照组相比,2BROP组中神经前体细胞标记物β-tubulinIII、分化命运决定因子Neurog1和NeuroD1的表达于神经分化各阶段均呈现出明显地降低。与此相反,2BROP处理组中,NSCs标记物Sox2与Nestin却表现出一定的持续性高表达。同时,MTT实验结果显示,与对照组分化各阶段的MTT值无明显变化相比,2BROP处理组中,随着分化天数的延长,MTT值呈现出一定的增。这些结果提示我们,在神经分化阶段,2BROP可能通过增强NSCs的干细胞特性的维持,从而阻碍神经分化的发生。
     为了验证NSCs分化阶段2BROP是否增强了细胞的增殖能力,我们首先利用BrdU掺入实验,检测分化阶段细胞的增殖情况。结果显示,在神经分化的第四天,与对照组相比,2BROP处理组中,BrdU阳性细胞数明显增多,并且统计学上具有显著性差异。然后,我们利用膜标记-FACS技术追踪细胞增殖的变化。分化阶段的细胞使用荧光染料标记。细胞每增殖一次,荧光强度便会减弱一半。结果显示,悬浮培养24h后,对照组中单个细胞的荧光强度并没有明显的变化;而2BROP处理后,单个细胞的荧光强度发生不同程度的减弱。
     为了进一步分析2BROP在NSCs分化阶段对于细胞增殖和周期的影响,利用FACS技术,分析分化阶段细胞周期的分布。结果显示,神经分化第四天,对照组中细胞主要分布于G0/G1期;而2BROP处理组中,G0/G1期的细胞数量减少,S期的细胞数量明显增多。与此同时,我们利用qRT-PCR技术,检测了与神经分化相关的CKIs家族成员的表达情况,借以阐明2BROP阻碍周期退出的相关机制。结果显示,与对照组相比,2BRPP处理后,分化相关的CKIs成员的表达受到不同程度的降低。其中,P57的变化最为明显。作为对照,细胞周期增殖标记物Ki67的表达在2BROP处理组中获得了一定的持续性高表达。
     本实验结果,显示在NSCs分化阶段,2BROP处理后,NSCs通过下调CKIs家族成员,尤其是P57的表达,从而阻碍细胞周期的退出与神经分化的发生,使分化状态下NSCs自我更新能力获得明显的提高。
     第四部分小分子化合物2BROP对神经干细胞分化表观遗传机制的作用
     已知,神经分化阶段,介导细胞周期调控的P57的表达依赖于组蛋白H3、H4的乙酰化水平。为了检测组蛋白乙酰化修饰是否参与2BROP介导的神经分化,我们利用免疫荧光、Western Blot等技术,检测NSCs分化阶段乙酰化组蛋白H3、H4的分布与表达。结果显示,当细胞进入分化阶段时,组蛋白H3与H4的乙酰化水平呈现出一定的上升,但是2BROP处理组中组蛋白H3与H4的乙酰化水平明显的低于对照组的水平。为了进一步验证组蛋白乙酰化修饰是否参与2BROP介导的神经分化,我们使用去组蛋白去乙酰化抑制剂曲古菌素A(Trichostatin A, TSA)预处理细胞,发现TSA处理后,2BROP抑制神经分化的现象得到一定的恢复。值得注意的是,TSA与2BROP共处理组中,β-tubulinⅢ的表达甚至高于正常分化组。
     接下来,我们免疫共沉淀、ELISA等技术,检测组蛋白H3、H4乙酰化修饰酶P300乙酰转移酶活性。结果显示,与对照组相比,2BROP处理后,P300的乙酰转移酶活性受到明显的抑制。同时,我们利用Western Blot、免疫荧光等技术,检测了分化阶段P300的表达与分布。结果显示,虽然与对照组相比,2BROP处理组中P300的蛋白表达水平没有明显变化,但是P300在胞内的分布却发生明显的改变。对照组中,P300主要分布于细胞核中,而2BROP处理组中P300蛋白遍布于细胞质和细胞核中。
     作为脂质化修饰方式之一,棕榈酰化修饰作用参与调节蛋白的胞内分布、物质运输、蛋白间相互作用等过程。接下来,我们探究2BROP是否通过调节P300的棕榈酰化修饰参与调控组蛋白乙酰化修饰与神经分化。首先,我们使用CSS-Palm4.0软件预测P300蛋白是否拥有典型的棕榈酰化位点。结果显示,P300蛋白拥有多个保守性较高的棕榈酰化潜在修饰位点。然后,我们使用ABE方法,检测NSCs分化阶段,对照组与2BROP处理组中P300的棕榈酰化修饰水平。结果显示,蛋白P300可以被棕榈酰化修饰,并且与对照组相比,2BROP处理组中P300的棕榈酰化修饰水平明显受到抑制,统计学上具有显著性差异。
     本实验结果,显示在NSCs分化阶段,棕榈酰化修饰通过调节表观遗传关键因子P300的脂质化修饰水平,进而影响P300的核转位和HAT活性,最终调节组蛋白H3、H4的乙酰化水平和分化命运相关基因的转录激活。
     结论
     神经干细胞的分化、发育与成熟是现代神经生物学研究的热点之一。棕榈酰化修饰作用在神经发育过程中的作用及分子机制尚未阐明。我们建立P19细胞定向分化为神经样细胞的体外模型,利用棕榈酰转移酶抑制剂——小分子化合物2BROP,探讨棕榈酰化修饰在神经发育中的作用及分子机制。利用P19神经定向分化模型,研究发现,DHHC家族成员分别特异性地表达于NSCs的增殖和分化阶段。并且在这些阶段中,许多蛋白发生了明显的棕榈酰化修饰。2BROP (10μM)处理后,NSCs增殖的命运没有发生明显的改变。但是,在NSCs分化阶段,发现2BROP (10μM)处理后,NSCs的神经分化过程和细胞周期的退出受到阻断,而NSCs的数量却维持在一定的高水平状态。进一步的检测,表明细胞周期调节因子CKI家族中P57的表达明显降低。已知,神经分化阶段,P57的表达依赖于组蛋白H3/H4的乙酰化水平。当加入组蛋白去乙酰化抑制剂曲古菌素A(Trichostatin A, TSA)后,发现P57的表达和神经分化得到一定程度的恢复。最终,研究表明在神经分化阶段,2BROP处理后,由于特异性的抑制P300的棕榈酰化修饰水平,影响其核转移,进而阻碍组蛋白H3/H4的乙酰化修饰与神经分化。因此,本研究揭示了一个由基因表达、表观遗传修饰、蛋白翻译后修饰共同参与的神经分化命运决定调控网络。本研究不仅深化了棕榈酰化修饰在神经发育中的作用,拓展了其分子调控机制,同时为研究棕榈酰化修饰作用在组织发育过程中的作用开辟了一个全新的领域、提供了一个新的视野。
After mRNA translation, immature protein undergoes post-translational modifications to become the mature protein product. Among them, protein palmitoylation is an important lipid modification. Protein palmitoyltransferases were first identified and isolated in yeast and they share a domain referred to as the DHHC domain, a cysteine-rich domain with a conserved aspartate-histidine-histidine-cysteine signature motif. Evidence suggests that the DHHC domain is directly involved in the palmitoyl transfer reaction. In mammals twenty three members of this family have been identified and examined by by Bredt DS group at2004. Recently, the role of protein palmitoylation on neuronal development and function are just beginning to be appreciated by proteome and molecular genetic analysis. There are still many unsolved questions and much work is still needed to elucidate the specific functions and mechanisms of protein palmitoylation on neural development.
