利用亲和层析法检测乙酰化蛋白的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白乙酰化与肿瘤的发生发展有密切关系,由乙酰化转移酶引起的蛋白乙酰化逐渐被认为是一种重要的生物调控修饰。乙酰化状态取决于组蛋白乙酰基转移酶(histone acetyltransferase,HATs)与组蛋白去乙酰化酶(histone deacetylase,HDACs)之间的活性竞争。
     HDAC抑制剂会使染色质组蛋白乙酰化水平提高,因此导致特定基因激活表达,相应地导致细胞的末端分化或癌细胞的凋亡。初步的临床研究表明,人类可以安全地通过抑制HDAC的活性来获得组蛋白高乙酰化水平,HDACs已经成为抗癌新药开发的热门靶点,而研发这一类抗癌新药的前条件之一就是要建立适应于药物筛选所用快速、相对定量检测乙酰化蛋白方法。
     目的:旨在建立一种快速、相对定量检测乙酰化蛋白方法,并初步探讨其应用。
     方法:本文用乙酰化蛋白标准品寻找最优的质谱前处理方案,并将其应用于检测乙酰化蛋白方法的建模。模型建立如下:不同浓度的曲古菌素A(Trichostatin A.TSA)于不同的时间段刺激不同数量的Jurkat细胞,诱导其蛋白高乙酰化后,使用抗乙酰化赖氨酸抗体亲和层析柱富集纯化乙酰化总蛋白,经酸洗脱后固定于酶标板,ELISA检测乙酰化蛋白相对总量,并用MALDI-TOF-TOF分析验证其成分。然后利用该方法初步检测不同浓度的没食子酸、大黄素、单乙酰化大黄素A作用Jurkat细胞后乙酰化总蛋白水平的变化。
     结果:1μmol/L的TSA作用于4×105Jurkat细胞24h,乙酰化总蛋白相对水平最高。MALDI-TOF-TOF分析显示,TSA诱导Jurkat细胞产生的乙酰化蛋白共有22种,其中15种为乙酰化组蛋白。
     没食子酸、大黄素、单乙酰化大黄素A作用于Jurkat细胞后所导致的乙酰化程度不同,以1μmol/L浓度TSA为阳性对照组,无药物为空白对照组,35.09μmol/L和17.54μmol/L大黄素处理的Jurkat细胞蛋白乙酰化相对水平分别为4.3%和14.2%;1.47μmol/L和2.94μmol/L没食子酸处理组相对蛋白乙酰化水平分别为28.7%和11.5%;152.91μmol/L和30.58μmol/L单乙酰化大黄素组分别为22.0%和3.6%。其中1.47μmol/L没食子酸所诱导的乙酰化水平最高。
     结论:初步建立了活细胞基础上纯化富集并检测乙酰化总蛋白水平的方法,该法可快速、简便的筛选以组蛋白去乙酰化酶为靶点的抗癌药物。
There was close relationship between protein acetylation and the tumor development. The state of Acetylation depended on the activity competetion between histone acetyltransferase (HATs) and histone deacetylase(HDACs).
     Lots of experiences shows that HDACs inhibitor could increase the level of acetylation of histones in chromatin causing the activation and expression of specific genes, accordingly leading to the end differentiation and apoptosis of cancer cells.
     Objective:To establish a rapid, relatively quantitative method for detecting acetylated proteins, and to explore its applications.
     Method:Different number of Jurkat cells were treated with different concentration of histone deacetylase inhibitor Trichostatin A(TSA) at different time periods. After enrichment and purification with anti-acetylated lysine antibodies affinity chromatography column and then elution by acid, the levels of acetylated protein of Jurkat cells were tested by ELISA; The eluted components were identified by MALDI-TOF-TOF mass spectrometry. A preliminary study on the change of levels of acetylated proteins of Jurkat cells treated with3different traditional medicine monomer, including gallic acid、Emodin and mono acetylated Emodin A, was performed by the method.
     Result:The relative amount of total acetylated protein of Jurkat cells reached the highest level after4×105number of cells treated with1μmol/L of TSA for24h.22acetylated proteins were identified by MALDI-TOF-TOF in eluent among them15were acetylated histones; Compared with negative control group(without drug), the degree of acetylation of protein of each treatment group was increased, and that of1.47μmol/L of gallic acid group was increased most remarkedly(P<0.01).
