油页岩热解过程分子模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源消耗的快速增长,许多国家把油页岩资源作为一种重要的石油替代能源,因其巨大的储量和多元的开发利用方式,已成为各国能源发展战略的重心。油页岩又称油母页岩,是一种富含有机质的低热值固体燃料,生油有机质经过干馏热解可以转化为页岩油和热解气。油页岩中的生油母质具有复杂的大分子有机结构,其在干馏热解过程中与伴生矿物质有密切的相互作用关系,单一实验技术的研究手段已经很难准确推断和描述干馏产物组成、性质和工艺参数。
     油页岩干馏热解规律对油页岩矿物资源的开发利用具有重要意义,近年来随着计算机技术和理论化学的发展,分子模拟已在能源领域的研究中发挥着重要作用。本论文采用实验和分子模拟相结合的方法,对油页岩的生油有机质进行了系统研究,探索了干馏过程中矿物质与干酪根以及其裂解产物之间的作用关系,进而得到了产物生成规律和提高生油有机质转化率的矿物特性。主要包括以下研究内容:
     1.利用多种实验表征手段研究了油页岩中生油母质的结构特征和理化性能。采用裂解气相色谱与质谱联用技术、固体核磁等先进表征手段对干酪根的分子结构特征进行了系统研究;并采用热分析技术和比重瓶法对其理化性能进行分析,为研究油页岩性质提供了新的方法。
     2.利用计算机模拟技术将特征片段重组得到了平均分子模型,对分子模型进行了校正和评价,为干酪根的理论研究奠定了基础;并通过量子化学计算,得到电荷分布和相关化学键序,推测出干酪根热解产物生成规律,对油气生成研究具有指导意义。
     3.利用自制的实验干馏装置研究了四种伴生矿物在干馏过程中对有机质转化率、结焦率等参数的影响,探讨了矿物存在的情况下干酪根的热解行为,从而得到油页岩干馏热解规律。实验结果表明蒙脱石和石膏对干酪根分解有催化作用,可以降低结焦率,并可提高油气品质,对于提高油页岩干馏效率和降低成本都是有实际意义的。
     4.将计算机模拟技术应用于干馏过程中热解产物(热解气和液态油类物质)与矿物之间作用关系的研究中,研究了甲烷气体在矿物表面模型的吸附位置、吸附等温线、动力学和吸附热等性质;从微观角度解释了干馏热解气的吸附和扩散性质以及矿物质对热解产物组成的影响,对深入理解干馏热解过程和提高油气产率有一定指导作用。
With the rapid growth of global energy consumption, the oil shale is known asan important alternative energy source in many countries. Because of the hugereserves and diverse ways of comprehensive utilization, the oil shale has become thefocus of national energy strategy. Oil shale is a kind of fine-grained sedimentary rockthat contains the dispersed organic constituents. It is a kind of energy and mineralresource, which belongs to the solid fossil fuel with low calorific value. Oil shale canbe used in many aspects, for example, the dispersed organic matter can be convertedinto shale oil and pyrolysis gas after the thermal decomposition process. During thethermal decomposition process, the macromolecule and its pyrolysis products caninteract with the associated minerals. So the simplex experimental technology isdifficult to identify and describe the composition, properties and processingparameters of the products accurately.
     The characteristics of oil shale retorting pyrolysis have great significance on thedevelopment and utilization of oil shale resources. In recent years, with thedevelopment of computer technology and theoretical chemistry, molecularsimulation plays an important role in the field of energy research. This papercombines the molecular simulation technology and experimental technique to studythe details of oil-generated matter, the relationship between minerals and kerogen(contain its pyrolysis products). And then the forming process of pyrolysis productsand the mineral characteristics to improve oil yield was studied. The main contentsare as follows:
     (1) A variety of experimental characterization methods was used to study thekerogen molecular structure and physicochemical properties. The structuralparameters of kerogen were obtained from pyrolysis gas chromatography massspectrum (Py-GC-MS) and13C solid state nuclear magnetic spectra (13C NMR). Thedegree of crystallization and morphology were determined by the powder X-ray diffraction spectroscopy (P-XRD) and scanning electron microscopy (SEM). Thedensity was determined with a pycnometer using i-PrOH and the kinetic parameterswere obtaind using thermal analysis technology. This provides a new method tostudy the properties of oil shale.
     (2) The kerogen average molecular structural model was obtained byrecombination of the selected fragments using computer simulation technology. Thecorrection and evaluation were carried out to make the established model be logical.This structural model can be viewed as a foundation for the theoretical study of thekerogen. The microstructural parameters of the model (charge distribution, relatedbond length and bond order) were calculated by semi-empirical quantitativechemistry method. The forming process of pyrolysis products was speculated andthis has a guiding significance on the research of oil and gas generation.
     (3) The influence of the four minerals on organic matter has been studied in thedesigned pyrolysis device. The results show that the four minerals can change the oilproduction rate, organic carbon conversion rate and coking rate. The kerogenpyrolysis behavior with the presence of mineral was discussed. The resultsdemonstrate that montmorillonite can improve the oil production rate obviously.Gypsum and coke can react easily and generate calcium sulfide and carbon dioxide.It can reduce the yield of coke. Montmorillonite and gypsum can improve the qualityof the oil and gas. This study has a practical significance in improving the efficiencyof the dry distillation and reducing the cost of oil shale pyrolysis.
     (4) The molecular simulation technology was used to study the relationshipbetween pyrolysis products (oil and gas) and minerals surface. The adsorptionlocation, adsorption heat, sorption isotherm and diffusion coefficient of methane inthe four mineral models has been studied. The adsorption and diffusion properties ofpyrolysis gas and the influence of minerals on the pyrolysis product composition were explained from microscopic view. This can give a guide for comprehension ofoil shale pyrolysis and improving the yield of oil and gas.