     In mammals, neural stem cells (NSCs) have capability to self-renew and differentiate into neurons, astrocytes, and oligodendrocytes. During NSCs differentiation, NSCs proliferate (1), then begin to specify into distinct neural progenitor cell fates (2), and exit the cell cycle following a terminal mitosis and express markers of terminal differentiation to finally undergo neuronal or glial morphogenesis (3). In fact, these universal changes in cell types and function represent a major cellular reprogramming event, involving in activation or repression of Sox2, bHLH family and CKIs. NSCs have capability to self-renew through the activation of multipotency genes and repression of differentiation-related genes. Moreover, the precise temporal and spatial differentiation progression is associated with activation the specific transcriptional factors, up-regulation of differentiation-specific genes and repression the multipotency genes.
     Tight regulation of these gene expressions may be at some levels, including transcriptional level, posttranscriptional level, as well as posttranslational level. Indeed, the chromatin modification firstly regulates the gene transcription. The acetylation status of histones is thought to act as a general regulator of chromatin structure that mediates the removal of epigenetically controlled repression and enhances transcriptional activity. Recently, studies provide evidence for general alterations in histone modification, such as the increased histone H3and H4acetylation occurring during neuronal differentiation. P300, a histone acetyltransferase (HAT), has the capacity to acetylate histone H3and H4both in vitro and in vivo, and plays an important role in neural development and function. Mechanistically, P300acetylates lysine residues within the histone tails, resulting in promoting transcription factors access to DNA in chromatin by neutralising the positive charge associated with the lysine e-amino group.
     Here, Retinoic acid (RA) induced P19cells were used in this study as a model system to elucidate the functional importance of protein palmitoylation during neuronal differentiation.
     Part I Protein palmitoylation is occurred during neural stem cells development
     To investigate whether protein palmitoylation was involved in NSCs development, we first analyzed the expression of the23potential DHHCs in RA induced P19cells at different stages of neural development by RT-PCR. It was found that20out of23DHHCs can be detected. More interestingly, DHHC5,13,14,16,17,20and21were up-regulated in proliferation of NSCs compared to non-treated cells. Among them, DHHC5,17and21also up-regulated during differentiation of NSCs. On the other hand, DHHC2,6,8,11,15,18,19and23were only up-regulated during differentiation of NSCs, while DHHC1,4,7,9and24showed no alteration at the mRNA levels.
     Next, we used ABE method to confirm that protein palmitoylation occurred during development of NSCs. During proliferation of NSCs, P19cells clearly showed several palmitoylation bands and the most prominent ones were at the MW of~10,25,45,50,70,170kDa. Moreover, the palmitoylation bands were at the MW of~25,55,60,70,100,125,150,290kDa.
     Taken together, these results indicate that cells express many DHHCs and some proteins are palmitoylated during neural development. During different stages of neural development, different cell types may have specific sets of palmitoylated proteins and these specific palmitoylated proteins specifically regulated the different process of neural development.
     Patr II Effects of2BROP on proliferation of neural stem cells
     To examine the effect of2BROP on proliferation of NSCs, different concentrations of2BROP were added to the RA induced P19cells. The results of MTT assay showed that2BROP treatment improved the cell viability of P19cells in a dose-dependent manner (1μM,5μM,10μM and15μM) compared to the negative control. Among them,10μM2BROP favored the optimal effect on cell viability, but the result was statistically insignificant. However, higher level of2BROP (25μM and50μM) resulted in a clear reduction of cell viability. Next, we observed the morphological characteristics of neurospheres under different concentrations of2BROP. Both the control neurospheres and neurospheres treated with lower level of2BROP (10μM) showed the morphology of densely packed and regular colonies, while neurospheres treated with higher level of2BROP (25μM) showed loose and irregular colonies.
     Along with the above, we examined the incidence of apoptosis of neurospheres used by TUNEL assay. The results of TUNEL have showed that neurospheres treated with lower level2BROP did not appear any difference compared with untreated neurospheres, but the higher level of2BROP induced apoptosis of neurospheres. Consistent with this, higher level of2BROP (25μM) could lead to mitochondrial apoptosis pathways, as shown by a decrease in the expression of Bcl-2, and a clear up-regulation in the expression of Bax and cleaved Caspase-3.
     Taken together, these results showed that lower concentration of2BROP did not clearly change the characteristics of neurospheres, during self-renewal of NSCs, but higher level of2BROP showed toxicity to neurospheres and led to cell apoptosis.
     PartⅢ Effects of2BROP on differentiation of neural stem cells
     To investigate the effects of palmitoylation on neuronal differentiation, we examined the neuronal marker, MAP2, after plating with immunofluorescent staining and Western blot analysis. Compared to the negative control, a significant reduction in the percentage of MAP2-positive cells and MAP2protein expression was observed in2BROP-treated cells.
     Next, we turned to define whether the early steps of the differentiation process were equally affected in the2BROP-treated cell model, the Oct4, Nestin, Sox2, β-tubulin III Neurogl and NeuroDl gene markers were tested with qRT-PCR and Western Blot analysis. After RA induction, the expression of Oct-4was lost, and there were no obvious differences between2BROP-treated and untreated cells. Once attached, cells that were treated with2BROP expressed reduced levels of β-tubulin Ⅲ, Neurogl and NeuroDl. However,2BROP treated cells expressed higher levels of Sox2and Nestin, notably during NSCs differentiation. Consistent with these, the results of MTT also showed that, during neuronal differentiation,2BROP improved the capacity for neural stem/progenitor cell renewal and hampered the passage of neural stem/progenitor cells to form differentiated neurons.
