用户名: 密码: 验证码:
布洛芬丁香酚酯前体药物的合成及其微乳给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以减小非甾体抗炎药布洛芬的胃肠道刺激及提高中药挥发性成分丁香酚稳定性为设计思想,将药理活性具有相近或协同作用的布洛芬和丁香酚制成前体药物(布洛芬丁香酚酯,IEE),系统地研究了该前体药物的理化性质、体内外稳定性、跨膜转运机理、在生物体内的代谢途径,在此基础上成功地制备了可供注射和口服给药的微乳制剂,对该制剂的体内药动学行为、体内分布以及药效学进行了较为深入研究,旨在探讨通过结构改造和剂型设计来提高药物疗效、降低毒副作用、改善药物稳定性等的必要性和可行性。
     以布洛芬和丁香酚为原料,通过酰氯酯化反应首次合成了IEE,其化学名为丙酸,2-[4-(2-甲基丙基)苯],2-甲氧基-4-(2-烯丙基)苯酯。该合成方法简单,回收率高,适合大批量生产。所得产物的熔点为41.2±0.5℃,结构经UV、IR、MS和~1H-NMR鉴定,确认为目标化合物。
     在理化性质研究中,测定了药物在不同pH条件下的溶解度,IEE在水中的溶解度为2.98μg/ml,且受pH影响较小,属亲脂性药物,其在各种有机溶剂及油中有极好的溶解性(>200mg/g);油水分配系数(CLogP)为6.45;高温、高湿和光照实验结果表明,IEE稳定性良好;对药物在不同pH值溶液中的水解动力学研究显示,IEE在pH1.1-9.96范围内稳定性良好,不随pH发生改变,大于9.96时,随pH增大水解速率加快。
     以Caco-2细胞模型研究了IEE的跨膜转运机理。在有酯酶抑制剂苯甲基磺酰氟(PMSF)存在的情况下IEE的P_(app)(A→B)和P_(app)(B→A)相近,分别为14.46和15.04×10~(-6)cm/s,由此初步判断IEE主要以被动扩散形式透过生物膜。分别考察了牛血清白蛋白(BSA)、PMSF、浓度、抑制剂、温度对IEE转运的影响,其中:BSA对其跨膜转运无显著性影响;在无PMSF存在的情况下,IEE在转运前和转运过程中可被体内酶水解为原形药,IEE的转运实际是由两者共同作用的结果;由于布洛芬和IEE的透过速率不同以及不同浓度条件下可供水解的酶达到饱和程度不同导致转运速率不同;P-gp抑制剂维拉帕米和MRP抑制剂吲哚美辛对IEE的转运没有显著影响,说明药物的转运不受外排泵的作用;温度对IEE的转运产生显著影响(P<0.05),在不同温度下由于酶的活性不同导致IEE和布洛芬的转运速率相对不同,使渗透系数发生改变。IEE的跨膜转运依赖于酶的参与,使IEE表现为较好的吸收效果。
     应用LC/MS~n法首次鉴定了IEE在大鼠尿及血中的代谢产物,其中包括1种Ⅰ相代谢产物和6种Ⅱ相代谢产物。在尿中发现包括IEE和布洛芬在内的多种代谢产物,说明IEE在体内经历了多重代谢过程,静脉或口服给药1h后的血浆样品中没有发现IEE而测得布洛芬,证明IEE在生物体内的确可以水解为原形药布洛芬,但在尿样中和血样中均没有发现丁香酚原形药物的存在,推测IEE在大鼠体内主要先水解成布洛芬和丁香酚,丁香酚经进一步代谢与葡萄糖醛酸结合,LC/MS~n为IEE微乳制剂的体内药动学研究提供了科学依据。
     为了促进药物吸收、提高生物利用度及减小胃肠道副作用,本文选择新型给药系统——微乳作为药物传递载体,制备了可供注射和口服的微乳制剂。分别以IPM和Miglyol 812作为油相、豆磷脂(SbPC)与HS-15为表面活性剂、PEG 400和乙醇作为助表面活性剂、重蒸水作为水相,绘制伪三元相图,研究各组分的组成对微乳形成的影响,并考察了不同油相、不同表面活性剂、助表面活性剂的组成变化对制剂粒径、粘度及稳定性的影响,确定了含有较多油相、较少表面活性剂的稳定空白微乳的组成。在空白微乳的基础上考察了药物的加入对微乳相关指标的影响,当药物含量占油相(Miglyol 812)的40%(w/w)以下时,微乳载药量可达100%,且粒径较小;当药物含量大于油相的40%以上时,微乳载药量下降并伴有药物析出,粒径变大,分布范围变宽。确定的最佳处方组成为IEE/Miglyol 812/SbPC/HS-15/PEG400/Ethanol/Water(6.4/9.6/6/6/8.4/3.6/60g)。
     在体外研究的基础上,选择大鼠为实验动物,以HPLC方法为检测手段,对IEE静脉注射微乳和口服微乳进行体内药动学研究,并分别与布洛芬的两种给药途径进行了比较,以非隔室模型计算了体内药动学参数,并得出了该制剂的绝对生物利用度。IEE微乳于小鼠静注给药体内分布研究表明,肝、脾等网状内皮系统丰富器官的药物浓度明显降低,而药物在心、肺、脑的分布相对增加,但肾内药物浓度变化较小,与布洛芬水溶液组相比,平均滞留时间延长,消除相对较慢,说明该制剂具有缓释作用。
     急性毒性实验结果表明,IEE微乳制剂小鼠口服和注射的LD_(50)分别为714.7和197.2mg/kg;安全性试验结果表明,该制剂不溶血、无过敏性及刺激性;药效学实验结果表明,等剂量小鼠灌胃或静注时,IEE微乳对小鼠热板法和醋酸致痛与布洛芬效果相当,对由二甲苯引起小鼠耳肿胀和角叉菜胶致大鼠足肿胀均有明显的抑制作用;小鼠胃肠道刺激性试验结果显示,灌胃给药后IEE微乳能明显降低胃肠道刺激,与布洛芬组有显著性差异(P<0.05),与空白组相当。
Depressing the upper gastrointestinal (GI) of NSAID and formulating poorly water-soluble drug into microemulsion delivery system were considered as two focuses in this study. Base on these two considerations, Ibuprofen eugenol ester (IEE) was synthesized. Meanwhile the physical-chemical properties, in vitro and in vivo's stability, transport mechanism and metabolism way of IEE were also investigated. IEE can be applied to mciroemulsion formulation for oral and intravenous administration. The pharmacokinetics, distribution and pharmacodynamics of the formulation were also examined in order to explore the possibility of increasing the curative effect, and decreasing the GI side effect by structure transform and formulation design.IEE [propionicacid.2-[4-(2-methylpropyl) phenyl], 2-methoxy-4-(2- propenyl) phenyl ester] was synthesized by acyl chloride method using ibuprofen and eugenol as the raw materials. The method was simple and reproducible. It can be applicable to mass production. The structure of IEE was confirmed by MS, UV, IR, ~1H-NMR spectrum, respectively. And the melting point is 41.2±0.5℃.During the physical and chemical properties studies, the solubility of the drug in different pH was determined. The solubility of IEE in water was very low (2.98μg/ml), and was not effected by pH. It belongs to poorly water-soluble lipophilic drug. However, it is easily soluble in various solvent and oil (>200mg/kg). The