引文
[1] J. Schmidt. Oil Shale Technology Challenge. OIL SHALE.2011,28(1):1-3
    [2] Y. Walter. Shale Oil-the Elusive Energy. Hubbert Center Newsletter,1998:1-8
    [3] Survey of Energy Resources World Energy Council,2007:93-118
    [4]施国泉.油页岩和页岩油.北京:中国石化出版社,2009:1-15
    [5] J. Hruljova, N. Savest, E.M. Kukersite Oil Shale Kerogen Solvent Swelling inBinary Mixtures. FUEL.2013,105:77-82
    [6] S.B. Keith, M.M. Swan. On the Origin of Kerogen. GEOCHIM COSMOCHIMAC.2010,74(12): A503-A503
    [7] N.D. Subasinghe, F. Awaja, S.K. Bhargava. Variation of Kerogen Content andMineralogy in Some Australian Tertiary Oil Shales. FUEL.2009,88(2):335-339
    [8] M. Vandenbroucke, C. Largeau. Kerogen Origin, Evolution and Structure.ORG GEOCHEM.2007,38(5):719-833
    [9] W. Taciuk. Does Oil Shale Have a Significant Future?. OIL SHALE.2013,30(1):1-5
    [10] O. Velts, M. Uibu, I. Rudjak, J. Kallas, R. Kuusik. Utilization of Oil ShaleAsh to Prepare PCC: Leachibility Dynamics and Equilibrium in theAsh-Water System. ENERGY PROCEDIA.2009,1:4843-4850
    [11] A. Trikkel, R. Kuusik, A. Martins, T. Pihu, J.M. Stencel. Utilization ofEstonian Oil Shale Semicoke. FUEL PROCESS TECHNOL.2008,89:756-763
    [12] Present Development Status of Oil Shale.2005.
    [13] S.Y. Li. The Developments of Chinese Oil Shale Activities. OIL SHALE.2012,29(2):101-102
    [14] J. Kann. Prospective Oil Shale Utilization. OIL SHALE.2012,29(1):1-2
    [15]王擎,徐峰,柏静儒.桦甸油页岩基础物化特性研究.吉林大学学报(地球科学版).2006,36(6):1006-1011
    [16] J.H. Tong, J.G. Liu, X.X. Han. Characterization of Nitrogen-ContainingSpecies in Huadian Shale Oil by Electrospray Ionization Fourier TransformIon Cyclotron Resonance Mass Spectrometry. FUEL.2013,104:365-371
    [17] J.H. Tong, J.G. Liu, X.X. Han. Strategy of Huadian Oil Shale ComprehensiveUtilization. OIL SHALE.200522(3):305-315
    [18] H.Q. Hu, J. Zhang, S.C. Guo. Extraction of Huadian Oil Shale with Water inSub-and Supercritical States. FUEL.1999,78(6):645-651
    [19] Q. Wang, B.Z. Sun, A.J. Hu. Pyrolysis Characteristics of Huadian Oil Shales.OIL SHALE.2007,24(2):147-157
    [20] S.R. Manchester, Z.D. Chen, B.Y. Geng. Middle Eocene flora of Huadian,Jilin Province, Northeastern China. ACTA PALAEOBOTANICA.2005,45(1):3-26
    [21] B.Q. Liu. Thermogravimetry of the Combustion Processes of Huadian OilShale: Northeast China Institute of Electric Power Engineering.1998
    [22] A.H. Mohammad, K. Sam, S. Abdurrahman, R. John, D. Georgios, A. Hani.Dielectric Properties of Jordanian Oil Shales. FUEL PROCESS TECHNOL.2009,90:1259-1264
    [23] K. Indrek, L.G. Jillian, M.S. Eric. Characterization of Chinese, American andEstonian Oil Shale Semicokes and Their Sorptive Potential. FUEL.2010,89:3300-3306
    [24] G.S. Pevneva, Z. Namkhainorov, N.G. Voronetskaya, A.K. Golovko.Composition of Organic Matter of Bituminous Sand and Oil Shale from theBayan Erkhet Deposit (Mongolia). PETROL CHEM+.2013,53(1):9-13
    [25] M.W. Amer, M. Marshall, Y. Fei, W.R. Jackson, M.L. Gorbaty, P.J. Cassidy,A.L. Chaffee. Comparison of the Yields and Structure of FUELs Derivedfrom Freshwater Algae (Torbanite) and Marine Algae (El-Lajjun Oil Shale).FUEL.2013,105:83-89
    [26] J.M. L. Al-Makhadmeh, M. Al-Harahsheh, G. Scheffknecht. Oxy-FUELTechnology: An Experimental Investigations into Oil Shale Combustionunder Oxy-Fuel Conditions. FUEL.2013,103:421-429
    [27] L.P. Zhang, Q.H. Deng, R.S. Zeng, N. Jiang, J. Liang. Migration of TraceElements in Fushun Oil Shale During Self-Combustion and ItsEnvironmental Significance. Presented at the Progress in EnvironmentalScience and Engineering (Iceesd2011),2012:933-938
    [28] M.A.B. Zanoni, H. Massard, M.F. Martins. Formulating and Optimizing aCombustion Pathways for Oil Shale and Its Semi-Coke. COMBUST FLAME.2012,159(10):3224-3234
    [29] Z.H. Wang, J. Liu, X.C. Chen, Y.Y. Sun, Y. Yu, J. Lin. Effect of near InfraredSpectrum on the Precision of PLS Model for Oil Yield from Oil Shale.SPECTROSC SPECT ANAL.2012,32(10):2770-2774
    [30] Q. Wang, H. Xu, H.P. Liu, C.X. Jia, W.Z. Zhao. Co-Combustion Performanceof Oil Shale Semi-Coke with Corn Stalk, Pt A. Presented at the2012International Conference on Future Electrical Power and Energy System,2012:861-868
    [31] P. Tiwari, M. Deo. Detailed Kinetic Analysis of Oil Shale Pyrolysis Tga Data.AICHE J.2012,58(2):505-515
    [32] S. Wang, X.M. Jiang, X.X. Han, J.H. Tong. Investigation of Chinese Oil ShaleResources Comprehensive Utilization Performance. ENERGY.2012,42(1):224-232