     In order to test whether cells that were treated with2BROP had an enhanced capacity for cell division, we used a series of BrdU incorporation assays to assess cell proliferation during NSCs differentiation. The results showed that the percentage of BrdU-positive cells was higher in2BROP-treated cells compared to control after4days of plating. The enhanced capacity for cell division was also detected by membrane-labelling experiments at day4of differentiation in suspension culture. A fluorescence-activated cell sorting (FACS) analysis revealed that cells that were treated with2BROP lost fluorescence more rapidly during the initial24h of culture after labelling than control cells did, indicating that they had undergone more cellular divisions than control cells or that they contained more dividing cells.
     Next, we tested the hypothesis that the increase in the neural stem/progenitor cell numbers of2BROP-treated cells was associated with changes in cell cycle distribution with FACS. As expected, the percentage of S-phase cells was increased significantly, while the percentage of G1/GO-phase cells was reduced in2BROP-treated cells compared to control cells, indicating their inability to arrest cell division and to induce neuronal differentiation. We further examined the expression of cell cycle regulators during NSCs differentiation between control and2BROP-treated cells with qRT-PCR. Among them, the levels of Ki67, which is a proliferative marker, in2BROP-treated cells showed obviously increased, while the expression of P57, which promotes cell cycle exit and post-mitotic neuron differentiation, was markedly decreased.
     Taken together, these results suggested that the reduction in the differentiation capacity of2BROP-treated cells was most likely due to a reduction of P57expression and increased neural stem/progenitor cell renewal, in which the neural stem/progenitor cells were delayed in cell cycle progression and unable to exit the cell cycle on time.
     PartIV Effects of2BROP on the epigenetic mechanisms during differentiation of neural stem cells
     As reported, the P57gene, which is epigenetically regulated by the acetylation level of histones H3/4. In order to detect changes in histone acetylation, protein extracts were harvested from2BROP-treated and2BROP-untreated cells and analysed by a Western Blot analysis with antibodies that were specific for the acetylated histones H3and H4. There appeared to be less histone H3and H4acetylation in the2BROP-treated cell model compared to control cells. The immunofluorescent staining analysis supported this finding, and, in2BROP-treated cells, a significant reduction in the percentage of acetylation H3or H4-positive cells was detected compared to control cells. Next, in order to test whether increased HAT activity could rescue the2BROP-induced phenotype during neuronal differentiation, we treated cells with TSA, a histone deacetylase, for24h. TSA appeared to increase neuronal differentiation as shown by the expression of β-tubulin III. Interestingly, after TSA treatment, the β-tubulin III levels of the cells that were treated with2BROP were even higher than those of untreated cells.
     We attempted to understand the basis for the2BROP-associated effects on HAT. Thus, we turned to assess the effect of2BROP on the regulation of P300HAT activity by an in vitro HAT assay. We found that2BROP remarkably reduced P300HAT activity. Next, we detected the sub-cellular localization and expression level of P300during NSCs differentiation. The Western Blot analysis showed that2BROP did not clearly change the protein level of P300. Interestingly, we found a change in the sub-cellular localization of P300in the immunofluorescent staining analysis. We detected relatively high levels of P300in the nucleus of control cells. However, there appeared to be an abundance of P300in the cytoplasm of2BROP-treated cells, indicating that2BROP might impair the nuclear import of P300after translation.
     The post-translational modifications of proteins with lipids provide an important mechanism for regulating protein sub-cellular localization, stability, trafficking, and other aspects of protein function. Because2BROP is widely used as an inhibitor of protein palmitoylation, one possibility is that2BROP impairs the nuclear import of P300by inhibiting its palmitoylation status. As predicted by the CSS-Palm4.0software, P300has numerous potential palmitoylation sites, which are conserved in P300from different species. In order to detect changes in the palmitoylation of P300, protein extracts were immunoprecipitated with P300and analysed by the ABE method. A significant reduction in the palmitoylation level of P300was observed in2BROP-treated cells compared to control cells during different stages of neural development.
     Taken together, these results suggested that2BROP inhibited P300palmitoylation and hampered the nuclear import of P300, resulting in a change in the histone H3and H4acetylation status in differentiation cells.
     Conclusion
     The mechanisms of proliferation, differentiation and maturation of NSCs are of great importance in the study of neuroscience. Recently, more and more studies have suggested that palmitoylation, a post-translational lipid modifications plays a key role in neural development, but the molecular mechanisms that control these processes are not yet fully understood. In this series of experiments, we used a well-established model system of P19cells to investigate the connection between palmitoylation and cell fate specification of NSCs.20out of23DHHCs can be detected and they specifically expressed at the different stage of NSCs development. Consistent with these, different cell types may have specific sets of palmitoylated proteins. During NSCs induction and proliferation, lower concentration of2BROP did not clearly change the characteristics of neurospheres. However, their differentiation to neurons and cell cycle exit were less efficient when cells were cultured in the presence of2BROP. These effects were associated with an extensive change in the transcriptional profile of neural stem/precursor cells and a decrease in acetylated histone H3and H4. These results suggested that2BROP inhibited P300palmitoylation and hampered the nuclear import of P300, resulting in a change in the histone H3and H4acetylation status in differentiation cells. Thus, our findings established a role of palmitoylation in the epigenetic regulation of genetic expression during neuronal differentiation. This study will contribute to understand the mechanism of NSCs differentiation and provided a novel insight into the function of palmitoylation during vertebrate development.
引文
1. Johnson DR, Bhatnagar RS, Knoll U, Gordon JI:Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 1994,63:869-914.
    2. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA:Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 2013,78(4):596-614.
    3. Resh MD:Targeting protein lipidation in disease. Trends Mol Med 2012.
    4. Zhang FL, Casey PJ:Protein prenylation:molecular mechanisms and functional consequences. Annu Rev Biochem 1996,65:241-269.
    5. Nadolski MJ, Linder ME:Protein lipidation. FEBSJ 2007,274(20)5202-5210.
    6. Blaskovic S, Blanc M, van der Goot FG:What does S-palmitoylation do to membrane proteins? FEBS J 2013,280(12):2766-2774.
    7. Linder ME, Deschenes RJ:Palmitoylation:policing protein stability and traffic. Nat Rev Mol Cell Biol 2007,8(1):74-84.
    8. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ:Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 2006,47(6):1118-1127.
    9. Zupicich J, Brenner SE, Skarnes WC:Computational prediction of membrane-tethered transcription factors. Genome Biol 2001,2(12):1-0050.0056.
    10. Ohno Y, Kashio A, Ogata R, Ishitomi A, Yamazaki Y, Kihara A:Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol Biol Cell 2012, 23(23):4543-4551.