     Conclusion:The method was initially established to enricr、purify and detect the total acetylated proteins in living cells. It might be a fast, simple way for screening anticancer drugs which targeted to deacetylase.
引文
[1]Marks, P., Rifkind, R. A.et.al. Histone deacetylases and cancer:causes and therapies[J]. Nat Rev Cancer,2001,1(3):194-202.
    [2]Fuks, F., Burgers, W. A. et.al. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription[J]. EMBO J, 2001,20(10):2536-2544.
    [3]Brown, R., Strathdee, G. et.al. Epigenomics and epigenetic therapy of cancer[J]. Trends Mol Med,2002,8(4 Suppl):S43-48.
    [4]Fischle, W., Wang, Y. et.al. Histone and chromatin cross-talk[J]. Curr Opin Cell Biol,2003,15(2):172-183.
    [5]Dormeyer, W., Ott. et.al. Probing lysine acetylation in proteins:strategies, limitations, and pitfalls of in vitro acetyltransferase assays[J]. Mol Cell Proteomics,2005,4(9):1226-1239.
    [6]Minucci, S., Pelicci. et.al. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer[J]. Nat Rev Cancer,2006, 6(1):38-51.
    [7]Jenuwein, T., Allis. et.al. Translating the histone code[J]. Science,2001, 293(5532):1074-1080.
    [8]Zhang, L., Yan, L. et.al. Role of acetylated p53 in regulating the expression of map2 in retinoic acid-induced P19 cells[J]. Chin Med Sci J, 2010,25(2):71-75.
    [9]Arif, M., Senapati, P. et.al. Protein lysine acetylation in cellular function and its role in cancer manifestation[J]. Biochim Biophys Acta,2010, 1799(10-12):702-716.
    [10]Bannister, A. J., Miska, et.al. Regulation of gene expression by transcription factor acetylation[J]. Cell Mol Life Sci,2000,57(8-9): 1184-1192.
    [11]Wang, L., de Zoeten, E. F. et.al. Immunomodulatory effects of deacetylase inhibitors:therapeutic targeting of FOXP3+ regulatory T cells[J]. Nat Rev Drug Discov,2009,8(12):969-981.
    [12]Smith, K. T., Workman, et.al. Introducing the acetylome[J]. Nat Biotechnol,2009,27(10):917-919.
    [13]Kao, C. F., Osley. et.al. In vivo assays to study histone ubiquitylation[J]. Methods,2003,31(1):59-66.
    [14]Shankaranarayanan, P., Chaitidis. et.al. Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene[J]. J Biol Chem, 2001,276(46):42753-42760.
    [15]Nimmanapalli, R., Fuino. et.al. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells[J]. Blood,2003,101(8):3236-3239.
    [16]Yoshida, M., Horinouchi. et.al. Trichostatin A and trapoxin:novel chemical probes for the role of histone acetylation in chromatin structure and function[J]. Bioessays,1995,17(5):423-430.
    [17]Colletti, S. L., Myers, et.al. Broad spectrum antiprotozoal agents that inhibit histone deacetylase:structure-activity relationships of apicidin. Part 2[J]. Bioorg Med Chem Lett,2001,11 (2):113-117.
    [18]Lee, B. I., Park, et.al. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells[J]. Cancer Res,2001,61(3):931-934.
    [19]Balakrishnan, L., Stewart, et.al. Acetylation of Dna2 endonuclease/helicase and flap endonuclease 1 by p300 promotes DNA stability by creating long flap intermediates[J]. J Biol Chem,2010,285(7): 4398-4404.
    [20]Manohar, M., Mooney. et.al. Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding[J]. J Biol Chem,2009,284(35): 23312-23321.
    [21]Das, C., Lucia, M. S. et.al. CBP/p300-mediated acetylation of histone H3 on lysine 56[J]. Nature,2009,459(7243):113-117.
    [22]Gay, F., Calvo. et. al. Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1[J]. Genes Dev,2003,17(6): 717-722.