CLogP was 6.45. IEE shows its well stability by the results of the experiments in different temperature, humidity, and light studies. The kinetics of ester hydrolysis was studied in aqueous buffer solutions. It was stable at a wide pH range 1.10-9.96. Over this range, IEE hydrolyzed fast with pH increased.The Caco-2 cell model was utilized to examine the mechanism of IEE transport across the intestinal membrane. With the exposure to PMSF, an inhibitor of serine protease/mammalian esterase, the apparent permeability coefficients of IEE from AP-to-BL (14.46×10~(-6)cm/s) and BL-to-AP (15.04×10~(-6)cm/s) were found to be statistically indifferent (P>0.05). Therefore, IEE transported across Caco-2 cell monolayer vis an passive mechanism. The effect of BSA, PMSF, concentration, inhibitors, and temperature on the transport was investigated. It was founded that the BSA didn't affect transport of IEE in different sacs. Without the exposure to PMSF, IEE can be hydrolysis into ibuprofen before or during transport. The transport of IEE was actually due to the combine result of IEE and ibuprofen. Under various concentrations, the different P_(app) of IEE, ibuprofen and saturate degree of esterase for hydrolysis caused the differents of P_(app). The permeability coefficient was not affected when verapamil and indomethin were added, illustrating the drug was not transported via efflux mechanism. The P_(app) of IEE was affected by temperature significantly because of the different active of esterase under various temperatures. It can be concluded that the transport of IEE depends on the esterase participation. Therefore, the absorption oflEE was shown well.
     IEE and its seven metabolites were first identified in rat urine and plasma with LC/MSn method, which included one phaseⅠmetabolite and six phaseⅡmetabolites. It found that the metabolites substrates included IEE and ibuprofen, which illustrated that IEE had undergone expand metabolite. No IEE but ibuprofen was found in plasma sample after 1 h iv or oral administration. It demonstrates that the IEE can be hydrolysis to ibuprofen in vivo. However, no eugenol was found both in plasma and urine sample. According to the experimental results in this study, it can be deemed that the IEE was hydrolyzed to form eugenol and ibuprofen, followed by conjugation with glucuronic acid, which forms the major metabolic pathway of IEE in rats. LC/MS~n study brought the foundation for pharmacokinetic analysis of IEE-ME.
     A novel microemulsion, which administrated for oral and intravenous route, was prepared to facilitate the absorption, decrease GI side effect, and increase the bioavilability. For the mieroemulsions, Miglyol 812 was chosen as oil phase, SbPC and HS-15~(R) as surfactants (S), PEG400 and ethanol (7:3) as cosurfactant (CoS) and the double-distilled water as water phase. Pseudo-ternary phase diagrams were constructed to obtain the concentration range of each component for the microemulsion formation. The effects of various ratio of SbPC to HS-15 and different weight ratios of surfactant to cosurfactant (S/CoS) on the droplet size were investigated, as well as viscosity and stability of microemulsion. The constitute of stable blank ME with more oil and little surfactant was confirmed. The effect of drug on the ME was also examined. When the drug content was below 40%in oils (Miglyol 812), drug-loading of ME can obtained 100%with less droplet size. When the drug content was above 40%, the drug loading declined and the drug precipitation was founded. The droplet size and droplet distribution increased. The consist of optimize formulation was IEE/Miglyol 812/SbPC/HS-15/PEG 400/Ethanol/Water (6.4/9.6/6/6/8.4/3.6/60g).