    11. Linder ME, Jennings BC:Mechanism and function of DHHC S-acyltransferases. Biochem Soc Trans 2013,41(1):29-34.
    12. Huang K, Sanders S, Singaraja R, Orban P, Cijsouw T, Arstikaitis P, Yanai A, Hayden MR, El-Husseini A:Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J 2009,23(8):2605-2615.
    13. Fukata Y, Fukata M:Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci 2010,11(3):161-175.
    14. Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ:Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem 2010,285(49):38104-38114.
    15. Meiringer CT, Ungermann C:Probing protein palmitoylation at the yeast vacuole. Methods 2006,40(2):171-176.
    16. Fukata Y, Bredt DS, Fukata M:Protein Palmitoylation by DHHC Protein Family.2006.
    17. Tsutsumi R, Fukata Y, Fukata M:Discovery of protein-palmitoylating enzymes. Pflugers Arch 2008,456(6):1199-1206.
    18. el-Husseini Ael D, Bredt DS:Protein palmitoylation:a regulator of neuronal development and function. Nat Rev Neurosci 2002,3(10):791-802.
    19. Korycka J, Lach A, Heger E, Boguslawska DM, Wolny M, Toporkiewicz M, Augoff K, Korzeniewski J, Sikorski AF:Human DHHC proteins:a spotlight on the hidden player of palmitoylation. EurJ Cell Biol 2012,91(2):107-117.
    20. Aicart-Ramos C, Valero RA, Rodriguez-Crespo I:Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 2011,1808(12):2981-2994.
    21. Ota VK, Gadelha A, Assuncao IB, Santoro ML, Christofolini DM, Bellucco FT, Santos-Filho AF, Ottoni GL, Lara DR, Mari JJ et al:ZDHHC8 gene may play a role in cortical volumes of patients with schizophrenia. Schizophr Res 2013,145(1-3):33-35.
    22. Faul T, Gawlik M, Bauer M, Jung S, Pfuhlmann B, Jabs B, Knapp M, Stober G:ZDHHC8 as a candidate gene for schizophrenia:analysis of a putative functional intronic marker in case-control and family-based association studies. BMC Psychiatry 2005,5:35.
    23. Raymond FL, Tarpey PS, Edkins S, Tofts C, O'Meara S, Teague J, Butler A, Stevens C, Barthorpe S, Buck G et al:Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet 2007,80(5):982-987.
    24. Li Y, Hu J, Hofer K, Wong AM, Cooper JD, Birnbaum SG, Hammer RE, Hofmann SL:DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J Biol Chem 2010,285(17):13022-13031.
    25. Milnerwood AJ, Parsons MP, Young FB, Singaraja RR, Franciosi S, Volta M, Bergeron S, Hayden MR, Raymond LA:Memory and synaptic deficits in Hip14/DHHC17 knockout mice. Proc Natl Acad Sci U S A 2013,110(50):20296-20301.
    26. Singaraja RR, Huang K, Sanders SS, Milnerwood AJ, Hines R, Lerch JP, Franciosi S, Drisdel RC, Vaid K, Young FB et al:Altered palmitoylation and neuropathological deficits in mice lacking HIP14. Hum Mol Genet 2011,20(20):3899-3909.
    27. Sutton LM, Sanders SS, Butland SL, Singaraja RR, Franciosi S, Southwell AL, Doty CN, Schmidt ME, Mui KK, Kovalik V et al:Hip141-deficient mice develop neuropathological and behavioural features of Huntington disease. Hum Mol Genet 2013,22(3):452-465.
    28. Sanders SS, Mui KK, Sutton LM, Hayden MR:Identification of Binding Sites in Huntingtin for the Huntingtin Interacting Proteins HIP14 and HIP14L. PLoS One 2014,9(2):e90669.
    29. Bhattacharyya R, Barren C, Kovacs DM:Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci 2013,33(27):11169-11183.
    30. Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR:Putting proteins in their place: palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012,97(2):220-238.
    31. Shmueli A, Segal M, Sapir T, Tsutsumi R, Noritake J, Bar A, Sapoznik S, Fukata Y, Orr I, Fukata M et al:Ndel1 palmitoylation:a new mean to regulate cytoplasmic dynein activity. EMBO J 2010,29(1):107-119.
    32. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, Karayiorgou M, Gogos JA:Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004,36(7):725-731.
    33. Li Y, Martin BR, Cravatt BF, Hofmann SL:DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J Biol Chem 2012, 287(1):523-530.
    34. Efe JA, Ding S:The evolving biology of small molecules:controlling cell fate and identity. Philos Trans R Soc Lond B Biol Sci 2011,366(1575):2208-2221.
    35. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J, Ding S:Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol 2011, 13(3):215-222.
    36. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S et al:Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 2010,6(1):71-79.
    37. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K et al:Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013, 341(6146):651-654.
    38. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH:Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004,101(47):16659-16664.
    39. Coleman RA, Rao P, Fogelsong RJ, Bardes ES:2-Bromopalmitoyl-CoA and 2-bromopalmitate: promiscuous inhibitors of membrane-bound enzymes. Biochim Biophys Acta 1992, 1125(2):203-209.
    40. Zheng B, DeRan M, Li X, Liao X, Fukata M, Wu X:2-Bromopalmitate analogues as activity-based probes to explore palmitoyl acyltransferases. J Am Chem Soc 2013, 135(19):7082-7085.
    41. Jennings BC, Nadolski MJ, Ling Y, Baker MB, Harrison ML, Deschenes RJ, Linder ME: 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J Lipid Res 2009,50(2):233-242.
    42. Frohlich M, Dejanovic B, Kashkar H, Schwarz G, Nussberger S:S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis 2014,5:e1057.
    43. Sanja B, Adibekian A, Mathieu B, van der Goot FG:Mechanistic effects of protein palmitoylation and the cellular consequences thereof. Chem Phys Llpids 2014.
    44. Aicart-Ramos C, Valero RA, Rodriguez-Crespo I:Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 2011.
    45. Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A:Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J 2007,402:515-523.
    46. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR:Regulating the regulator:post-translational modification of RAS. Nat Rev Mol Cell Biol 2012,13(1):39-51.
    47. Coats SG, Booden MA, Buss JE:Transient palmitoylation supports H-Ras membrane binding but only partial biological activity. Biochemistry 1999,38(39):12926-12934.
    48. Eisenberg S, Laude AJ, Beckett AJ, Mageean CJ, Aran V, Hernandez-Valladares M, Henis Y1, Prior IA:The role of palmitoylation in regulating Ras localization and function. Biochem Soc Trans 2013,41(1):79-83.