    [23]Blander, G., Zalle. et.al. DNA damage-induced translocation of the Werner helicase is regulated by acetylation[J]. JBiol Chem,2002, 277(52):50934-50940.
    [24]Blackwell, J. S., Jr. et.al. Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import[J]. JBiol Chem,2007,282(28): 20142-20150.
    [25]Wu, M., Zhang, Y. et.al. Histone marks and chromatin remodelers on the regulation of neurogeninl gene in RA induced neuronal differentiation of P19 cells[J]. J Cell Biochem,2009,107(2):264-271.
    [26]Boutillier, A. L., Trinh. et.al. Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis[J]. J Neurochem,2003,84(4):814-828.
    [27]Dong, G, Luo. et.al. Inhibitors of histone deacetylases suppress cisplatin-induced p53 activation and apoptosis in renal tubular cells[J]. Am JPhysiol Renal Physiol,2009,298(2):F293-300.
    [28]Woo, S. H., Frechette, et.al. Structurally simple trichostatin A-like straight chain hydroxamates as potent histone deacetylase inhibitors [J]. J Med Chem,2002,45(13):2877-2885.
    [29]Jung, M., Brosch. et.al. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation [J]. J Med Chem,1999,42(22):4669-4679.
    [30]Chong, S. L., Nissila. et.al. Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana[J]. Anal Bioanal Chem,2011, 401(9):2995-3009.
    [31]Zhang, X., Ye. et.al. A proteome-scale study on in vivo protein Nalpha-acetylation using an optimized method[J]. Proteomics,2010, 11(1):81-93.
    [32]Lee, S. H., Miyamoto, et.al. Non-invasive proteomic analysis of human skin keratins:screening of methionine oxidation in keratins by mass spectrometry[J]. J Proteomics,2011,75(2):435-449.
    [33]Kim, S. C., Sprung, R. et.al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell,2006,23(4): 607-618.
    [34]Akella, J. S., Wloga. et.al. MEC-17 is an alpha-tubulin acetyltransferase[J]. Nature,2010,467(7312):218-222.
    [35]Rey, M., Irondelle. et.al. HDAC6 is required for invadopodia activity and invasion by breast tumor cells[J]. Eur J Cell Biol,2010,90(2-3):128-135.
    [36]Lewis, M. L., Hughes-Fulford. et.al. Regulation of heat shock protein message in Jurkat cells cultured under serum-starved and gravity-altered conditions[J]. J Cell Biochem,2000,77(1):127-134.
    [37]Jin, Y., Manabe. et.al. Alkaline extraction of human plasma proteins from nondenaturing micro-2-D gels for protein/polypeptide mass measurement and peptide mass fingerprinting using MALDI-TOF MS[J]. Electrophoresis,2007,28(3):449-459.
    [38]Nelson, W. C., Peng, et.al. Incubated protein reduction and digestion on an electrowetting-on-dielectric digital microfluidic chip for MALDI-MS[J]. Anal Chem,2010,82(23):9932-9937.
    [39]Chun-Guang, W., Jun-Qing. et.al. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo[J]. Eur J Pharmacol,2009,627(1-3):33-41.
    [40]Finkemeier, I., Laxa. et.al. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis[J]. Plant Physiol,2011, 155(4):1779-1790.
    [41]Hake, S. B., Xiao, et.al. Linking the epigenetic 'language' of covalent histone modifications to cancer[J]. Br J Cancer,2004,90(4):761-769.
    [42]Zhao, S., Xu. et.al. Regulation of cellular metabolism by protein lysine acetylation[J]. Science,2010,327(5968):1000-1004.
    [43]Chambers, A. E., Banerjee. et.al. Histone acetylation-mediated regulation of genes in leukaemic cells[J]. Eur J Cancer,2003,39(8):1165-1175.
    [44]Milutinovic, S., Knox. et.al. DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21(WAF1/CIP1/sdi1)[J]. J Biol Chem,2000,275(9):6353-6359.
    [45]Falk, H., Connor. et.al. An efficient high-throughput screening method for MYST family acetyltransferases, a new class of epigenetic drug targets[J]. J Biomol Screen,2011,16(10):1196-1205.
    [46]Li, F., Allahverdi. et.al. A direct method for site-specific protein acetylation[J]. Angew Chem Int Ed Engl,2011,50(41):9611-9614.