     The in vivo pharrnacokinetic behavior of IEE was studied utilizing HPLC method. Using the oral and intravenous route, the absolute bioavailability and pharmaeokinetic study of IEE microemulsion in rats were performed. The pharmacokinetic parameters were studied according to non-compartment model. The distribution study after intravenous administration indicated that the drug concentration in liver and spleen, RES-rich tissues after the dose of IEE-ME were significantly lower. However, the drug concentrations were higher in heart, lung and brain than those after the dose of ibuprofen solution. The prolongation of the MRT and the delay of removal of IEE-ME from circulation indicated that the formulation has sustained effect.
     Acute toxicity results suggested that the LD_(50) of IEE-ME for oral and intravenous formulation were 714.7 and 197.2 mg/kg, respectively. The pharmaceutical safety test results indicated that hymolysis, simulation and pyrogen, none of these negative effects was found. The analgesic activity of IEE-ME was the same as the ibuprofen in mice utilizing hot plate method and acetic acid-induced analgesic method after the same dosage of oral and intravenous administration in pharmcodynamics test. Inhibitory effect of IEE-ME was significant by using intraplantar injection of carrageenan in rat and dimethylbenzene induced ear swelling in mice, respectively. The results of ulcerogenic activity indicated that the IEE-ME can significantly decrease(P<0.05)the GI irritation after oral administration. It was the same as the control group.
引文
[1] 金惠铭.炎症与抗炎药.北京:人民卫生出版社,1993:13-17.
    [2] Brendan JR Whittle. Gastrointestinal effects ofnonsteroidal and-inflammatory drugs. Fundamental & Clinical Pharmacology, 2003, 17: 301-313.
    [3] 杨秀岭,任书清,胡玉录等.非甾体抗炎药物胃肠道貌岸然不良反应及防治.中国医院药学杂志,2001,21(4):235-236.
    [4] Vane JR, Botting RM. New insight into the mode of action of anti-infalmmatory drugs. Inflamm Res, 1995, 44 (1): 1-10.
    [5] 颜文革,张守芳.非甾体抗炎药及其作用机理进展.沈阳药科大学学报,2001,18(1):64.
    [6] Dunjic BS, Axelson J, Ar'Rajab A, et al. Gastroproteetive capability of exogenous phosphatidyl choline in experimentally induced chronic gastric ulcers in rats. Scand J Gastroenterol, 1993, 28(1): 89-94.
    [7] 刘雁,李志军,非甾体抗炎药物的药理及临床应用进展.中国医院药学杂志,2000,20(12):748-750.
    [8] 谢义若,陈欣.非甾体抗炎药诱发胃肠并发症的防治.国外医药—合成药 生化药 制剂分册,2001,22(4):210-217.
    [9] Eickhoff W M, Engers DA, Mueller KR. Nanopartieulate NSAID compositions. USP 5, 518, 738.
    [10] Shanbhag VR, Crider AM, Gokhale R, Harpalani A, Dick RM. Easters and amide prodrugs of ibuprofen and naproxen: synthesis, antiinflammtory activity, and gastrointestinal toxicity. J Pharm Sci, 1992, 81: 149-154.
    [11] 阿基业,王广基.药物代谢研究与药物设计及结构修饰.药学进展,2002,26(2):80-86.
    [12] 奚念珠,顾学裘.药剂学(第2版).北京:人民卫生出版社.1989:159-162.
    [13] 袁继民,丁连生.现代药物制剂技要.济南:济南出版社.1992,336-352.
    [14] 刘臬林,周自永.前体药物研究进展.华西药学杂志,1990,5(1):49-53.
    [15] 苏怀德.我国第一个非处方药—布洛芬.中国医药导刊,2001,3(3):233-234.
    [16] 孙定人,王士凡,王功立等.药物不良反应(第二版),北京:人民卫生出版社,1996,254.
    [17] Cioli V, Putzolu S, Rossi V, Bareellona PS, Corradino C. Toxicol. Appl. PhramcoL, 1979, 50: 283-289.
    [18] Kramer RE. Antioxidants in clove. J Am Oil Chem Soc, 1985, 62(1): 111-128.
    [19] Nagshima K. Inhibitory effect of eugenol on copper-catalyzed lipid peroxidantion in human erythroeyte membrane, Int J Biochem, 1989, 21 (7): 745-761.
    [20] Bennett A, Stamford IF, Tavares LA, et al. The biological activity of eugenol, a major constituent of nutmeg; Studies on prostaglandins, the intestine and other tissues. Phytother Res, 1988, 2 (3): 124-132.
    [21] Dohi T, Terada H, Anamura S, et al. The anti-inflammtory effects of phenolic dental medicaments as determined by bouse ear edema. Jpn J Pharmcol, 1987, 49: 535-550.
    [22] Ssfford RJ, Basketter DA. Allenby CF et al. Immediate contact reactions to chemicals in the fragrance mix and a study of the quenching action of eugenol. Br. J. Dermatol, 1990, 23: 595-608.
    [23] 许青嫒,陈春梅,张小莉等.丁香及其主要成分的抗凝作用.中药药理与临床,1990,6 (6):31-36.
    [24] 张明发,沈雅琴.丁香温里药理研究.陕西中医.1995,16(9):419-422.
    [25] 张明发,沈雅琴,许青嫒.丁香和肉桂对缺氧和受寒小鼠的影响.中药材,1990,13(8):34-37
    [26] Hoar TP, Shulman JH. Nature (London), 1943, 102: 152.