    49. Hasselbaink DM, Roemen TH, van der Vusse GJ:Protein acylation in the cardiac muscle like cell line, H9c2. Mol Cell Biochem 2002,239(1-2):101-112.
    50. Leong WF, Zhou T, Lim GL, Li B:Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. PLoS One 2009,4(1):e4135.
    51. Mill P, Lee AW, Fukata Y, Tsutsumi R, Fukata M, Keighren M, Porter RM, McKie L, Smyth I, Jackson IJ:Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS Genet 2009,5(11):e1000748.
    52. Eccles JC:Neurogenesis and morphogenesis in the cerebellar cortex. Proc NatI Acad Sci U S A 1970,66(2):294-301.
    53. Nakai J, Yoro T, Muto S:[Neurogenesis]. Tanpakushitsu Kakusan Koso 1966, 11(11):1085-1087.
    54. Guerout N, Li X, Barnabe-Heider F:Cell fate control in the developing central nervous system. Exp Cell Res 2014,321(1):77-83.
    55. Lopez-Ramirez MA, Nicoli S:Role of mIRNAs and epigenetics in neural stem cell fate determination. Epigenetics 2013,9(1).
    56. Philippidou P, Dasen JS:Hox genes:choreographers in neural development, architects of circuit organization. Neuron 2013,80(1):12-34.
    57. Ro SH, Liu D, Yeo H, Paik JH:FoxOs in neural stem cell fate decision. Arch Biochem Biophys 2013,534(1-2):55-63.
    58. Wei Y, Tsigankov D, Koulakov A:The molecular basis for the development of neural maps. Ann N YAcad Sci 2013,1305:44-60.
    59. Imbard A, Benoist JF, Blom HJ:Neural tube defects, folic acid and methylation. Int J Environ Res Public Health 2013,10(9):4352-4389.
    60. Yi BR, Kim SU, Choi KC:Development and application of neural stem cells for treating various human neurological diseases in animal models. Lab Anim Res 2013,29(3):131-137.
    61. Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L:Interaction between the 5-HT system and the basal ganglia:functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 2014,8:21.
    62. Soto D, Altafaj X, Sindreu C, Bayes A:Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 2014,7(1):e27887.
    63. Vlcek K, Laczo J:Neural Correlates of Spatial Navigation Changes in Mild Cognitive Impairment and Alzheimer's Disease. Front Behav Neurosci 2014,8:89.
    64. Gu Y, Janoschka S, Ge S:Neurogenesis and hippocampal plasticity in adult brain. Curr Top Behav Neurosci 2013,15:31-48.
    65. Ueno M, Yamashita T:Bidirectional tuning of microglia in the developing brain:from neurogenesis to neural circuit formation. Curr Opin Neurobiol 2014,27C:8-15.
    66. Gage FH, Temple S:Neural stem cells:generating and regenerating the brain. Neuron 2013, 80(3):588-601.
    67. Joshi D, Behari M:Neuronal stem cells. Neurol India 2003,51(3):323-328.
    68. Kornblum HI:Introduction to neural stem cells. Stroke 2007,38(2 Suppl):810-816.
    69. Murphy M, Reid K, Dutton R, Brooker G, Bartlett PF:Neural stem cells. J Investig Dermatol Symp Proc 1997,2(1):8-13.
    70. Massirer KB, Carromeu C, Griesi-Oliveira K, Muotri AR:Maintenance and differentiation of neural stem cells. Wiley Interdiscip Rev Syst Biol Med 2011,3(1):107-114.
    71. Shi Y, Sun G, Zhao C, Stewart R:Neural stem cell self-renewal. Crit Rev Oncol Hematol 2008, 65(1):43-53.
    72. Zhang R, Chopp M, Zhang ZG:Oligodendrogenesis after cerebral ischemia. Front Cell Neurosci 2013,7:201.
    73. Ahmed S, Gan HT, Lam CS, Poonepalli A, Ramasamy S, Tay Y, Tham M, Yu YH:Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh Migr 2009, 3(4):412-424.
    74. Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P:Effects of melatonin on nervous system aging:neurogenesis and neurodegeneration. J Pharmacol Sci 2013,123(1):9-24.
    75. Jia DY, Liu HJ, Wang FW, Liu SM, Ling EA, Liu K, Hao AJ:Folic acid supplementation affects apoptosis and differentiation of embryonic neural stem cells exposed to high glucose. Neurosci Lett 2008,440(1):27-31.
    76. Pevny L, Placzek M:SOX genes and neural progenitor identity. Curr Opin Neurobiol 2005, 15(1):7-13.
    77. Schepers GE, Teasdale RD, Koopman P:Twenty pairs of sox:extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002, 3(2):167-170.
    78. Episkopou V:SOX2 functions in adult neural stem cells. Trends Neurosci 2005,28(5):219-221.
    79. Pevny LH, Nicolis SK:Sox2 roles in neural stem cells. Int J Biochem Cell Biol 2010, 42(3):421-424.
    80. Miyagi S, Kato H, Okuda A:Role of SoxB1 transcription factors in development. Cell Mol Life Sci 2009,66(23):3675-3684.
    81. Sasai Y:Roles of Sox factors in neural determination:conserved signaling in evolution? Int J Dev Biol 2001,45(1):321-326.
    82. Maucksch C, Jones KS, Connor B:Concise review:the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med 2013, 2(8):579-583.
    83. Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R:Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 2005,306(2):343-348.
    84. Powell LM, Jarman AP:Context dependence of proneural bHLH proteins. Curr Opin Genet Dev 2008,18(5):411-417.
    85. Vervoort M, Ledent V:The evolution of the neural basic Helix-Loop-Helix proteins. ScientificWorldJournal 2001,1:396-426.
    86. Tzeng SF:Inhibitors of DNA binding in neural cell proliferation and differentiation. Neurochem Res 2003,28(1):45-52.
    87. Ross SE, Greenberg ME, Stiles CD:Basic helix-loop-helix factors in cortical development. Neuron 2003,39(1):13-25.
    88. Zhou Q, Anderson DJ:The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 2002,109(1):61-73.
    89. Ishidate T, Elewa A, Kim S, Mello CC, Shirayama M:Divide and differentiate:CDK/Cyclins and the art of development. Cell Cycle 2014,13(9).
    90. Puram SV, Bonni A:Cell-intrinsic drivers of dendrite morphogenesis. Development 2013, 140(23):4657-4671.
    91. Galderisi U, Jori FP, Giordano A:Cell cycle regulation and neural differentiation. Oncogene 2003,22(33):5208-5219.
    92. Nguyen L, Besson A, Roberts JM, Guillemot F:Coupling cell cycle exit, neuronal differentiation and migration in cortical neurogenesis. Cell Cycle 2006,5(20):2314-2318.
