生物可降解壳聚糖—聚乳酸接枝共聚物的制备、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是一种具有良好的生物相容性、生物降解性和生物活性的天然高分子,来源丰富。但是由于分子间的氢键相互作用,其难溶的性质,大大限制了壳聚糖的应用,接枝改性是改善壳聚糖性能的有效途径。聚乳酸具有一定的机械强度、生物相容性、生物降解性,作为生物医用材料受到了广泛重视。但是聚乳酸具有高结晶性、很强的疏水性,很大程度上限制了其在药物释放载体材料以及组织工程骨架材料上的应用。低分子量的壳聚糖具有良好的亲水性,将聚乳酸接枝到壳聚糖上制备壳聚糖接枝聚乳酸,既可以改善壳聚糖的机械性能,又可以改善聚乳酸的疏水性能,实现壳聚糖与聚乳酸两者性能互补,有望用于药物控释载体和组织工程材料,具有重要的理论研究价值和良好的应用前景。
     本文提出两种新的方法制备壳聚糖接枝乳酸低聚物(CS-OLA),即分别采用N,N’-羰基二咪唑(N,N'-Carbonyldiimidazole, CDI)、N,N’-二环己基碳二亚胺(N,N'-Dicyclohexylcarbodiimide, DCC)充当偶联剂将左旋或右旋乳酸低聚物连接到壳聚糖对应氨基或羟基上。利用CS-ODLA和CS-OLLA中ODLA与OLLA链段间立体复合作用制备壳聚糖基物理水凝胶体系。深入研究壳聚糖接枝乳酸低聚物反应条件,并对CS-OLA立体复合水凝胶的凝胶结构和药物控制释放行为进行了考察。
     首先以无毒的乳酸锌做催化剂,合成一系列分子量分布较窄的乳酸低聚物(OLA-OH),用CDI活化OLA-OH端羟基得到OLA-CI活性中间体,以4-二甲氨基吡啶(DMAP)为催化剂,将OLA-CI接枝到壳聚糖分子链上制备壳聚糖接枝乳酸低聚物(CS-OLA)。同时以无毒的乳酸锌做催化剂,合成一系列一端含羧基的乳酸低聚物(OLA-COOH), OLA-COOH端羧基被DCC活化后,在DMAP催化下,很容易与壳聚糖上C2-NH2、C6-OH反应,生成壳聚糖接枝乳酸低聚物(CS-OLA)。采用1H-NMR和FT-IR表征壳聚糖接枝乳酸低聚物合成反应。研究表明,壳聚糖C2-NH2反应活性比C6-OH高,OLA优先与C2-NH2反应。CS-OLA系列聚合物取代度与[CSunit]/[OLA]相接近,调节[CSunit]/[OLA]投料比值,可以得到不同取代度的CS-OLA聚合物。CS-OLA聚合物具有多样的溶解性,有助于制备纳米微粒或水凝胶。比较CDI和DCC充当偶联剂合成结果,OLA优先接枝到CS上C2-NH2位置,尤其在CS过量较大时,CS上C2-NH2反应活性明显高于CS上C6-OH。更为明显的是,DCC方法得到接枝共聚物取代度大于CDI方法,说明DCC方法的反应活性高于CDI方法。总体而言,合成CS-OLA接枝共聚物时,OLA聚合较低时,选用DCC方法比较好,OLA聚合度较高时,选用CD]方法比较适宜。
     通过MTT实验评价CS-OLA聚合物的细胞相容性,CS-OLA聚合物都具有良好的细胞相容性,其中水溶性较好的10#-CS5K-OLA20C、6#-CS5K-OLA20D样品尤其突出。选用这两个样品制备壳聚糖接枝乳酸低聚物立体复合水凝胶。采用凝胶溶胀比、DSC、WAXD、SEM测试方法表征凝胶的结构,研究表明,CS-OLA中OLLA与ODLA链段间立体复合作用是CS-OLA立体复合水凝胶形成的原因,CS-OLA立体复合水凝胶以壳聚糖长链为骨架,OLLA与ODLA链段间立体复合结构为物理交联点的三维网状结构。CS-OLA取代度越大,凝胶结构越致密,溶胀比越低。
     以胸腺五肽为模型药物,研究CS-OLA立体复合水凝胶药物控制释放性能。水凝胶药物控制性能与水凝胶结构、凝胶载药量有密切关系。致密的水凝胶结构,药物释放速率低,药物释放量少,释放量在75%以上,凝胶载药量对凝胶释放后期有影响,载药量高的凝胶后期释放速率比载药量低的凝胶高。壳聚糖接枝乳酸低聚物物理水凝胶体系可以在注射部位形成原位物理凝胶,具有优良的药物控制释放性能及生物相容性,可以预见在药物控释领域将得到广泛的应用。
Chitosan (CS) is a kind of natural macromolecules with excellent biocompatibility, biodegradability and bioactivity, and can be obtained from a wide range of natural sources. However, the intermoleculer hydrogen-bonding interactions contribute to its poor solubility in water and in many organic solvents, thus constraining its potential applications. Modification of CS by branding is an effective approach to improve its solubility. Poly(lactic acid) (PLA) presents outstanding mechanical strength, biocompatibility, and biodegradability, and has been attracting growing attention for various applications. Nevertheless, the high crystallinity and hydrophobicity of PLA greatly constrains its applications as drug-release carriers or tissue engineering scaffolds. Low molecular weight chitosan exhibits excellent hydrophilicity. Chitosan-Oligo(lactic acid) Graft Copolymers (CS-OLA), prepared by attaching OLA to CS backbone, will combine the mechanical strength of PLA with the hydrophilicity of CS. Therefore, CS-OLA presents great potential as controlled drug release carriers and tissue engineering scaffolds, which is of major importance for both fundamental research and pratical applications.