    [33] L.D. Zhang, X. Zhang, S.H. Li, Q. Wang. Comprehensive Utilization of OilShale and Prospect Analysis. Presented at the2012International Conferenceon Future Electrical Power and Energy System, Pt A,2012:39-43
    [34] X.M. Jiang, X.X. Han, Z.G. Cui. New Technology for the ComprehensiveUtilization of Chinese Oil Shale Resources. ENERGY.2007,32:772-777
    [35] Y.M. Xu, D.M. He, J.W. Shi, J. Guan, Q.M. Zhang. Zhang. Preparation ofAlumina from Retorting Residue of Oil Shale. OIL SHALE.2012,29(1):36-50
    [36] Y.T. Wang, M. Du, W.Y. Zhang, R.H. Zhang. Zhang. Ecological IndustrialChain Research of Oil Shale Development and Utilization Based onEcological Economics. Presented at the2012World Automation Congress(Wac),2012:
    [37] R. Talumaa. Development of Oil Shale Combustion Technologies for PowerProduction in Estonia. OIL SHALE.2012,29(4):303-305
    [38] T. Tohver. Utilization of Waste Rock from Oil Shale Mining. OIL SHALE.2010,27(4):321-330
    [39] A. Paist. Present and Future of Oil Shale Based Energy Production in Estonia.OIL SHALE.2011,28:85-88
    [40] S.Y.L. Y.Y. Shi, Y. Ma, C.T. Yue, W.Z. Shang, H.Q. Hu, J.L. He. Pyrolysis ofYaojie Oil Shale in a Sanjiang-Type Pilot-Scale Retort. OIL SHALE.2012,29(4):368-375
    [41] Y. Pan, X.M. Zhang, S.H. Liu, S.C. Yang, N. Ren. A Review on Technologiesfor Oil Shale Surface Retort. J CHEM SOC PAKISTAN.2012,34(6):1331-1338
    [42]吴怡喜,陈晓菲,黄建宁,赵杰,窦军录,田朋军.油页岩干馏工艺炼油及页岩油的回收.内蒙古石油化工.2011,201(8):19-20
    [43] M. Sennoune, S. Salvador, M. Quintard. Toward the Control of theSmoldering Front in the Reaction-Trailing Mode in Oil Shale SemicokePorous Media. ENERG FUEL.2012,26(6):3357-3367
    [44] A. Raukas, A. Siirde. New Trends in Estonian Oil Shale Industry. OILSHALE.2012,29(3):203-205
    [45] E. Ozgur, S.F. Miller, B.G. Miller, M.V. Kok. Thermal Analysis of Co-Firingof Oil Shale and Biomass Fuels. OIL SHALE.2012,29(2):190-201
    [46]韩晓辉,卢桂萍,孙朝辉,王志奉,耿卫东.国外油页岩干馏工艺研究开发进展.中外能源.2011,16(4):69-74
    [47] Y.J. Xia, H.Q. Xue, H.Y. Wang, Z.P. Li, C.H. Fang. Kinetics of Isothermal andNon-Isothermal Pyrolysis of Oil Shale. OIL SHALE.2011,28(3):415-424
    [48] E.P. Robertson, M.G. McKellar, L.O. Nelson. Integration of High TemperatureGas Reactors with in Situ Oil Shale Retorting. FUSION SCI TECHNOL.2012,61(1):452-457
    [49] S.Y. Li, C.T. Yue. Study of Pyrolysis Kinetics of Oil Shale. FUEL.2003,82:337-342
    [50] F. Behar, M. Vandenbroucke, Y. Tang, F. Marquis, J. Espitalie. ThermalCracking of Kerogen in Open and Closed Systems: Determination of KineticParameters and Stoichiometric Coefficients for Oil and Gas Generation. ORGGEOCHEM.1997,26(5-6):321-339
    [51] J.O. Jaber, S.D. Probert. Pyrolysis and Gasification Kinetics of JordanianOil-Shales. APPL ENERG.1999,63:269-286
    [52] T. Laine, J. Ille, L. Hans, Z. Alekseil, V. Natalia. Thermal Dissolution ofEstonian Oil Shale. J ANAL APPL PYROL.2009,85:502-507
    [53] N. Tsuzukia, N. Takeda, M. Suzuki, K. Yokoi. The Kinetic Modeling of OilCracking by Hydrothermal Pyrolysis Experiments. INT J COAL GEOL.1999,39(1-3):227-250
    [54] A.G. Borrego, J.G. Prado, E. Fuente, M.D. Guillén, C.G. Blanco. PyrolyticBehavior of Spanish Oil Shales and Their Kerogens. J ANAL APPL PYROL.2000,56:1-21
    [55] A.R. Leach. Molecular Modeling-Principles and Applications.2001
    [56]唐敖庆.量子化学.北京:科学出版社,1982:1-20
    [57] F. Ru, C. Chang. Computer Simulation of Interlayer Molecular Structure inSodium Montmorillonite Hydrates. LANGMUIR.1995,11:2734-2741
    [58] E. Hackett, E. Manias, E. P. Giannelis. Molecular Dynamics Simulations ofOrganically Modified Layered Silicates. J CHEM PHYS.1998,108(17):7410-7415
    [59] F. Smit.分子模拟-从算法到应用.北京:化学工业出版,2002:1-8
    [60] M.D.L. Chávez. Monte Carlo Molecular Simulation of the Hydration ofK-Montmorillonite at353K and625Bar. LANGMUIR.2004,20:10764-10770
    [61] X.H. Yi, S.S. Katherine, S. Muhammad. Muhammad. Molecular Simulation ofAdsorption and Diffusion in Pillared Clays. CHEM ENG SCI.1996,51(13):3409-3426
    [62]陈正隆.分子模拟的理论与实践.北京:化学工业出版,2007
    [63]曹斌,高金森,徐春明.分子模拟技术在石油相关领域的应用.化学进展.2004,16(2):2004
    [64]殷开梁,邬国英,陈正隆.正癸烷热裂解的分子动力学模拟研究.石油学报(石油加工).2001,17(3):77-82
    [65] M.M. Li, G.X. Wang, X.D. Guo, Z.W. Wub, H.C. Song. Theoretical Studies onthe Structures, Thermodynamic Properties, Detonation Properties, andPyrolysis Mechanisms of Four Trinitrate Esters. J MOL STRUCTHEOCHEM.2009,900:90-95