    [27] 鲁莹,刘英,蒋雪涛.新型药物载体:微乳.国外医药—合成药生化药制剂分册,1999,20:253-260.
    [28] Lee MJ, Lee MH, Shim CK. Inverse targeting of drug to retieuloendothelial system-rich organs by lipid mieroemulsion emulsified with poloxamer 338. Int J Pharm, 1995, 113: 175-187.
    [29] Lundberg BB, Mortimer BC, Redgrave TG. Submieron lipid emulsions containing amphipathic polyethylene glycol for use as drug-carries with prolonged circulation time. Int J Pharm, 1996, 134: 119-127.
    [30] Prince LM. A theory of aqueous emulsion. I. Negative interfacial tension at the oil/water interface. J Colloid Interface Science, 1967, 23: 165-173.
    [31] Shinoda K, Friberg S. Microemulsions. Colloidal aspects. Adv Colloid Interface Sci, 1975, 4: 281-300.
    [32] Ruckenstein E, Drishnan R. Effect of electrolytes and mixtures of surfactants on the oil-water interfacial tension and their role in formation of microemulsions. J Colloid Interface Sci, 1980, 76: 201-211.
    [33] Hsiu OH, Chih CH. Preparation ofmicroemulsion using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs, J Pharm Sci, 1996, 85 (2): 138-143.
    [34] Moreno MA, Ballesteros MP, Frutos P, Lecithin-based oil-in-water mieroemulsion for parenteral use: pseudotemary phase diagrams, characterization and toxicity studies. JPharm Sci, 2003, 92 (7): 1428-1437.
    [35] Boman A, Blute I, Femstrom P, Carlfors J, Rydhag L. Percutaneous absorption of 4 organic solvents in the guinea pig (Ⅱ). Effect of surfaetants. Contact Dermatitis, 1989, 21 (2): 92-104 (Abstract).
    [36] 郭荣等.阴离子型微乳液的电导行为及其溶液结构.化学学报,1987,45:55-61.
    [37] Prince LM. Microemulsions, Theory and Practice, Charpter 1, Academic Press, New York. 1977.
    [38] Holthoff H, et al. Measurement of absolute coagulation rate constants for colloidal particles: comparison of single and multiparticle light scattering techniques. J Colloid Interface Sci, 1997, 192: 463-481.
    [39] Bergenholtz J, Romagnoli AA, Wagner NJ. Viscosity, mierostrueture and interparticle potential of AOT/H_2O/n-decane inverse mieroemulsiom. Langmuir, 1995, 11 (2): 1559-1579.
    [40] Bolzinger MA, Thevenin MA, Grossiord JL, Poelman MC. Characterization of a sucrose ester mieroemlusion by freeze fracture electron micrograph and small single neutron scattering experiments. Langrnuir, 1999, 15: 2307-2315.
    [41] Regev O, Ezrahi S, Aserin A, Garti N, Wachtel E, Kaler EW, Khan A, Talmon Y. A study of the microstucture of a four-component nonionic microemulsion by eryo-TEM, NMR, SAXS and SANS. Langmuir, 1996, 12: 668-674.
    [42] Boman A, Blute I, Fernstrom P, Carlfors J, Rydhag L. Pereutaneous absorption of 4 organic solvents in the guinea pig (Ⅱ). Effect of surfactants. Contact Dermatitis, 1989, 21 (2): 92-104 (Abstract).
    [43] John W, et al. Microstructure of microemulsions by freeze fracture electron microscopy, d Phys Chem, 1988, 92: 2294-2306.
    [44] Millan S, et al. in "Surfactant in Solution", Plenum Press, New York, 1984, 3: 1675-1684.
    [45] 李泉等.水/AOT/正庚烷微乳体系中磺酸根水化作用的FT-IR研究.应用化学,1998,15:1-10.
    [46] Kreilgaard M, Pedersen E J, Jaroszewski JW. NMR characterization and transdermal drug delivery potential of microemulsion systems. J Control Rel, 2000, 69 (3): 421-433.
    [47] 王红喜,蒋雪涛.微乳制剂的研究进展.国外医药一药学分册,1996,23(4):206-211.
    [48] 曹宗顺,卢风琦.微乳及其在药物制剂中的应用.国外医药一合成药生化药制剂分册,1993,14(5):289-293.
    [49] Cortesi R, Esposito E, Malettei A, et al. Formulation study for the antitumor drug camptothecin: liposomes, micellar solutions and microemulsion. Int JPharm, 1997, 159: 95-103.
    [1] 徐景达.有机化学(第四版),北京:人民卫生出版社,1995,P173-174.
    [2] Womack B, Whirter J. Org. Synth. Coll., 1957, 3: 14.
    [3] Span. ES 526, 987.
    [4] 闻韧主编.药物合成反应.北京:化学工业出版社,1995,P42-45.
    [1] 郑俊民主编.经皮给药新剂型.北京:人民卫生出版社,1997,243,295-311.
    [2] 殷恭宽主编.物理药学.北京:北京医科大学与中国协和医科大学联合出版社,1993:133,93,456.
    [3] Bruggeman WA, Steen JVD, Hutxinger O. Reversed-phase thin-layer chromatography of polynuclear aromatic hydrocarbons and ehlorigated biphenyls relationship with hydrophobieity as measured by aqueous solubility and oetanol-water partition coefficient. J. Chromatogr, 1982, 238: 335-346.