    93. Bragado Alonso S, Schulze-Steikow M, Calegari F:Cell cycle activity of neural precursors in the diseased mammalian brain. Front Neurosci 2014,8:39.
    94. Lim S, Kaldis P:Cdks, cyclins and CKIs:roles beyond cell cycle regulation. Development 2013, 140(15):3079-3093.
    95. Wan C, Liu J, Nie X, Zhao J, Zhou S, Duan Z, Tang C, Liang L, Xu G:2,3,7, 8-Tetrachlorodibenzo-P-Dioxin (TCDD) Induces Premature Senescence in Human and Rodent Neuronal Cells via ROS-Dependent Mechanisms. PLoS One 2014,9(2):e89811.
    96. Itoh Y, Masuyama N, Nakayama K, Nakayama Kl, Gotoh Y:The cyclin-dependent kinase inhibitors p57 and p27 regulate neuronal migration in the developing mouse neocortex. Journal of Biological Chemistry 2007,282(1):390-396.
    97. Malik YS, Sheikh MA, Lai M, Cao R, Zhu X:RING finger protein 10 regulates retinoic acid-induced neuronal differentiation and the cell cycle exit of P19 embryonic carcinoma cells. J Cell Biochem 2013,114(9):2007-2015.
    98. Attia M, Rachez C, De Pauw A, Avner P, Rogner UC:Napl12 promotes histone acetylation activity during neuronal differentiation. Molecular and cellular biology 2007, 27(17):6093-6102.
    99. Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M:Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. Clinical cancer research 2005, 11(13):4681-4688.
    100. Sterner DE, Berger SL:Acetylation of histones and transcription-related factors. Microbiology and Molecular Biology Reviews 2000,64(2):435-459.
    101. Struhl K:Histone acetylation and transcriptional regulatory mechanisms. Genes& Development 1998,12(5):599-606.
    102. Kouzarides T:Chromatin modifications and their function. Cell 2007,128(4):693-705.
    103. Keck KM, Pemberton LF:Histone chaperones link histone nuclear import and chromatin assembly. Biochim Biophys Acta 2013,1819(3-4):277-289.
    104. Swygert SG, Peterson CL:Chromatin dynamics:Interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta 2014.
    105. Marmorstein R, Trievel RC:Histone modifying enzymes:structures, mechanisms, and specificities. Biochim Biophys Acta 2009,1789(1):58-68.
    106. Cheedipudi S, Genolet O, Dobreva G:Epigenetic inheritance of cell fates during embryonic development. Front Genet 2014,5:19.
    107. Das C, Tyler JK:Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta 2013,1819(3-4):332-342.
    108. Young TJ, Kirchmaier AL:Cell cycle regulation of silent chromatin formation. Biochim Biophys Acta 2013,1819(3-4):303-312.
    109. Balasubramaniyan V, Boddeke E, Bakels R, Kust B, Kooistra S, Veneman A, Copray S:Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 2006,143(4):939-951.
    110. Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P:Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 2002,22(23):10333-10345.
    111. Shi S, Lin J, Cai Y, Yu J, Hong H, Ji K, Downey JS, Lu X, Chen R, Han J et al: Dimeric structure of p300/CBP associated factor. BMC Struct Biol 2014,14(1):2.
    112. Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY:Loss of Gcn512 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 2000,26(2):229-232.
    113. Shikama N, Lutz W, Kretzschmar R, Sauter N, Roth JF, Marino S, Wittwer J, Scheidweiler A, Eckner R:Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J 2003,22(19):5175-5185.
    114. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch'ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R:Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 1998,93(3):361-372.
    115. Kim BK, Im JY, Han G, Lee WJ, Won KJ, Chung KS, Lee K, Ban HS, Song KB, Won M:p300 cooperates with c-Jun and PARP-1 at the p300 binding site to activate RhoB transcription in NSC126188-mediated apoptosis. Biochim Biophys Acta 2014.
    116. Cheng HH, Wang KH, Chu LY, Chang TC, Kuo CC, Wu KK:Quiescent and proliferative fibroblasts exhibit differential p300 HAT activation through control of 5-methoxytryptophan production. PLoS One 2014,9(2):e88507.
    117. Chen H, Guan Y, Yuan G, Zhang Q, Jing N:A perylene derivative regulates HIF-lalpha and Stat3 signaling pathways. Bioorg Med Chem 2014,22(4):1496-1505.
    118. Spallotta F, Cencioni C, Straino S, Sbardella G, Castellano S, Capogrossi MC, Martelli F, Gaetano C:Enhancement of lysine acetylation accelerates wound repair. Commun Integr Biol 2013,6(5):e25466.
    119. Fang F, Xu Y, Chew KK, Chen X, Ng HH, Matsudaira P:Coactivators p300 and CBP maintain the identity of mouse embryonic stem cells by mediating long-range chromatin structure. Stem Cells 2014.
    120. Duan MR, Smerdon MJ:Histone H3K14 Acetylation Facilitates DNA Repair in a Positioned Nucleosome by Stabilizing the Binding of Chromatin Remodeler RSC. J Biol Chem 2014.
    121. Mehler MF:Epigenetics and the nervous system. Ann Neurol 2008,64(6):602-617.
    122. Adams MN, Christensen ME, He Y, Waterhouse NJ, Hooper JD:The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2. PLoS One 2011,6(11):e28018.
    123. Brigidi GS, Bamji SX:Detection of protein palmitoylation in cultured hippocampal neurons by immunoprecipitation and acyl-biotin exchange (ABE). J Vis Exp 2013(72).
    124. Wilson PA, Hemmati-Brivanlou A:Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 1995,376(6538):331-333.
    125. Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD:Initiation of neural induction by FGF signalling before gastrulation. Nature 2000,406(6791):74-78.
    126. Jones-Villeneuve E, Rudnicki MA, Harris JF, McBurney M:Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Molecular and cellular biology 1983, 3(12):2271-2279.
    127. Wang C, Xia C, Bian W, Liu L, Lin W, Chen YG, Ang SL, Jing N:Cell aggregation-induced FGF8 elevation is essential for P19 cell neural differentiation. Mol Biol Cell 2006,17(7):3075-3084.
    128. Green DR, Reed JC:Mitochondria and apoptosis. Science-AAAS-Weekly Paper Edition 1998, 281(5381):1309-1311.
    129. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD:The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science 1997, 275(5303):1132-1136.
    130. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M:Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999,397(6718):441-446.