    [66] K.L. Yin, Q. Xia, D.J. Xu, Y.J. Ye, C.L. Chen. Development of an EmpiricalForce Field Crack for N-Alkanes That Allows for Classical MolecularDynamics Simulations Investigating the Pyrolysis Reactions. COMPUTCHEM ENG.2006,30:1346-1353
    [67]王宝俊,张玉贵,谢克昌.量子化学计算在煤的结构与反应性研究中的应用.化工学报.2003,54(4):477-488
    [68] J.B. Huang, C. Liu, S.N. Wei, X.L. Huang, H.J. Li. Density Functional TheoryStudies on Pyrolysis Mechanism of B-D-Glucopyranose. J MOL STRUCTHEOCHEM.2010,958:64-70
    [69] X.F. Zhou, R.F. Liu. A Density Functional Theory Study of the PyrolysisMechanism of Indole. J MOL STRUC THEOCHEM.1999,461-462:569-579
    [70] J. Espitalié, K.S. Makadi, J. Trichet. Role of the Mineral Matrix DuringKerogen Pyrolysis. ORG GEOCHEM.1984,6:365-382
    [71] L.X. Ling, R.G. Zhang, B.J. Wang, K.C. Xie. DFT Study on the SulfurMigration During Benzenethiol Pyrolysis in Coal. J MOL STRUCTHEOCHEM.2010,952:31-35
    [72] V. Aggarwal, Y.Y. Chien, B.J. Teppen. Molecular Simulations to EstimateThermodynamics for Adsorption of Polar Organic Solutes to Montmorillonite.EUR J SOIL SCI.2007,58:945-957
    [73] O.F. Zaidan, A.G. Jeffery, T.P. Roberto. Monte Carlo and Molecular DynamicSimulation of Uranyl Adoption on Montmorillonite Clay. CLAY MINER.2003,51(4):372-381
    [74] J.O. Titiloye, N.T. Skipper. Monte Carlo and Molecular DynamicsSimulations of Methane in Potassium Montmorillonite Clay Hydrates atElevated Pressures and Temperatures. J COLLOID INTERF SCI.2005,282:422-427
    [75] B. S. Greensfelder, H. H. Voge, G. M. Good. Catalytic and Thermal Crackingof Pure Hydrocarbons: Mechanisms of Reaction. J IND ENG CHEM.1949,41(11):2573-2584
    [76] B. Levent, W.L. John. Changes in the Cross-Link Density of G yniik OilShale (Turkey) on Pyrolysis. FUEL.2003,82:1305-1310
    [77] C.P. Marshall, G.D. Love, C.E. Snape, A.C. Hill, A.C. Allwood, M.R. Walter,M.J. Van Kranendonk, S.A. Bowden, S.P. Sylva, R.E. Summons. StructuralCharacterization of Kerogen in3.4Ga Archaean Cherts from the PilbaraCraton, Western Australia. PRECAMBRIAN RES.2007,155:1-23
    [78] S. Tao, Y.B. Wang, D.Z. Tang, H. Xu, B. Zhang, W. He, C. Liu. Compositionof the Organic Constituents of Dahuangshan Oil Shale at the Northern Footof Bogda Mountain, China. OIL SHALE.2012,29(2):115-127
    [79] X.T. Zhou, Z.D. Yu. Deep Shale Oil Extraction Integrated with CarbonDioxide Sequestration. NATURAL RESOURCES AND SUSTAINABLEDEVELOPMENT.2012,524-527:557-561
    [80] J. Wang, J. Du, L. Chang, K. Xie. Study on the Structure and PyrolysisCharacteristics of Chinese Western Coals. FUEL PROCESS TECHNOL.2010,91:430-433
    [81] T. Budinova, M. Razvigorova, B. Tsyntsarski, B. Petrova, E. Ekinci, M.F.Yardim. Characterization of Bulgarian Oil Shale Kerogen Revealed byOxidative Degradation. CHEM ERDE-GEOCHEM.2009,69:235-245
    [82] M. Khaddor, M. Ziyad, A. Amblès. Structural Characterization of the Kerogenfrom Youssoufia Phosphate Formation Using Mild Potassium PermanganateOxidation. ORG GEOCHEM.2008,39:730-740
    [83] S. Bajc, O. Cvetkovic, A. Ambles, D. Vitorovic. Characterization of Type IIIKerogen from Tyrolean Shale (Hahntennjoch, Austria) Based on ItsOxidation Products. J SERB CHEM SOC.2008,73:463-478
    [84] Y. Zeng, C. Wu. Raman and Infrared Spectroscopic Study of Kerogen Treatedat Elevated Temperatures and Pressures. FUEL.2007,86:1192-1200
    [85] J. Jehli ka, C. Beny. First and Second Order Raman Spectra of Natural HighlyCarbonified Organic Compounds from Metamorphic Rocks. J MOLSTRUCT.1999,481:541-545
    [86] E. Salmon, F. Behar, P.G. Hatcher. Molecular Characterization of Type IKerogen from the Green River Formation Using Advanced Nmr Techniquesin Combination with Electrospray Ionization/Ultrahigh Resolution MassSpectrometry. ORG GEOCHEM.2011,42:301-315
    [87] A.F. Muhammad, M.S. El Salmawy, A.M. Abdelaala, S. Sameah. El-NakheilOil Shale: Material Characterization and Effect of Acid Leaching. OILSHALE.2011,28(4):528-547
    [88] J. Bai, Q.Wang, S.Y. Li, C.Y. Li, X.H. Guan. Research on Release of TraceElements at Retorting of Huadian Oil Shale. OIL SHALE.2008,25:17-26
    [89] X.X. Han, X.M. Jiang, H. Wang, Z.G. Cui. Study on Design of Huadian OilShale-Fired Circulating Fluidized Bed Boiler. FUEL PROCESS TECHNOL.2006,87:289-295
    [90] H.Q. Hu, J. Zhang, S.C. Guo, G.H. Chen. Extraction of Huadian Oil Shalewith Water in Sub-and Supercritical States. FUEL.1999,78:645-651
    [91] P.C. Sun, R.F. Sachsenhofer, Z.J. Liu, S.A.I. Strobl, Q.T. Meng, R. Liu, Z.Zhen. Organic Matter Accumulation in the Oil Shale-and Coal-BearingHuadian Basin (Eocene; Ne China). INT J COAL GEOL.2013,105:1-15