     Two novel reaction routes were proposed to prepare CS-OLA, using N,N'-carbonyldiimidazole (CDI) or N,N'-Dicyclohexylcarbodiimide (DCC) as the coupling agent to attach OLA to the amino and/or hydroxy groups of CS. The reaction conditions of CS-OLA synthesis were investigated in detail. CS-based physical hydrogel systems were prepared through stereocomplexation between ODLA and OLLA segments of CS-OLA. The stereocomplexed structure and drug release behavior of hydrogels were evaluated.
     A series of monodisperse hydroxyl-capped OLA (OLA-OH) were first synthesized using low toxic zinc lactate as initiator. OLA-OH was then activated by CDI to yield OLA-CI active intermediate. OLA-CI was finally coupled to the CS backbone to yield CS-OLA, usins DMAP as catalyst. In the meantime, carboxyl-capped OLA (OLA-COOH) was synthesized under similar conditions. Following the activation by DCC, OLA-COOH is readily attached to C2-NH2 and C6-OH of CS with DMAP as catalyst, thus yielding CS-OLA. Enhanced reactivity of C2-NH2 with respect to C6-OH was observed from 1H-NMR and FT-IR analyses. The degree of substitution of the CS-OLA was close to the molar ratio of [CSunit] to [OLA] in the feed, and could be adjusted by varying the feed ratio. The resulting CS-OLA graft copolymers present variable solubility, facilitating preparation of nano-particlcs or hydrogels. Comparison of the results obtained from CDI and DCC routes shows that OLA was attached to C2-NH2 on CS, especially when CS was in large excess, in agreement with the higher reactivity of C2-NH2 as compared to C6-OH of CS. Furthermore, the degree of substitution of CS-OLA obtained by DCC approach is higher than that by CDI approach. Altogether, DCC approach is preferable for the synthesis of CS-OLA with shorter OLA segments, while CDI approach is preferable with longer OLA segments.
     The cytocompatibility of CS-OLA was determined via MTT assay. All the copolymers present excellent cytocompatibility, especially well water-soluble 10#-CS5K-OLA20C and 6#-CS5K-OLA20D. The latters were then selected to prepare CS-OLA stereocomplex hydrogels. The swelling ratio, DSC, WAXD, SEM measurements were employed to determine the hydrogel structure. Data showed that the formation of hydrogels results from stereocomplexation between ODLA and OLLA segments of CS-OLA. A three-dimensional network structure is formed with CS as framework and OLLA/ODLA stereo-complex as physical crosslinks. With increasing degree of substitution, the gel structure becomes denser and the swelling ratio decreases.
     The drug release behavior of the hydrogels was investigated using thymopentin (TP-5) as model drug. A more compact hydrogel structure leads to lower drug release rate and total released ratio. The drug load also affects the release behavior:hydrogels with higher load exhibit an increased release rate at the later stage with respect to those with lower drug load. CS-OLA physical hydrogel is injectable and can be formed at the injection site in situ, which is very promising in the field of controlled drug release.