    [4] 朱文涛.物理化学(下).北京:清华大学出版社,1995,266-269.
    [5] Tantishaiyaku V, Wiwattanawongsa K, Pinsuwan S, et al. Characterization of mefenamic acid-guaiacol ester: stability and transport across Caco-2 cell monolayers. Pharm Res, 2002, 19: 1013-1018.
    [6] 魏树礼,李凡.漫反射光谱法和线性变温法在研究抗坏血酸稳定性中的应用.医药工业,1983,7:13-16.
    [7] 武风兰,艾立成,王岩等.热分析法在氨酚待因片剂剂型设计中的应用.沈阳药学院学报,1992,9 (2):84-86.
    [8] Komblum SS, Zoglio MA. Pharmaceutical heterogeneous systems I: hydrolysis of aspirin in combination with tablet lubricants in an aquous suspension. JPharm Sci, 1967, 56: 1569-1575.
    [9] Signoretti EC, Dellutri A, Salvo AD, et al. Compatibility study between cherbulerol and tablet excipients using different scanning calorimetry. Drug Dev lndPharm, 1986, 12(4): 603-620.
    [10] Botha SA, Lotter AP. Compatibility study between ketoprofen and tablet excipients using different scanning calorimetry. Drug Dev lndPharm, 1989, 15 (3): 415-426.
    [11] Botha SA, Lotter AP. Compatibility study between atenolol and tablet exeipients using different scanning calorimetry. Drug Dev lndPharm, 1990, 16 (12): 1945-1954.
    [1] Allen RH, Robert AC, Philip SB. Caco-2 cell monolayers as a model for drug transport across the intestinal mueoss. Pharm Res, 1990, 7(9): 902.
    [2] Gan LL, Dhiren RT. Applications of Caco-2 model in design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev, 1997, 23(1): 77.
    [3] Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 1989, 96(3): 736.
    [4] D'Agostino L, Pignata S. Polyamine uptake by human colon carcinoma cell line Caco-2. Digestion, 1990, 46 (Suppl 2): 352-359.
    [5] Tomon M, Tenenhouse HS, Jones G. Expression of 25-hydroxyvitamin D3-24-hydroxylase activity in Caco-2 cells. An in vitro model of intestinal vitamin D metabolism. Endocrinology, 1990, 126(6): 2868-2875.
    [6] Chen JU, Hu M, Zhu YP, et al. The study of kinetic model for the drug efflux from a human intestinal epithelial membrane model system. Acta Acad Med Shanghai, 1996, 23(4): 247-251.
    [7] Dantzig AH, Kuckworth DC, Tabas LB, Transport mechanisms responsible for the absorption of loracarbef, cefixime axetil into human intestinal Caco-2 cells. Biochem Biophys Acta, 1994, 1191(1): 7-13.
    [8] 胡晓渝,姚彤炜,曾苏.Caco-2细胞系及其在药物吸收、代谢中的应用.中国现代应用药学杂志,2002,19(2):88-90.
    [9] 蒋学华,贾运涛,袁缓等.Caco-2细胞模型在口服药物吸收过程研究中的应用.中国药学杂志,2002,37(5):325-327.
    [10] Hovggard L, Brordsted H and Buur A. Drug delivery studies in Caco-2 monolayers, synthesis, hydrolysis and transport of O-cycolpropane carboxylic acid ester prodrugs of various β-blocking gents. Pharm Res, 1995, 12: 387-392.
    [11] Gan LL and Dhiren RT. Application of Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev, 1997, 23: 77.
    [12] Hillgren KM, Kato A and Borchardt RT. In vitro systems for studing intestinal drug absorption. Med ResRev, 1995, 15: 83.
    [13] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志,1996,16:343-346.
    [14] 陈纪岳,胡明,朱彦平等.药物从小肠上皮细胞模型排放的动力学模型.上海医科大学学报,1996,23(4):247.
    [15] Tantishaiyakul V, Wiwattanawongsa K, Pinsuwan S, Kasiwong S, Phadoonhsombut N Characterization of mefenamic acid-gualacol ester: stability and transport across Caco-2 cell monolayers. Pharm Res, 2002, 19: 1013-1018.
    [16] Khan SI, Abourashed EA, Khan IA, Walker LA. Transport of Harman alkaloids across Caco-2 cell monolayers. Chem. Pharm. Bull, 2004, 52: 394-397.
    [17] Khan SI, Abourashed EA, Khan IA, Walker LA. Transport of parthenolide across human intestinal cells (Caco-2). Planta Med, 2003, 69: 1009-1012.
    [18] Liang E, Proudfoot J, Yazdanizn M. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in caco-2 cell monolayers. Pharm. Res, 2000, 17(10): 1168-1180.
    [19] Meunier V, Bourrie M, Berger Y, et al. The human intestinal epithelial cell line Caco-2: pharmacological and pharmacokinetic applications. Cell Biol Toxicol, 1995, 11: 187.
    [20] Tantishalyakul V, Wiwattanawongsa K, Pinsuwan S, Kasiwong S, Phadoonhsombut N Characterization of mefenamic acid-guaiacol ester: stability and transport across Caco-2 cell monolayers. Pharm Res, 2002, 19: 1013-1018.
    [21] Schmalfub V. Modification of drug penetration into human skin using microemulsions. J Controll Rel, 1997, 46: 279-285.
    [22] Krishna G, Chen KJ, Lin CC, & Nomeir AA. Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model Caco-2. Int J Pharm, 2002, 222 (1), 77-89.