    [47]Neumann, H., Hancock, et.al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation[J]. Mol Cell,2009,36(1):153-163.
    [48]Ait-Si-Ali, S., Ramirez, et.al. A rapid and sensitive assay for histone acetyl-transferase activity[J]. Nucleic Acids Res,1998,26(16): 3869-3870.
    [49]Hoffmann, K., Brosch. et.al. First non-radioactive assay for in vitro screening of histone deacetylase inhibitors [J]. Pharmazie,2000,55(8): 601-606.
    [50]Gray, S. G, Ekstrom. et.al. Effects of cell density and trichostatin A on the expression of HDAC1 and p57Kip2 in Hep 3B cells[J]. Biochem Biophys Res Commun,1998,245(2):423-427.
    [51]Choi, K. C., Lee. et.al. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-kappaB signaling by preventing RelA acetylation in A549 lung cancer cells[J]. Mol Cancer Res,2009,7(12):2011-2021.
    [52]Kim, M. J., Seong. et.al. Gallic acid, a histone acetyltransferase inhibitor, suppresses beta-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation[J].Mol Nutr Food Res,2011,55(12):1798-1808.
    [53]Chung, J. G, Wang, et.al. Inhibitory actions of emodin on arylamine N-acetyltransferase activity in strains of Helicobacter pylori from peptic ulcer patients[J]. Food Chem Toxicol,1997,35(10-11):1001-1007.
    [54]Lin, S. Y., Yang, et.al. Effect of inhibition of aloe-emodin on N-acetyltransferase activity and gene expression in human malignant melanoma cells (A375.S2)[J]. Melanoma Res,2005,15(6):489-494.
    [55]Huang, Y. Q., Ma. et.al. Phenylhexyl isothiocyanate (PHI) regulates histone methylation and acetylation and induces apoptosis in SMMC-7721 cells[J]. Zhonghua Gan Zang Bing Za Zhi,2010,18(3): 209-212.
    [56]Lai, Y. D., Ma. et.al. Modulation of histone acetylation and induction of apoptosis in SMMC-7721 cells by phenylhexyl isothiocyanate[J]. Zhonghua Zhong Liu Za Zhi,2011,32(11):804-807.
    [57]Kim, M. J., Konduri. et.al. Dinuclear ruthenium(Ⅱ) polypyridyl complexes containing large, redox-active, aromatic bridging ligands: synthesis, characterization, and intramolecular quenching of MLCT excited states[J]. Inorg Chem,2002,41(9):2471-2476.
    [58]Xia, Q., Wang. et.al. Nano-ESI-MS/MS identification on differentiation-associated proteins in M1 mouse myeloid leukemia cells induced by IL-6][J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2004,26(5): 483-487.
    [59]Liyasova, M. S., Schopfer. et.al. Reaction of human albumin with aspirin in vitro:mass spectrometric identification of acetylated lysines 199,402, 519, and 545[J]. Biochem Pharmacol,2009,79(5):784-791.
    [60]Xiong, L., Adhvaryu. et.al. Mapping of lysine methylation and acetylation in core histones of Neurospora crassa[J]. Biochemistry,2010,49(25): 5236-5243.
    [61]Lemeer, S., Kunold. et.al. Phosphorylation site localization in peptides by MALDI MS/MS and the Mascot Delta Score[J]. Anal Bioanal Chem, 402(1):249-260.
    [62]Ito, K., Barnes, et.al. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1 beta-induced histone H4 acetylation on lysines 8 and 12[J]. Mol Cell Biol,2000,20(18):6891-6903.
    [1]Barrios, A., Selleck. et.al. Expression and purification of recombinant yeast Ada2/Ada3/Gcn5 and Piccolo NuA4 histone acetyltransferase complexes[J]. Methods,2007,41(3):271-277.
    [2]Krupa, A., Preethi. et.al. Structural modes of stabilization of permissive phosphorylation sites in protein kinases:distinct strategies in Ser/Thr and Tyr kinases[J]./Mol Biol,2004,339(5):1025-1039.
    [3]Armeanu, S., Pathil. et.al. Apoptosis on hepatoma cells but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357[J]. J Hepatol,2005,42(2):210-217.