引文
[1]俞耀庭.生物医用材料[M].天津:天津大学出版社,2000:45-73.
    [2]杨向萍,周巧龙,吴伶伶.生物材料学[M].北京:科学出版社,2004:52-58.
    [3]Liu L.J., Li S. M., Garreau H., Vert M.. Selective Enzymatic Degradations of Poly(L-lactide) and Poly(s-caprolactone) Blend Films [J]. Biomacromolecules,2000,1: 350-359.
    [4]Schlichting K., Dahne M., Weiler A.. Biodegradable composite implants [J]. Sports Medicine and Arthroscopy Review,2006,14:169-176.
    [5]Thomson R. C., Yaszemski M. J., Powers J. M., et al. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration [J]. Biomaterials,1998,19:1935-1943.
    [6]Zhang S. M., Cui F. Z., Liao S. S., et al. Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite [J]. Journal of Materials Science:Materials in Medicine,2003,14:641-645.
    [7]Pariente J. L., Bordenave L., Bareille R., et al. The biocompatibility of catheters and stents used in urology [J]. Biomaterials,2000,21:835-839.
    [8]杨子彬.论植入体内医用材料的生物相容性[J].中国医疗器械信息,2006,12:36-39.
    [9]蒋挺大.甲壳素[M].北京:中国环境科学出版社,1996,355-362.
    [10]Brine C. J., Sandford P. A., Zikakis J. P.. Advances in Chitin and Chitosan[M]. New York:Elsevier,1992,11-15.
    [11]Muzzarelli R. A. A., Jeuniauk C., Gooday G. W.. Chitin in Nature and Technology[M]. New York:Plenum,1986,21-23.
    [12]Marguerite R.. Chitin and chitosan:Properties and applications[J]. Progress in polymer science,2006,31:603-632.
    [13]Robert Y.J.. Introduction to Polymers[M], Chapman and Hall Ltd., London,1981.
    [14]Sjak-Braek G.., Anthonsen T., Sandford P.. Chitin and Chitosan [M]. New York:Elsevier, 1992,2-10.
    [15]Noishiki Y., Takajmi H., Nishiyama Y. Alkli-induced conversion of α-chitin to γ-chitin[J]. Biomacromolecules,2003,4:896-899.
    [16]Chang K.L.B., Tai M.C., Cheng F. H.. Kinetics and products of the degradation of chitosan by hydrogen peroxide [J]. Journal of Agricultural and Food Chemistry,2001,49:4845-4851.
    [17]Kurita K., Kamiya M., Nishimur SI.. Solubilization of a rigid polysaccharide:Controlled partial N-Acetylation of chitosan to develop solubility [J]. Carbohydrate Polymers,1991,16:83-92.
    [18]Kurita K.. Controlled functionalization of the polysaccharide chitin[J]. Progress in polymer science,2001,26:1921-1971.
    [19]Horton, D.; Just, E.K.. Preparation from chitin of (1→4)-2-amino-2-deoxy-β--glucopyranuronan and its 2-sulfoamino analog having blood-anticoagulant properties[J]. Carbohydrate Research.1973,29:173-179.
    [20]蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.
    [21]汪玉庭,刘玉红,张淑琴.甲壳素、壳聚糖的化学改性及其衍生物应用研究进展[J].功能高分子学报,2002,15:107-114.
    [22]Badawy M.E.I., Rabea E.I., Rogge T.M., et al. Synthesis and fungicidal activity of new N,O-Acyl chitosan derivatives [J]. Biomacromolecules,2004,5:589-595.
    [23]Nishimura SI, Kai H., Shinada K., et al. Regioselective syntheses of sulated polysaccharides:specific anti-HIV1 activity of novel chitin sulfate [J]. Carbohydrate Research, 1998,306:427-433.
    [24]Liu C.G., Desai K.G.H., Chen X.G., et al. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles [J]. Journal of Agricultural and Food Chemistry,2005,53:437-441.
    [25]Zhang M., Yamashita K., Kadowaki K., et al. Some novel N-fatty acyl derivatives of a microbial galactosaminan [J]. International Journal of Biological Macromolecules,1996,18: 307-309.
    [26]Uragami T.,Kato S., Miyata T.. Structure of N-alkyl chitosan membranes on water-permselectivity for aqueous ethanol solutions[J]. Journal of Membrane Science,1997, 124:203-211.