    [23] Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. European Journal of Drug Metabolism Disposition, 2000, 10 (3) : 195-204.
    [24] Artursson P and Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun, 1991, 175: 880-885.
    [25] Wils P, Warnery A, Phung-Ba V, et al. Differentiated intestinal epithelial cell lines as in vitro models for predicting the intestinal absorption of drugs. Cell Biol Toxicol, 1994, 10: 393-397.
    [26] Lennemas H, Palm K, Fagerholm U, et al. Correlation between paracellular and transcellular drug permeability in the human jejunum and Caco-2 monolayers, Int J Pharm, 1996, 127: 103-107.
    [27] Wilson FA, Dietschy IM. The intestinal unstirred water layer: its surface area and effect on active transport kinetics. Biochim Biophys Acta, 1974, 363: 112-126.
    [1] 钟大放,田蕾,李雪庆.罗红霉素及其代谢物电喷雾离子阱质谱研究.高等化学学报,2000,21(1):31-35.
    [2] 钟大放,姜浩,顾景凯等.用电喷雾离子阱质谱法对SFZ-47在家兔体内两种主要代谢物的分析.沈阳药科大学学报,1999,16(1):1-5.
    [3] 钟大放.药物代谢,北京:医药科技出版社,1999,P3.
    [4] 宋振玉主编.药物代谢研究意义、方法、应用.北京:人民卫生出版社,1990,4-8.
    [5] 吴镭.药学科学前沿与发展方向.北京:中国医药科技出版社,2000,54-59.
    [6] 李家泰主编.临床药理学(第二版).北京:人民卫生出版社,1998:355-356.
    [7] 徐叔云,陈修,卞如濂主编.临床药理学(第一版).上海:上海科学技术出版社,1983:124-125.
    [8] 吴柏林,陆明廉,沈鹭等.紫外分光光度法测定人血清中苯妥英钠的浓度.中国医院药学杂志,1983,3:538-543
    [9] 李好枝,白刚,王思舜.可见分光光度法测定人体血浆中的Vc的含量.西北药学杂志,1992,7:5-7.
    [10] 张阿慧,卜志英,张阳等,薄层色谱法测定血浆中阿普唑仑浓度.中国药学杂志,1993,28:233-234.
    [11] Hout MW, Zeeuw RA, Franke JP, et al. Evaluation of programmed temperature vaporizer for large-volume injection of biological samples in gas chromatography. J Chromatogr B, 1999, 729: 199-210.
    [12] 李发美主编.医药高效液相色谱技术.北京:人民卫生出版社,1999:3-5.
    [13] Overy TR, Lee ED, Bruins AP, et al. Liquid Chromatography/Mass Spectrometry. Anal Chem. 1986, 58: 1451A-1461A.
    [14] Lee MS, Kerns EH. LC/MS applications in drug development. Mass spectrum Rev, 1999, 18: 187-279.
    [15] 胡蓓,江骥.串联质谱在药物及其代谢产物分析中的应用.现代药理实验方法.张均田主编. 北京:北京医科大学中国协和医科大学联合出版社.1998,1637-1642.
    [16] Oliveira EJ, Watson DG. Liquid chromatography-mass spectrometry in the study of the metabolism of drugs and other xerobiotics. Biomed Chromatogr. 2000, 14: 351-372.
    [17] 李慧义,罗淑荣,周同惠.液相色谱-质谱联用技术及其在药物代谢研究中的应用.国外医学药学分册,1997,24:257-263.
    [18] Brewer W, Henion J. Atomospheric pressure ionization LC/MS/MS techniques for drug disposition studies, J Pharm Sci, 1998, 67: 395-402.
    [19] Ikonomou MG, Blades AT, Kebarle P. Electrospray-ion spray: A comparison of Mechanisms and performance. Anal Chem, 1991, 63: 1989-1998.
    [20] Fenn JB, Mann M, Meng CK, et al. Electrospray ionization-principles and practice. Mass Spectrom Rev, 1990, 9: 37-70.
    [21] Gaskell SJ. Electrospray: principles and practice, J Mass Spectrom, 1997, 32: 677-688.
    [22] Careri M, Mangia A, Musei M. Applications of liquid chromatography-mass spectrometry interfacing systems in food analysis: pesticide, drug and toxic substance residues, J Chromatogr A, 1996, 727: 153-184.
    [23] Huang EC, Wachs T, Conboy JJ. Atmospheric pressure ionization mass spectrometry. Anal Chem, 1990, 62: 713A-725A.
    [24] Muck W. Quantitative analysis of pharmacokinetic study samples by liquid chromatography coupled to tandem mass specteometry (LC/MS/MS). Pharmazie, 1999, 9: 639-644.
    [25] Gibson GG, Skett P. Introduction to drug metabolism. New York: Chapman&Hall. 1994, 1-34.
    [26] 钟大放,顾景凯,陈仁弟等.3H-1,2-二氢-2-(4-甲基苯胺基)甲基-1-吡咯里嗪酮在家兔体内主要代谢产物的研究.药学学报,1996,31(11):855-860.
    [27] GU Jing-Kal, ZHONG Da-Fang, CHEN Xiao-Yan. Analysis of O-Glucuronide conjugates in urine by electrospray ion trap mass spectrometry. Fresenius, J. Anal. Chem, 1999, 365 (6) : 553-558.