    [92] A.F. Muhammad, M.S. El Salmawy, A.M. Abdelaal. Potential for UpgradingEl-Nakheil Oil Shale by Froth Flotation. OIL SHALE.2013,30(1):48-59
    [93] W.N. Song, Y.L. Dong, L.M. Xue, H.X. Ding, Z. Li, G.J. Zhou. HydrofluoricAcid-Based Ultrasonic Upgrading of Oil Shale and Its StructureCharacterization. OIL SHALE.2012,29(4):334-343
    [94] M.C. Torrente, M.A. Galan. Extraction of Kerogen from Oil Shale(Puertollano, Spain) with Supercritical Toluene and Methanol Mixtures. INDENG CHEM RES.2011,50(3):1730-1738
    [95] Z.B. Wei, X.X. Gao. D.J. Zhang, D.J. Zhang, J. Da. Assessment of ThermalEvolution of Kerogen Geopolymers with Their Structural ParametersMeasured by Solid-State13c Nmr Spectroscopy. J ANAL APPL PYROL.2001,58-59:315-328
    [96] J.H. Tong, X.G. Han, S. Wang, X.M. Jiang. Evaluation of StructuralCharacteristics of Huadian Oil Shale Kerogen Using Direct Techniques(Solid-State C-13NMR, XPS, FT-IR, and XRD). ENERG FUEL.2011,254006-4013
    [97] B.杜朗.干酪根——沉积岩中不溶有机质.《石油实验地质》编委会出版
    [98]傅家谟,秦匡宗.干酪根地球化学.广州:广东科技出版社,1995
    [99] B. Durand. Kerogen: Insoluble Organic Matter from Sedimentary Rocks.Paris: éditions Technip,1980
    [100] J.L. Faulon, P.G. Hatcher, G.A. Carlson, K.A. Wenzel. A Computer-AidedMolecular Model for High Volatile Bituminous Coal. FUEL PROCESSTECHNOL.1993,34:277-293
    [101] G. Domazetis, B.D. James. Molecular Models of Brown Coal ContainingInorganic Species. ORG GEOCHEM.2006,37:244-259
    [102] G.A. Carlson. Computer Simulation of the Molecular Structure of BituminousCoal. ENERG FUEL.1992,6:771-778
    [103] N. Berkowitz. The Chemistry of Coal. New York: Elsevier Science Pub. Inc.,1985
    [104] D.M. Cantor. Nuclear Magnetic Resonance Spectrometric Determination ofAverage Molecular Structure Parameters for Coal-Derived Liquids. ANALCHEM.1978,50:1185-1187
    [105] Y.T. Qi, F.X.Wang. Study and Evaluation of Aging Performance of PetroleumAsphalts and Their Constituents During Oxygen Absorption. III. AverageMolecular Structure Parameter Changes. PETROL SCI TECHNOL.2004,22:275-286
    [106] X.G. Dong, Q.F. Lei, W.J. Fang, Q.S. Yu. Thermogravimetric Analysis ofPetroleum Asphaltenes Along with Estimation of Average Chemical Structureby Nuclear Magnetic Resonance Spectroscopy. THERMOCHIMICA ACTA.2005,427:149-153
    [107] W.P. Ren, C.H.Yang, H.H. Shan. Characterization of Average MolecularStructure of Heavy Oil Fractions by (1)H Nuclear Magnetic Resonance andX-Ray Diffraction. CHINA PET PROCESS PE.2011,13:1-7
    [108] M. Nomura, K. Matsubayashi, T. Ida, S. Murata. A Study on Unit Structures ofBituminous Akabira Coal. FUEL PROCESS TECHNOL.1992,31:169-179
    [109] J.M. Rummey, M.C. Boyce. Introducing the gNMR Program in anIntroductory Nmr Spectrometry Course to Parallel Its Use by Spectroscopists.J. CHEM. EDUC.2004,81(5):762
    [110] A.R. Katritzky, N.G. Akhmedov, A. Goven. gNMR Simulated1H andProton-Coupled13C NNR Spectra of Substituted3-Nitropyridines. Giao/DftCalculated Values of Proton and Carbon Chemical Shifts and CouplingConstants. J MOL STRUCT.2006,787:131-147
    [111]吴永平,曹园,曹正中. gNMR软件在波谱解析中的应用.药学进展.2001,25(6):358-360
    [112] O.A. Mith, L.W. Icby. Preparation of Organic Concentrate from Green RiverOil Shale. ANAL CHEM.1960,32(12):1718-1719
    [113] O.Ermer. Calculation of Molecular Properties Using Force Fields. Applicationsin Organic Chemistry. STRUCT BOND.1976,27:161-211
    [114] T.Clark, A.Alex, B.Beck, F.Burkhardt, J.Chandrasekhar, P.Gedeck, A.Horn, M.Hutter, B. Martin, G. Rauhut, W. Sauer, T. Schindler, T. Steinke. Vamp10.0San Diego: Accelrys Inc.,2003
    [115] H. Sun, P. Ren, J.R. Fried. The Compass Forcefield: Parameterization andValidation for Polyphosphazenes. COMPUT THEOR POLYM S.1998,8(1/2):229
    [116] G. Tasi, I. Kiricsi, H. F rster. Representation of Molecules by Atomic Charges:A New Population Analysis. J COMPUT CHEM.1992,13:371-379
    [117] U. Lille, I. Heinmaa, T. Pehk. Molecular Model of Estonian Kukersite KerogenEvaluated by13c Mas Nmr Spectra. FUEL.2003,82:799-804
    [118] J.H. Shinn. From Coal to Single-Stage and Two-Stage Products: A ReactiveModel of Coal Structure. FUEL.1984,63:1187-1196
    [119] A. Marzec. Intermolecular Interactions of Aromatic Hydrocarbons inCarbonaceous Materials-a Molecular and Quantum Mechanics. CARBON.2000,38:1863-1871
    [120] S.L. Cockroft, C.A. Hunter, K.R. Lawson, J. Perkins, C.J. Urch. ElectrostaticControl of Aromatic Stacking Interactions. J AM CHEM SOC.2005,127:8594-8595