    [27]Philippova O.E, Volkov E.V, Sitnikova N.L., et al. Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative [J]. Biomacromolecules,2001,2: 483-490.
    [28]Ohya Y., Nonomura K., Ouchi T.. Design of Lysosomotropic Macromolecular Prodrug of Doxorubicin Using N-Acetyl-O-1,4-Polygalactosamine as a Targeting Carrier to Hepatoma Tissue[J]. Journal of Bioactive and Compatible Polymers,1998,13:257-269.
    [29]Zhu A.P., Fang N.. Adhesion dynamics, morphology, and organization of 3T3 fibroblast on chitosan and its derivative:the effect of O-carboxymethylation [J]. Biomacromolecules,2005,6: 2607-2614.
    [30]Tokura S., Tamura H.. O-carboxymethyl-chitin concentration in granulocytes during bone repair [J]. Biomacromolecules,2001,2:417-421.
    [31]Muzzarelli R.A.A., Tanfani F.. N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans:Novel chelating polyampholytes obtained from chitosan glyoxylate[J]. Carbohydrate Research,1982,107:199-214.
    [32]Casal E., Corzo N., Moreno F.J., et al. Selective recovery of glycosylated caseinmacropeptide with chitosan [J]. Journal of Agricultural and Food Chemistry,2005,53: 1201-1204.
    [33]Kurita K., Mori S., Nishiyama Y., et al. N-alkylation of chitin and some characteristics of the novel derivatives [J]. Polymer Bulletin,2002,48:159-166.
    [34]Liu W.G., Zhang X., Sun S.J., et al. N-alkylated chitosan as a potential nonviral vector for genetransfection [J]. Bioconjugate Chemistry,2003,14:782-789.
    [35]Kurita K., Nishibori T., Harata M.. Synthesis and asymmetric reducing performance of chitin/dihydronicotinamide conjugates having glycine or L-leucine spacer arms [J]. Biomacromolecules,2002,3:705-709.
    [36]Lowe C. E., Buffalo N. Y.. Prepatation of High Molecular Weight Polyhydroyacetic Ester [P]. US patent:2688152,1954.
    [37]Hiltunen K., Jukka V.. Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers [J]. Macromolecules,1997,30:373-379.
    [38]Kulkami R.. K. Polylactic acid for surgical implants[J]. Archives Surgery.1966,93: 839-845.
    [39]Leenslag J. W., Penning A. J., et al. Resorbable materials of Poly(L-lactide). Ⅵ. Plates and screws for internal fracture fixation [J]. Biomarerials,1987,8:70-79.
    [40]Schneider A.K. (Dupont). Polymers of high-melting lactide. USP,2703316,1955,5.
    [41]Ajioka M., Enomoto K., Yamaguchi A..The Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid [J]. Journal of Polymers and the Environment, 1995,3:225-234.
    [42]Ralph J. F., Joan S. F.. Organic Chemistry [M]. Willard Grant Press,1979, Boston.
    [43]Gilding D. K., Reed A. M.. Biodegradable polymer for use in surgery-polyglycolic/ poly(actic acid) homo-and copolymers:1 [J]. Polymer,1979,20:1459-1464.
    [44]Kricheldorf H. R., Damrau D. O.. Polylactones.44.Polymerizations of L-Lactide catalyzed by manganese salts [J]. Journal of Macromolecular Science, Part A,1998,35:1875-1887.
    [45]Kohn F. E., Van Ommen J. G., Feijen J.. The mechanism of the ring-opening polymerization of lactide and glycolide [J]. European Polymer Journal,1983,19:1081-1088.
    [46]Jonte J. M., Dunsing R., Kricheldorf H. R. J.. Polylactones.4. Cationic polymerization of lactones by Means of alkylsulfonates [J]. Journal of Macromolecular Science, Part A,1985,22: 495-514.
    [47]Kricheldorf H. R., Lee S. R.. Polylactones.32. High-molecular-weight polylactides by ring-opening polymerization with dibutylmagnesium or butylmagnesium chloride [J]. Polymer, 1995,36:2995-3003.
    [48]Yuan M. L., Deng X. M., Xiong C. D.. Ring-opening polymerization of ε-caprolactone initiated by cyclopentadienyl sodium [J]. Journal of Applied Polymer Science,1998, 67:1273-1281.