    [28] 陈笑艳,钟大放,姜浩等.电喷雾离子阱质谱法直接测定几种药物的葡萄糖苷酸型代谢物.药学学报,1998,33:849-854.
    [29] Chai BL, Minkler PE, Hoppel CL. Determination of ibuprofen and its major metabolites in human urine by high-performance liquid chromatography. J Chromatogr, 1988, 430 (1) : 93-101.
    [30] Kepp DR, Sidelmann UG, T jornelund J et al. Simultaneous quantitative determination of the major phase Ⅰ and Ⅱ metabolism of ibuprofen in biological fluids by high-performance liquid chromatography on dynamically modified silica. J Chromatogr. B Biomed Sci Appl, 1997, 696 (2) : 235-241.
    [31] Solheim E, Scheline RR. Metabolism of alkenebenzene derivatives in the rat. Ⅱ. Eugenol and isoeugenol methyl ethers. Xenobiotica, 1976, 6 (3) : 137-150.
    [32] Fischer IU, von Unruh GE, Dengler HJ. The metabolism of eugenol in man. Xenobiotica, 1990, 20 (2) : 209-22.
    [1] James Swarbrick, Drug and the pharmaceutical sciences (a series of text books and monographs, Applied Analytical Industries, Inc, Wilmington, North Carolina, the 66th textbook "Colloidal Drug Delivery Systems" , edited by Jorg Kreuter.
    [2] Gasco MR. Microemulsions in the pharmaceutical field: perspectives and applications, in: Industrial Applications of microemulsions, Eds. ; Marcel Dekker, Inc. : New York, 1997; 97-122 pp.
    [3] 鲁莹,新型药物载体:微乳.国外医药—合成药生化药制剂分册,1999,20(4):253-258.
    [4] Warisnoicharoen W, Lansley AB, Lawrence MJ. Nonionic oil-in-water microemulsions: the effect of oil type on phase behavior. Int J Pharm, 2000, 198: 7-27. 29
    [5] 毕殿洲主编.药剂学(第四版).北京:人民卫生出版社,1999,p240.
    [6] Luke DR, Kasiske BL, Matzke GR, Awni WM, Keane WF. Effect of cyclosporine on the isolated perfused rat kidney. Transplantation, 1987, 43: 795-799.
    [7] Cavanak T, Sucker H, Formulation of dosage forms. Prog. Allergy, 1986, 38: 65-72.
    [8] 崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社,1999,p86.
    [9] Ho HO, Hsiao CC, Sheu MT. Preparation of microemulsions using polyglycerol fatty acid esters as surfactant for the delivery of protein drugs. J Pharm Sci, 1996, 85: 138-143.
    [10] Aboofazeli R, Lawrence MJ. Investigations into the formulation and characterization of phospholipids microemulsions: Ⅱ. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and alcohol: influence of purity of lecithin. Int J Pharm, 1994, 106: 52-61.
    [11] Von corswant, C. , Thoren, P, Engestrom S. Triglyceride based microemulsion for intravenous administration of sparingly soluble substances. J Pharm Sci, 1998, 87: 200-208.
    [12] Strey R. Microemulsion microstructure and interracial curvature. Colloid Polym. Sci. , 1994, 272: 1005-1019.
    [13] Carole M, Chetna S, Shilpa K, et al. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsion. J Pharm Sci, 1998, 87 (1) : 109-116.
    [14] Aveyard R, Binks BP, Clark S, and Fletcher PD. I. Cloud points, solubilisation and interfacial tensions in systems containing nonionic surfactants. J Chem Techno and Biotechnol, 1990, 48 (2) : 161-171.
    [15] Aboofazeli R, Patel N, Thomas M. Investigation into the formation and characterization of phospholipid microemulsions. Ⅳ. Pseudo-ternary phase diagrams of systems containing water-lecithin-alcohol and oil: the influence of the oil. Int J Pharm, 1995, 125 (1) : 107-116.
    [16] Bennett KE, Hatfield JC, Davis HT; Macosko CW, Scriven LE. Viscosity and conductivity of microemulsions. In: Robb, I. D. (ED.), Microemulsions. Plenum Press, New York, 1982, PP. 65-84.
    [17] Djordje L, Primorac M, Stupar M, Krajisnik D. Chracterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm, 2004, 271: 11-19.
    [18] Parris N, Joubran RF, Lu DP. Triglyceride microemusions: effect of nonionic surfactants and the nature of the oil. J Agric Food Chem, 1994, 42: 1295.
    [19] 李干佐.微乳液理论理论及其应用.北京:石油工业出版社,1995,141-142.
    [1] 刘昌孝,孙瑞元.药物评价实验设计与统计学基础.北京:军事医学科学出版社.1999,P107.
    [2] 国家药典委员会.中华人民共和国药典,二部,2000年版.北京:化学工业出版社,2000,附录,193-197.
    [3] 曾经泽.生物体内药物分析.北京医科大学中国协和医科大学联合出版社,1997,236-244.
    [4] Girard I, Ferry S. Protein binding of methohexital. Study of parameters and modulating factors using the equilibrium dialysis technique. J Pharmac Biomed Anal, 1996, 14: 583-591.
    [5] Klee GG. Clinical usage recommendation and analytic performance goals for total and free triiodothyronine measurements. Clin Chem, 1996, 42 (1) : 155-159.
    [6] Laznicek M, Laznickova A. The effect of lipophility on the protein binding and blood cell uptake of some acidic drugs. J Pharmac Biomed Anal, 1995, 13: 823-828.