    131. Desagher S, Martinou J-C:Mitochondria as the central control point of apoptosis. Trends in cell biology 2000,10(9):369-377.
    132. Wang X:The expanding role of mitochondria in apoptosis. Genes & Development 2001, 15(22):2922-2933.
    133. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS:Identification of PSD-95 palmitoylating enzymes. Neuron 2004,44(6):987-996.
    134. Chen L-f, Fischle W, Verdin E, Greene WC:Duration of nuclear NF-κ B action regulated by reversible acetylation. Science 2001,293(5535):1653-1657.
    135. Ghosh S, May MJ, Kopp EB:NF-κ B and Rel proteins:evolutionarlly conserved mediators of immune responses. Annual review of immunology 1998,16(1):225-260.
    136. Naranjo Golborne C:The role of palmitoylation in regulating the development of the embryo and the epidermis. Monash University. Faculty of Medicine, Nursing and Health Sciences. Biochemistry & Molecular Biology; 2013.
    137. Mill P, Lee AW, Fukata Y, Tsutsumi R, Fukata M, Keighren M, Porter RM, McKie L, Smyth I, Jackson IJ:Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS genetics 2009,5(11):e1000748.
    138. Pao P, Huang N, Liu Y, Yeh S, Lin S, Hsieh C, Huang A, Huang H, Tseng J, Chang W:A novel RING finger protein, Znf179, modulates cell cycle exit and neuronal differentiation of P19 embryonal carcinoma cells. Cell Death & Differentiation 2011,18(11):1791-1804.
    139. Eisenhaber B, Sammer M, Lua WH, Benetka W, Liew LL, Yu W, Lee HK, Koranda M, Eisenhaber F, Adhikari S:Nuclear import of a lipid-modified transcription factor:mobilization of NFAT5 isoform a by osmotic stress. Cell Cycle 2011,10(22):3897-3911.
    140. Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM:Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. The Journal of cell biology 1994,126(2):353-363.
    141. Liu J, Garcia-Cardena G, Sessa WC:Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide:implications for caveolae localization. Biochemistry 1996,35(41):13277-13281.
    142. Linder ME, Deschenes RJ:New insights into the mechanisms of protein palmitoylation. Biochemistry 2003,42(15):4311-4320.
    1. Resh MD. Fatty acylation of proteins:new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999.1451:1-16.
    2. Berthiaume LG. Insider information:how palmitoylation of Ras makes it a signaling double agent. Sci STKE 2002:PE41.
    3. Hancock JF. Ras proteins:different signals from different locations. Nat Rev Mol Cell Biol 2003.4:373-384.
    4. Linder ME, Deschenes RJ. New insights into the mechanisms of protein palmitoylation. Biochemistry 2003.42:4311-4320.
    5. Smotrys JE, Linder ME. Palmitoylation of intracellular signaling proteins:regulation and function. Annu Rev Biochem 2004.73:559-587.
    6. Lars E.P.Dietrich, Christian Ungermann. On the mechanism of protein palmitoylation. European molecular biology organization 2004.5:1053-1057.
    7. Lobo S, Greentree WK, Linder ME, Deschenes RJ. Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 2002.277:41268-41273.
    8. Roth AF, Feng Y, Chen L, Davis NG. The yeast DHHC cysteine-rich domain protein Akrlp is a palmitoyl transferase. J Cell Biol 2002.159:23-28.
    9. Fukata, M., Fukata, Y., Adesnik, H., Nicoll, R. A. & Bredt, D. S. Identification of PSD-95 palmitoylating enzymes. Neuron 2004.44,987-996.
    10. Ohno, Y., Kihara, A., Sano, T. & Igarashi, Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta 2006.1761,474-483.
    11. Keller, C. A. et al. The y2 subunit of GABAA receptors is a substrate for palmitoylation by GODZ. J Neurosci 2004.24,5881-5891.
    12. Huang, K. et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 2004.44,977-986.
    13. Swarthout, J. T. et al. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-Ras. J Biol Chem 2005.280,31141-31148.
    14. Fukata, Y., Iwanaga, T. & Fukata, M. Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods 2006.40,177-182.
    15. Tsutsumi, R. et al. Identification of G protein alpha subunit-palmitoylating enzyme. Mol Cell Biol 2009.29,435-447.
    16. Fernandez-Hernando, C. et al. Identification of Golgilocalized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Cell Biol 2006.174,369-377.
    17. Greaves, J., Salaun, C., Fukata, Y., Fukata, M. & Chamberlain, L. H. Palmitoylation and membrane interactions of the neuroprotective chaperone cysteinestring protein. J Biol Chem 2008.283,25014-25026.
    18. Greaves, J. et al. The hydrophobic cysteine-rich domain of SNAP25 couples with downstream residues to mediate membrane interactions and recognition by DHHC palmitoyl transferases. Mol Biol Cell 2009.20,1845-1854.
    19. Swarthout, J. T., S. Lobo, L. Farh, M. R. Croke, W. K. Greentree, R. J. Deschenes, and M. E. Linder. DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H-and N-Ras. J Biol Chem 2008.280:31141-31148.
    20. Yanai, A. et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nature Neurosci 2006.9,824-831.
    21. David A. Mitchell, Anant Vasudevan. Et al. Protein palmitoylation by a family of DHHC protein S-acyltransferases. Journal of Lipid Research 2006.47,1118-1127.
    22. Ponimaskin, E. et al. Fibroblast growth factorregulated palmitoylation of the neural cell adhesion molecule determines neuronal morphogenesis. J Neurosci 2008.28,8897-8907.
    23. Niethammer, P. et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis. J Cell Biol 2002.157,521-532.
    24. Ren, Q. & Bennett, V. Palmitoylation of neurofascin at a site in the membrane-spanning domain highly conserved among the LI family of cell adhesion molecules. J Neurochem 1998. 70,1839-1849.
    25. Herincs, Z. et al. DCC association with lipid rafts is required for netrin-1-mediated axon guidance. J Cell Sci 2005.118,1687-1692.
    26. Yang, X. et al. Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol 2004.167,1231-1240.
    27. Chauvin, S., Poulain, F. E., Ozon, S. & Sobel, A. Palmitoylation of stathmin family proteins domain A controls Golgi versus mitochondrial subcellular targeting. Biol Cell 2008.100, 577-589.
    28. Morii, H., Shiraishi-Yamaguchi, Y. & Mori, N. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons. J Neurobiol 2006.66,1101-1114.