    [49]Bhaw Luximon A., Jhurry D., Spassky N, et al. Anionic polymerization of D,L-lactide initiated by lithium diisopropylamide [J]. Polymer,2001,42:9651-9656.
    [50]Trofirmoff L., Aida T., Inoue Sh.. Formation of poly(lactide) with controlled molecular weight. Polymerization of lactide by Aluminum porphyrin [J]. Chemical Letter,1987,991-998.
    [51]申有青,张富尧,张一峰,沈之荃.稀土化合物催化内酯开环聚合[J].高分子学报,1995,2:222-227.
    [52]Melain S. J., Ford T. M., Drysdale N. E.. Preparation of easily degradable star-block copolymers with polycaprolactone inner and polylactide outer arms [J]. Polymer Reprint,1994,35: 594-603.
    [53]姚英明,沈琪,扈晶余.二(2,6-二叔丁基-4-甲基苯氧基)钐催化丙交酯开环聚合[J].应用化学,1998,15:62-64.
    [54]Stevels W. M., Ankone M. J. K, Dijkstra P. J., et al. A versatile and highly efficient catalyst system for the preparation of polyesters based on lanthanide tris(2,6-di-tert-butylphenolate)s and various alcohols [J]. Macromolecules,1996,29:3332-3333.
    [55]Deng X. M., Zhu Z. X., Xiong C. D.. Ring-opening polymerization of ε-caprolactone initiated by rare earth complex catalysts [J]. Journal of Applied Polymer Science,1997,64: 1295-1299.
    [56]Gupta M. C., Fischer C. H.. Thermal oxidative degradation of poly lactic acid [J]. Colloid & Polymer Science,1982,260:514-517.
    [57]钟伟,戈进杰,马敬红等.聚乳酸的直接缩聚制备及其异氰酸酯扩链探索[J].复旦学报(自然科学版),2000,33:705-708.
    [58]Otera J., Kawada K., Yano T.. Direct condensation polymerization of L-lactic acid catalyzed by distannoxane [J]. Chemistry Letters,1996,3:225-228.
    [59]Akutsu F., Inoki M., Uei H., et al. Synthesis acid using l,l'-carbonyldiidazole, N,N,N',N'-tetramethylchloroformanidinium chloride and N,N'-dicyclohexylcarbodiimide as condensing agents [J]. Polymer journal,1998,30:421-423.
    [60]严冰,赵耀明,麦杭珍.溶液聚合直接合成聚乳酸的研究[J].合成纤维工业,2002,25:19-20.
    [61]Woo S. I., Kim B. O., Jun H. S.. Polymerization of aqueous lactic acid to prepare high molecular weight poly(lactic acid) by chain-extending with hexamethylene diisocyanate [J]. Polymer Bulletin,1995,35:415-421.
    [62]Hiltunen K, Seppala J V, Harkonen M.. Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers [J]. Macromolecules,1997,30: 373-379.
    [63]Moon S. I., Lee C. W., Taniguchi I., et al. Melt/solid polycondensation of L-lactic acid:an alternative route to poly(L-lactic acid) with high molecular weight [J]. Polymer,2001,42: 5059-5062.
    [64]汪朝阳,赵耀明,麦杭珍等.熔融-固相缩聚法中固相聚合对聚乳酸合成的影响[J].材料科学与工程,2002,20:403-406.
    [65]吴素坤,赵炯心.聚乳酸直接缩聚反应的研究[J].国际纺织导报,2001,4:30-33.
    [66]宇恒星,王朝生,黄南熏等.聚乳酸的聚合方法[J].化工新型材料,2002,30:16-20.
    [67]Akutsu F., Inoki M., Morita T., et al. Synthesis of poly(lactic acid) from the salts of 2-halogenopropanoic acid [J]. Polymer J,1995,27:1147-1153.
    [68]Amass A. J. N., Goala K. L. R., Tighe B. J., et al. Polylactic acids produced fromL-and D,L-lactic acid anhydrosulfite:stereochemical aspects [J]. Polymer,1999,40:5073-5078.
    [69]Tsuji H., Ikarashi H.. In vitro hydrolysis of PLLA crystalline residues as extended chain crystallites [J]. Biomaterials,2004,25:5449-5455.
    [70]Cam D., Hyon SH., Ikada H.. Degradation of high molecular weight poly(L-lactide) in alkaline medium [J]. Biomaterials,1995,16:833-843.