    [121] T.L. Dong, S. Murata, M. Miura, M. Nomura, K. Nakamura. Computer-AidedMolecular Design Study of Coal Model Molecules.3. Density Simulation forModel Structure of Bituminous Akabira Coal. ENERG FUEL.1993:1123-1127
    [122] G. Lendvay. On the Correlation of Bond Order and Bond Length. J MOLSTRUC THEOCHEM.2000,501-502:389-393
    [123] I. Mayer. Bond Orders and Valences from Ab Initio Wave Functions.QUANTUM CHEM.1986,29:477-483
    [124] W. Hodek, J. Kirschstein, K.H. van Heek. Reactions of Oxygen ContainingStructures in Coal Pyrolysis. FUEL.1991,70:424-428
    [125] P.E. Savage. Mechanisms and Kinetics Models for Hydrocarbon Pyrolysis. JANAL APPL PYROL.2000,54:109-126
    [126] B. Tissot, B. Durand, J. Espitalie, A. Combaz. Influence of Nature andDiagenesis of Organic Matter in Formation of Petroleum. AAPG BULL.1974,58(3):499-506
    [127] B.P. Tissot, R. Pelet, Ph. Ungerer. Thermal History of Sedimentary Basins,Maturation Indices, and Kinetics of Oil and Gas Generation. AAPG BULL.1987,71(12):1445-1466
    [128] J.G. Na, C.H. Im, S.H. Chung, K.B. Lee. Effect of Oil Shale RetortingTemperature on Shale Oil Yield and Properties. FUEL.2012,95(1):131-135
    [129] D.W. Zheng, S.Y. Li G.L. Ma, H.Y. Wang. Autoclave Pyrolysis Experiments ofChinese Liushuhe Oil Shale to Simulate in-Situ Underground ThermalConversion. OIL SHALE.2012,29(2):103-114
    [130] M.A.B. Zanoni, H. Massard, M.F. Martins, S. Salvador. Application of InverseProblem and Thermogravimetry to Determine the Kinetics of Oil ShalePyrolysis. HIGH TEMP-HIGH PRESS.2012,41(3):197-213
    [131] S. Wang, J.X.Liu, X.M. Jiang, X.X. Han, J.H. Tong. Effect of Heating Rate onProducts Yield and Characteristics of Non-Condensable Gases and Shale OilObtained by Retorting Dachengzi Oil Shale. OIL SHALE.2013,30(1):27-47
    [132] J.H. Tong, J.X. Liu, X.X. Han, Q. Shi, X.M. Jiang. Influence of Heating Rateon Basic Nitrogen-Containing Species Content in Dachengzi Shale OilStudied by Positive-Ion Electrospray Ionization FT-ICR Mass Spectrometry.OIL SHALE.2013,30(1):76-89
    [133] L. Tiikma, Y. Sokolova, N. Vink. Effect of the Concentration of OrganicMatter on the Yield of Thermal Bitumen from the Baltic Oil Shale Kukersite.SOLID FUEL CHEM+.2010,44(2):89-93
    [134] M. Sert, L. Ballice, M. Yuksel, M. Saglam. The Effects of Acid Treatment onthe Pyrolysis of Goynuk Oil Shale (Turkey) by Thermogravimetric Analysis.OIL SHALE.2012,29(1):51-62
    [135] B. Horsfield, A.G. Douglas. The Influence of Minerals on the Pyrolysis ofKerogens. GEOCHIM COSMOCHIM AC.1980,44(8):1119-1131
    [136] J.H. Dembicki. The Effects of the Mineral Matrix on the Determination ofKinetic Parameters Using Modified Rock Eval Pyrolysis. ORG GEOCHEM.1992,18(4):531-539
    [137] J.W. Yan, X.M.Jiang, X.X. Han, J.G. Liu. A TG-FTIR Investigation to theCatalytic Effect of Mineral Matrix in Oil Shale on the Pyrolysis andCombustion of Kerogen. FUEL.2013,104:307-317
    [138] B. Jovan i evi, D. Vu eli, M. aban, H. Wehner, D. Vitorovi. Investigationof the Catalytic Effects of Indigenous Minerals in the Pyrolysis of AleksinacOil Shale Substrates: Steranes, Triterpanes and Triaromatic Steroids in thePyrolysates. ORG GEOCHEM.1993,20(1):69-76
    [139] D. Liu, X.F.Yang, H.M. Wang, J.H. Li, N.A. Su. Impact of Montmorilloniteand Calcite on Release and Adsorption of Cyanobacterial Fatty Acids atAmbient Temperatures. J CHINA UNIV GEOSCI.2008,19(5):526-533
    [140] Z. Aizenshtat, I. Miloslavsky, L. Heller-Kallai. The Effect of Montmorilloniteon the Thermal Decomposition of Fatty Acids under “Bulk Flow” Conditions.ORG GEOCHEM.1984,7(1):85-90
    [141] M. Hetényi. Simulated Thermal Maturation of Type I and Iii Kerogens in thePresence, and Absence, of Calcite and Montmorillonite. ORG GEOCHEM.1995,23(2):121-127
    [142] C.C. Pan, L.L.Jiang, J.Z. Liu, S.C. Zhang, G.Y. Zhu. The Effects of Calcite andMontmorillonite on Oil Cracking in Confined Pyrolysis Experiments. ORGGEOCHEM.1995,41:611
    [143] J. Espitalié, M. Madec, B. Tissot. Role of Mineral Matrix in Kerogen Pyrolysis:Influence on Petroleum Generation and Migration. AAPG BULL.1980,64:59-66
    [144] E. Tannenbaum, B.J. Huizinga, I.R. Kaplan. Role of Minerals in ThermalAlteration of Organic Matter--Ii: A Material Balance. AAPG BULL.1986,70(9):1156-1165
    [145] R.J. Evans, G.T. Felbeck JR. High Temperature Simulation of PetroleumFormation—Ii. Effect of Inorganic Sedimentary Constituents onHydrocarbon Formation. ORG GEOCHEM.1983,4(3-4):145-152