    29. Kang, R. et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 2008.456,904-909.
    30. Sharma, C., Yang, X. H. & Hemler, M. E. DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 2008.19,3415-3425.
    31. Takemoto-Kimura, S. et al. Regulation of dendritogenesis via a lipid-raft-associated Ca2+/ calmodulin-dependent protein kinase CLICK-Ⅲ/CaMKIγ. Neuron 2007.54,755-770.
    32. Sorra, K. E. & Harris, K. M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 2000.10,501-511.
    33. Kutzleb, C. et al. Paralemmin, a prenyl-palmitoylanchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Cell Biol 1998.143,795-813.
    34. Huang, K. et al. Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J 2009.23,2605-2615.
    35. Ohyama, T. et al. Huntingtin-interacting protein 14, a palmitoyl transferase required for exocytosis and targeting of CSP to synaptic vesicles. J Cell Biol 2007.179,1481-1496.
    36. Stowers, R. S. & Isacoff, E. Y. Drosophila huntingtininteracting protein 14 is a presynaptic protein required for photoreceptor synaptic transmission and expression of the palmitoylated proteins synaptosomeassociated protein 25 and cysteine string protein. J Neurosci 2007.27,12874-12883.
    37. Greaves, J., Salaun, C., Fukata, Y., Fukata, M. & Chamberlain, L. H. Palmitoylation and membrane interactions of the neuroprotective chaperone cysteinestring protein. J Biol Chem 2008.283,25014-25026.
    38. Collingridge, G. L., Isaac, J. T. & Wang, Y. T. Receptor trafficking and synaptic plasticity. Nature Rev Neurosci 2004.5,952-962.
    39. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 1998.21,1067-1078.
    40. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-a. Nature 2006.440, 1054-1059.
    41. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent caling of quantal amplitude in neocortical neurons. Nature 1998.391, 892-896.
    42. El-Husseini Ael, D. et al. Synaptic strength regulated y palmitate cycling on PSD-95. Cell 2002.108,849-863.
    43. Ehrlich, I. & Malinow, R. Postsynaptic density 95 ontrols AMPA receptor incorporation during longterm otentiation and experience-driven synaptic lasticity. J. Neurosci 2004.24, 916-927.
    44. Kang, R. et al. Neural palmitoyl-proteomics reveals ynamic synaptic palmitoylation. Nature 2008.456,04-909.
    45. Hayashi, T., Rumbaugh, G. & Huganir, R. L. Differential egulation of AMPA receptor subunit trafficking by almitoylation of two distinct sites. Neuron 2005.47,09-723.
    46. Lin, D. T. et al. Regulation of AMPA receptor xtrasynaptic insertion by 4.1N, phosphorylation and almitoylation. Nature Neurosci 2009.12,879-887.
    47. Fang, C. et al. GODZ-mediated palmitoylation of ABAA receptors is required for normal assembly and unction of GABAergic inhibitory synapses. J Neurosci 2006.6,12758-12768.
    48. Keller, C. A. et al. The y2 subunit of GABAA receptors is substrate for palmitoylation by GODZ. J Neurosci 2004.4,5881-5891.
    49. Rathenberg, J., Kittler, J. T. & Moss, S. J. Palmitoylation regulates the clustering and cell surface tability of GABAA receptors. Mol Cell Neurosci 2004.26,51-257.
    50. Huan g K, Yan ai A, Kan g R, et al. Huntington-interacting protein HIP14 is a palndtoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 2004.44(6):977-986.
    51. Yanai A, Huang K, Kang R, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 2006.9(6):824-831.
    52.52. Cheng H, Vetrivel KS. Drisdel RC, et al. S-palmitoylation of gamma-secretase subunits nicastrin and APH-1. J Biol Chem 2008. Nov 20.
    53.53. Mukai J, Liu H, Burt RA, et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004.36 (7):725-731.
    54.54. Demily C, Legallic S, Bou J, et al. ZDHHC8 single nucleotide polymorphism rsl75174 is not associated with psychiatric features of the 22qll deletion syndrome or schizophrenia. Psy chiatr Genet 2007.17 (5):311-312.
    55.55.Mukai J, DhiUa A, Drew IJ.et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22ql 1 microdeletion. Nat Neurosci 2008.11(11):1302·13 10.
    56.56. Raymond FL, Tarpey PS, Edkins S, et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated the Marfanoid habitus. Am J Hum Genet 2007.80(5):982.987.
    57.57. Carpenter-Hyland EP, Chan dler 13. Homeostatic plasticity during alcohol exposure promotes enlargement of dendritic spines. Eur J Neurosci 2007.25(10):3193-3194.
    58.58. Ammer H, Schulz R. Enhanced stimulatory adenylyl Cyclase signaling during opioid dependence is associated with a reduction in palmitoylated Gs alpha. M01 Pharmacol 1997. 52(6):993-999.
    59. Linder, M. E. et al. Lipid modifications of G proteins:alpha subunits are palmitoylated. Proc. Natl Acad. Sci 1993.90,3675-3679 (1993).
    60. Wedegaertner, P. B., Chu, D. H., Wilson, P. T., Levis, M. J. & Bourne, H. R. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem 1993.268,25001-25008.
    61. Tu, Y., Popov, S., Slaughter, C. & Ross, E. M. Palmitoylation of a conserved cysteine in the regulator of G protein signaling (RGS) domain modulates the GTPase-activating activity of RGS4 and RGS10. J Biol Chem 1999.274,38260-38267.
    62. Tu, Y., Wang, J. & Ross, E. M. Inhibition of brain Gz GAP and other RGS proteins by palmitoylation of G protein alpha subunits. Science 1997.278,1132-1135.
    63. Stoffel, R. H., Inglese, J., Macrae, A. D., Lefkowitz, R. J. & Premont, R. T. Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry 1998.37,16053-16059.
    64. Drenan, R. M. et al. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J Cell Biol 2005.169,623-633.
    65. Koegl, M., Zlatkine, P., Ley, S. C., Courtneidge, S. A. & Magee, A. I. Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J 1994.303,749753.
    66. Shenoy-Scaria, A. M., Dietzen, D. J., Kwong, J., Link, D. C. & Lublin, D. M. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol 1994.126,353-363.
    67. Skene, J. H. & Virag, I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol 1989.108,613-624.
    68. Liu, J., Garcia-Cardena, G. & Sessa, W. C. Biosynthesis and palmitoylation of endothelial nitric oxide synthase:mutagenesis of palmitoylation sites, cysteines-15 and/or-26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry 1995.34, 12333-12340.
    69. Christgau, S. et al. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol 1992.118, 309-320.
    70. Jung, G. et al. Molecular determinants of activation and membrane targeting of phosphoinositol 4-kinaseIIb. Biochem J 2008.409,501-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700