    [4]Ozdag, H., Teschendorff. et.al. Differential expression of selected histone modifier genes in human solid cancers[J]. BMC Genomics,2006,7:90.
    [5]Yang, X. J., Ogryzko. et.al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A[J]. Nature,1996,382(6589): 319-324.
    [6]Kortenhorst, M. S., Carducci. et.al. Acetylation and histone deacetylase inhibitors in cancer[J]. Cell Oncol,2006,28(5-6):191-222.
    [7]Loprevite, M., Tiseo, M. et.al. In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines[J]. Oncol Res,2005,15(1):39-48.
    [8]Bodai, L., Pallos, J. et.al. Altered protein acetylation in polyglutamine diseases[J]. Curr Med Chem,2003,10(23):2577-2587.
    [9]Chen, G Q., Zhu. et.al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia:As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins[J]. Blood,1996,88(3):1052-1061.
    [10]Frew, A. J., Johnstone. et.al. Enhancing the apoptotic and therapeutic effects of HDAC inhibitors [J]. Cancer Lett,2009,280(2):125-133.
    [11]Mahlknecht, U., Hoelzer. et.al. Histone acetylation modifiers in the pathogenesis of malignant disease[J]. Mol Med,2000,6(8):623-644.
    [12]Noh, E. J., Lim. et.al. An HDAC inhibitor, trichostatin A, induces a delay at G2/M transition, slippage of spindle checkpoint, and cell death in a transcription-dependent manner[J]. Biochem Biophys Res Commun,2009, 378(3):326-331.
    [13]Henderson, C., Mizzau. et.al. Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA)[J]. J Biol Chem,2003,278(14):12579-12589.
    [14]Vigushin, D. M., Coombes. et.al.Histone deacetylase inhibitors in cancer treatment[J]. Anticancer Drugs,2002,13(1):1-13.
    [15]Weidle, U. H., Grossmann. et.al. Inhibition of histone deacetylases:a new strategy to target epigenetic modifications for anticancer treatment[J]. Anticancer Res,2000,20(3A):1471-1485.
    [16]Taddei, A., Roche. et.al. The effects of histone deacetylase inhibitors on heterochromatin:implications for anticancer therapy?[J]. EMBO Rep, 2005,6(6):520-524.
    [17]Fraga, M. F., Ballestar. et.al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer[J]. Nat Genet,2005,37(4):391-400.
    [18]Hubbert, C., Guardiola. et.al. HDAC6 is a microtubule-associated deacetylase[J]. Nature,2002,417(6887):455-458.
    [19]Palazzo, A., Ackerman. et.al. Cell biology:Tubulin acetylation and cell motility[J]. Nature,2003,421(6920):230.
    [20]Williams, R. R., Azuara. et.al. Neural induction promotes large-scale chromatin reorganisation of the Mashl locus[J]. J Cell Sci,2006,119(Pt 1):132-140.
    [21]Branchi, I., Karpova. et.al. Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression[J]. Neuro sci Lett,2011,495(3):168-172.
    [22]Fidlerova, H., Kalinova. et.al. A new epigenetic marker:the replication-coupled, cell cycle-dependent, dual modification of the histone H4 tail[J].J Struct Biol,2009,167(1):76-82.
    [23]Kisliouk, T., Ziv. et.al. Epigenetic control of translation regulation: alterations in histone H3 lysine 9 post-translation modifications are correlated with the expression of the translation initiation factor 2B (Eif2b5) during thermal control establishment[J]. Dev Neurobiol,2009, 70(2):100-113.
    [24]Rodriguez-Jimenez, F. J., Moreno-Manzano. et.al. Hypoxia causes downregulation of mismatch repair system and genomic instability in stem cells[J]. Stem Cells,2008,26(8):2052-2062.
    [25]Stewart, M. D., Sommerville. et.al. Dynamic regulation of histone modifications in Xenopus oocytes through histone exchange[J]. Mol Cell Biol,2006,26(18):6890-6901.
    [26]Lin, W., Dent, et.al. Functions of hi stone-modifying enzymes in development[J]. Curr Opin Genet Dev,2006,16(2):137-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700