    [146] H.R. Rose, D.R. Smith, A.M. Vassallo. An Investigation of ThermalTransformations of the Products of Oil Shale Demineralization UsingInfrared Emission Spectroscopy. ENERG FUEL.1993,7(2):319-325
    [147] S.S. Palayangoda, Q.P. Nguyen. An ATR-FTIR Procedure for QuantitativeAnalysis of Mineral Constituents and Kerogen in Oil Shale. OIL SHALE.2012,29(4):344-356
    [148] Test of Low Temperature Distillation of Coal by Aluminum Retort: ChineseNational Standard,2000
    [149] Gray-King Assay of Coal: Chinese National Standard,2007
    [150] T.I. Eglinton, S.J. Rowland, C.D. Curtis, A.G. Douglas. Kerogen-MineralReactions at Raised Temperatures in the Presence of Water. ORGGEOCHEM.1986,10(4-6):1041-1052
    [151] E.S. Freeman, B. Carroll. The Application of Thermoanalytical Techniques toReaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of theDecomposition of Calcium Oxalate Monohydrate. J PHYS CHEM.1958,62(4):394-397
    [152] C. Ravindra Reddy, Y.S. Bhat, G. Nagendrappa, B.S. Jai Prakash,. Br nstedand Lewis Acidity of Modified Montmorillonite Clay Catalysts Determinedby FT-IR Spectroscopy. CATAL TODAY.2009,141(1-2):157-160
    [153] E.M van der Merwe, C.A Strydom, J.H Potgieter. Thermogravimetric Analysisof the Reaction between Carbon and Caso42h2o, Gypsum andPhosphogypsum in an Inert Atmosphere. THERMOCHIM ACTA.1999(340-341):431-437
    [154] A.G. Borrego, B. Gómez, J.G. Prado, C.G. Blanco. Chromatographic Study ofSpanish Shale Oils. J ANAL APPL PYROL.2001,58-59:285-297
    [155] O. Nuray, Y. Jale, S. Mehmet, Y. Mithat. Liquefaction of Beypazari Oil Shaleby Pyrolysis. J ANAL APPL PYROL.2002,64:29-41
    [156] T.W. Paul, M.C. Hafeez. Influence of Residence Time and CatalystRegeneration on the Pyrolysis-Zeolite Catalysis of Oil Shale. J ANAL APPLPYROL.2001,60:187-203
    [157] H.P. He, Z. Ding, J.X. Zhu, P. Yuan, Y.F. Xi, D. Yang, L.F. Ray. ThermalCharacterization of Surfactant-Modified Montmorillonites. CLAY MINER.2005,53(3):287-293
    [158] S.Y. Li, C.T. Yue. Study of Different Kinetic Models for Oil Shale Pyrolysis.FUEL PROCESS TECHNOL.2003,85:51-61
    [159] T.W. Paul, M.C. Hafeez. Two Stage Pyrolysis of Oil Shale Using a ZeoliteCatalyst. J ANAL APPL PYROL.2000,55:217-234
    [160] J.M. Guil, J.A. Perdigón-Melóna, M. Brotas de Carvalho, A.P. Carvalho, J.Pires. Adsorption Microcalorimetry of Probe Molecules of Different Size toCharacterize the Microporosity of Pillared Clays. MICROPOR MESOPORMAT.2002,51:145-154
    [161] T. Daniel, B. Lubomir, H. Georg, H.G. Martin, L. Hans. Ab initio MolecularDynamics Study of Adsorption Sites on the (001) Surfaces of1:1Dioctahedral Clay Minerals. J PHYS CHEM B.2002,106:11515-11525
    [162] R. Gábor, M. éva, K. Tamás. Simulation and Experimental Study ofIntercalation of Urea in Kaolinite. J COLLOID INTERF SCI.2009,334:65-69
    [163] P. Sung-Ho, S. Garrison. Do Montmorillonite Surfaces Promote MethaneHydrate Formation? Monte Carlo and Molecular Dynamics Simulations. JPHYS CHEM B.2003,107:2281-2290
    [164] E. J. M. Hensen, T. J. Tambach, A. Bliek, B. Smit. Adsorption Isotherms ofWater in Li–, Na–, and K–Montmorillonite by Molecular Simulation. JCHEM PHYS.2001,115(7):3322-3329
    [165] G.K. Paul, A. Robert, I.K. Robert. An Investigation of Polar Constituents inKerogen and Coal Using Pyrolysis-Gas Chromatography-Mass Spectrometrywith in Situ Methylation ORG GEOCHEM.1995,23(7):627-639
    [166] J.S. Liu, X.H.Xie, B.M. Li, Q.H. Dong. Adsorption Characteristics ofThiobacillus Ferrooxidans on Surface of Sulfide Minerals. J CENT SOUTHUNIV T.2005,12(6):671-676
    [167] S. Al-Asheh, F. Banat, A. Masad. Physical and Chemical Activation ofPyrolyzed Oil Shale Residue for the Adsorption of Phenol from AqueousSolutions. ENVIRON GEOL.2003,44(3):333-342
    [168] T. Andres, K. Rein, M. Ants, P. T nu, M.S. John. Computer Simulation ofLiquids. FUEL PROCESS TECHNOL.2008,89:756-763
    [169] S.W. Bunte, H.J. Sun. Compass. PHYS CHEM B.2001,104:2477
    [170] S. AT LHAN. Molecular Dynamics Simulation of Montmorillonite andMechanical and Thermodynamic Properties Calculations. Texas: Texas A&MUniversity.2007
    [171] T. Yang, X.D.Wen, J.F. Li, L.M. Yang. Theoretical and ExperimentalInvestigations on the Structures of Purified Clay and Acid-Activated Clay.APPL SURF SCI.2006,252(18):6154-6161
    [172] J. T. Brian, R. Kjeld, M.B. Paul, M.M. David, S. Lothar. Molecular DynamicsModeling of Clay Minerals.1. Gibbsite, Kaolinite, Pyrophyllite, andBeidellite. J PHYS CHEM B.1997,101:1579-1587