    [7] Wilkins JN, Ashofteh A, Setoda D, et al. Ultrafiltration using the amicon MPS-1 for assessing methadone plasma protein binding. Ther Drug Monit, 1997, 19: 83-87
    [8] Boudoulas S, Lush RM, Mccall NA, et al. Plasma protein binding of phenylacetate and phenylbutyrate two novel antineoplastic agents. Ther Drug Monit, 1996, 18: 714-718.
    [9] Robieux I, Aita P, Sorio R, et al. Determination of unbound etoposide concentration in ultrafiltered plasma by high performance liquid chromatography with fluorimetric detection. J Chromatogr B, 1996, 686: 35-41.
    [10] Mayer LD, St-Onge G. Determination of free and liposome-associated doxorubicin incristice levels in plasma under equilibrium conditions employing ultrafiltration techniques. Anal Biochem, 1995, 232: 149-157.
    [11] Steinberg IZ, Schachman HK. Ultracentrifugation studies with absorption optics. V. Analysis of interactivity systems involving macromolecules and small molecules. Biochemistry, 1966, 5: 3728-3747.
    [12] Legg B, Rowland M. Cyclosporin: measurement of fraction unbound in plasma. J Pharm Pharmacol, 1987, 39: 599-603.
    [13] Besson MJ, Cheramy A, Gauchy C, et al. In vivo continous estimation 3H-dopamine Synthesis and release in the cat caudate nucleus. Effects of methyl-P-tyrosine and of transaction of the nigro neostriatal pathway. Naunyn-Schmiedeleberg's Arch. Pharmacol. 1973, 278 (1) : 101-105.
    [14] Wieraszko A. Release of acetyl choline from the brain in vivo: some comments on estimation methods and their application. Acta. Neurobiol, 1980, 40 (3) : 687-707.
    [15] Brunner GM, Carrupt P, Lisa P, Testa B, Rose S. Esters of L-dopa: structure hydrolysis relationships and ability to induce circling behavior in an experimental model of hemiparkinsonism. J Pharm Pharmacol, 1995, 47: 861-869.
    [16] Tantishaiyakul V, Wiwattanawongsa K, Pinsuwan S, Kasiwong S, Phadoonhsombut N. Characterization of mefenamic acid-guaiacol ester: stability and transport across Caco-2 cell monolayers. Pharm Res, 2002, 19: 1013-1018.
    [17] 钟大放,药物代谢.北京:中国医药科技出版社,47.
    [18] Park, KM, Lee MK, Hwang KJ, Kim CK. Phospholipid-based microemulsion of flubiprofen by the spontaneous emulsification process, Int. J. Pharm. 1999, 183: 145-154.
    [19] Park, K. , Kim, C. K. Preparation and evaluation of flurbiprofen-loaded microemulsion for parenteral delivery, Int. J. Pharm. 1999, 181: 173-179.
    [20] 苏怀德.我国第一个非处方药—布洛芬.中国医药导刊,2001,3(3):233-234.
    [21] Torchilin VP, Omelyanenko VG, Paposov MI, et al. Poly (ethylene glycol) on the liposome longevity. Biochim Biophys, 1994, 1195: 11-20.
    [22] Wheeler JJ, Wong KF, Anesll SM, Masin D, Baily MB. Polyethylene glycol modified phospholipids stabilize emulsion prepared from triacylglycerol. J Pharm Sci, 1994, 83: 1554-1564.
    [23] 余琛,洪有采,张慧等,反相HPLC法测定血清中布洛芬含量,药物分析杂志,1994,14(4):34-36.
    [24] 杨苍菁,袁倚盛,王广基等.RP-HPLC法测定血中布洛芬含量.色谱,1989,7(6):357-359.
    [25] Au DS, Kuo TH, Mederski SB, et al. Disposition of ibuprofen in nephrectomized dogs. Am J Cardiol, 1980, 45 (6) : 1201-1210.
    [26] Scherkl K, Frey HH. Pharmcokinetics of ibuprofen in the dog. J Vet Pharmacol Ther. 1987, 10 (3) : 261-265.
    [27] Samara E, Avnir D, Ladkani D et al. Pharmacokinetic analysis of diethylcarbonate prodrugs of ibuprofen and naproxen. Biopharm Drug Dispos, 1995, 16 (3) : 201-210.
    [28] 曾繁典.关于我国新药药代动力学研究指导原则修订工作的讨论意见.见:国内外药物代谢与药代动力学研究新进展研讨会资料汇编.1998:2
    [1] 马剑文.现代药品检验学.北京:人民军医出版社,1994:845.
    [2] 国家药品监督管理局.化学药物刺激性、溶血性和过敏性研究技术指导原则(第二稿).2004.
    [3] 徐叔云,卞如濂,陈修.药理实验方法学.北京:人民卫生出版社.
    [4] 章元沛.药理学实验.北京:人民卫生出版社,1996,226.
    [5] 陈奇.中药药理学实验.上海:上海科学技术出版社.
    [6] Sheha M, Khedr A, Elsheref H. Biological and metabolic study of naproxen-propyphenazone mutual prodrug. Eur. J Pharm Sci, 2002, 17: 121-130.
    [7] Cecchi R, Rusconi L, Tanzi MC, Danusso F. Synthesis and pharmacological evaluation of poly(oxyethylene)derivatives of 4-isobutylpyenyl-2-propionic acid. J Med Chem, 1981, 24: 622-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700