    [173] C.E.威维尔, L.D.普拉德.粘土矿物化学.北京:地质出版社,1983
    [174] N.T. Darrell. Measurement of Adsorption and of Hydrocarbons over ProcessedParticles. FUEL.1995,74(8):1133-1139
    [175] T. Genzo, A.G. Lloyd. Predicting the Binding Energy for Nylon6,6/ClayNanocomposites by Molecular Modeling. POLYMER.2002,43:541-553
    [176] A.K. Galwey. Reactions of Alcohols and of Hydrocarbons on MontmorilloniteSurfaces. J CATAL.1970,19(3):330–342
    [177] Y.A. Strizhakova, N.C. Movsum-Zade, T.A. Avakyan, T.V. Usova. ProcessEvaluation of the Gasification of Leningrad Oil Shale. SOLID FUELCHEM+.2012,46(4):237-240
    [178] P.M. Soot, H. Voll, T.A. Koiv. Utilization of Oil Shale Retort Gas. OIL SHALE.2012,29(3):248-267
    [179] T. Su, A.M. Li, J.D. Luan. Adsorption Characteristics of Cadmium fromAqueous Solutions by Acid-Treated Oil Shale Ash. Presented at the20093rdInternational Conference on Bioinformatics and Biomedical Engineering,2009:6255-6258
    [180] P.M. Pimentel, M.A.F. Melo, D.M.A. Melo, A.L.C. Assuncao, D.M. Henrique,C.N. Silva, G. Gonzalez. Kinetics and Thermodynamics of Cu(Ii) Adsorptionon Oil Shale Wastes. FUEL PROCESS TECHNOL.2008,89(1):62-67
    [181] R.A. Shawabkeh. Adsorption of Chromium Ions from Aqueous Solution byUsing Activated Carbo-Aluminosilicate Material from Oil Shale. JCOLLOID INTERF SCI.2006,299(2):530-536
    [182] R. Shawabkeh, A. Al-Harahsheh, A. Al-Otoom. Copper and Zinc Sorption byTreated Oil Shale Ash. SEP PURIF TECHNOL.2004,40(3):251-257
    [183] H. Qin, Z.J. Tan, Q. Wang. Research on Adsorption of H2s by Oil Shale Ash.ADV MATER, Pts1and2.2012,463-464:133-137
    [184] B.L. Zhu, Z.M. Xiu, N. Liu, H.T. Bi, C.X. Lv. Adsorption of Lead andCadmium Ions from Aqueous Solutions by Modified Oil Shale Ash. OILSHALE.2012,29(3):268-278
    [185] M.J. Harrison, D.P. Woodruff, J. Robinson. Density Functional TheoryInvestigation of the Structure of So2and So3on Cu (111) and Ni (111).SURF SCI.2006,600:1827-1836
    [186] M. Meunier. Diffusion Coefficients of Small Gas Molecules in AmorphousCis-1,4-Polybutadiene Estimate by Molecular Dynamics Simulations. JCHEM PHYS.2005,123:134906
    [187] S.G. Wang, D.B. Cao, Y.W. Li. CH4Dissociation on Ni Surfaces: DensityFunctional Theory Study. SURF SCI.2006,600:3226-3234
    [188] R.M. Sheetz, I. Ponomareva, E. Richter. Defect-Induced Optical Absorption inthe Visible Range in Zno Nanowires. PHYS REV B.2009,80:195314
    [189] J. Ghassemzadeh, L.F. Xu, T.T. Tsotsis. Statistical Mechanics and MolecularSimulation of Adsorption in Microporous Materials: Pillared Clays andCarbon Molecular Sieve Membranes. J PHYS CHEM B.2000,104:3892-3905
    [190] E.J.M. Hensen, T.J. Tambach, A. Bliek. Adsorption Isotherms of Water in Li–,Na–, and K–Montmorillonite by Molecular Simulation. J CHEM PHYS.2001,115(7):3322-3329
    [191] H. Orita, N. Itoh, Y. Inada. All Electron Scalar Relativistic Calculations onAdsorption of Co on Pt (111) with Full-Geometry Optimization: A CorrectEstimation for Co Site-Preference. CHEM PHYS LETT.2004,384:271-276
    [192] J.Z. Yang, Q.L. Liu, H.T. Wang. Analyzing Adorption and Diffusion Behaviorsof Ethanol/Water through Silicalite Membranes by Molecular Simulation. JMEMBRANE SCI.2007,291:1-9
    [193] C. Tedesco, L. Erra, M. Brunelli. Methane Adsorption in a SupramolecularOrganic Zeolite. CHEM EUR J.2010,16:2371-2374
    [194] C.D. Wood, B. Tan, A. Trewin. Microporous Organic Polymers for MethaneStorage. ADV MATER.2008,20:1916-1921
    [195] M.K. Kostov, H. Cheng, A.C. Cooper. Influence of Carbon Curvature onMolecular Adsorptions in Carbon-Based Materials: A Force Field Approach.PHYS REV LETT.2002,89(14):146105
    [196] S. Yamagishi, T. Fujimoto, Y. Inada. Studies of Co Adsorption on Pt(100),Pt(410), and Pt(110) Surfaces Using Density Functional Theory. J PHYSCHEM B.2005,109:8899-8908
    [197] R.S. Pillai, G. Sethia, R. V. Jasra. Sorption of Co, CH4, and N2in Alkali MetalIon Exchanged Zeolite-X: Grand Canonical Monte Carlo Simulation andVolumetric Measurements. IND ENG CHEM RES.2010,49:5816-5825
    [198] I.F. Vasconcelos, B.A. Bunker. Molecular Dynamics Modeling of IonAdsorption to the Basal Surfaces of Kaolinite. J PHYS CHEM C.2007,111:6753-6762
    [199]吉利明,邱军利,张同伟.泥页岩主要黏土矿物组分甲烷吸附实验.地球科学———中国地质大学学报.2012,37(5):1043-1050
    [200]吉利明,邱军利,夏燕青.常见黏土矿物电镜扫描微孔隙特征与甲烷吸附性.石油学报(石油加工).2012,33(2):249-256
    [201]张永刚.泥质烃源岩中有机质富集机制.北京:石油工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700