    [71]Li S.M., Dobrzynski P., Kasperczyk J., Bero M., Braud C., Vert M.. Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 2. Influence of composition and chain microstructure on the hydrolytic degradation [J]. Biomacromolecules.2005,6:489-497.
    [72]Distner H., Bendix D. R., Muehling J., et al. Poly (L-lactide):a long-term degradation study in vivo:Part Ⅲ. Analytical characterization [J]. Biomaterials,1993,14:291-298.
    [73]Pistner H., Stallforth H., Gutwald R., et al. Poly(L-lactide):a long-term degradation study in vivo:Part Ⅱ:physico-mechanical behaviour of implants [J]. Biomaterials,1994,15: 439-450.
    [74]Tsuji H., Ikada Y.. Properties and morphology of poly(L-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-buffered solution [J]. Polymer Degradation and Stability,2000,67:179-189.
    [75]Li S.M., Vert M.. The encyclopedia of controlled drug delivery [M]. John Wiley & Won, 1999, USA.
    [76]刘建伟,赵强,万昌秀.医用聚乳酸体内降解机理及应用研究进展[J].航天医学与医 学工程,2001,14:308-312.
    [77]Duek E. A. R., Zavagia C. A. C., Belangero W. D.. In vitro study of poly(lactic acid) pin degradation [J]. Polymer,1999,40:6465-6473.
    [78]Vert M., Mauduit J., Li S.M.. Biodegradation of PLA/GA polymers:increasing complexity [J]. Biomaterials,1994,15:1209-1213.
    [79]Qu X., Wirsen A., Albertsson A.. Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D,L-lactic acid [J]. Journal of Applied Polymer Science,1999,74: 3193-3202.
    [80]Yao F.L., Chen W., Wang H., et al, A study on cytocopatible poly(chitosan-L-lactide acid) [J]. Polymer,2003,44:6435~6441.
    [81]Luckachan G.E., Pillai C.K.S.. Chitosan/oligo L-lactide graft copolymers:Effect of hydrophobic side chains on the physico-chemical properties and biodegradability [J]. Carbohydrate Polymers,2006,64:254-266.
    [82]Wu Y., Zheng Y.L., Yang W.L., Wang C.C., Hu J.H., Fu S.K.. Synthesis and characterization of a novel amphiphilic chitosan-polylactide graft copolymer [J]. Carbohydrate Polymers,2005,59:165-171.
    [83]Liu Y., Tian F., Hu K. A.. Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan [J]. Carbohydrate Research,2004,339:845-851.
    [84]陈炜.壳聚糖与聚乳酸接枝共聚物的制备与性能测试[D].天津大学.2004.
    [85]Feng H., Dong C.M.. Synthesis and characterization of phthaloyl-chitosan-g-poly (L-lactide) using an organic catalyst [J]. Carbohydrate Polymers,2007,70:258-264.
    [86]Feng H., Dong C.M.. Preparation, Characterization, and Self-Assembled Properties of Biodegradable Chitosan-Poly(L-Lactide) Hybrid Amphiphiles. Biomacromolecules,2006,7: 3069-3075.
    [87]郝红.PLLA及其共聚物的研究[D].西北工业大学.2005.
    [88]Hoffillan A.S.. Hydrogels for biomedical applicationas [J]. Advanced Drug Delivery Reviews,2002,43:3-12.
    [89]PePPas N.A., GMikos A.. Hydrogels in Medicine and Pharmacy [M].CRCPress:Boca Raton,FL,1986,1-27.
    [90]Wichterle O., Lim D.. Hydrophilic gels for biologic use[J].Nature,1960,185:117-118.
    [91]Lim F, Sun A M. Microencapsulated islets as bioartificial pancreas [J]. Science,1980, 210:908-910.
    [92]Yannas I. V.,Lee E., Orgill D. P.. Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin [J]. Proceedings of the National Academy of Sciences,1989,86:933-937.
    [93]董雯.水凝胶的制备与应用研究[D].中国石油大学,2007.
    [94]Ouchi S..Application of superabsorbent polymers in japanese agriculture and greening [M]. Gels Handbook,2001:276-285.
    [95]Kim H., Park S.J., Kim S., Kim N.G., Kim S.J.. Electroactive Polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid)copolymer for application of biomaterial [J]. Synthetic Metals,2005,155:674-676.
    [96]Gerlach G., Guenther M., Sorber J., Suehaneck G., et al. Chemical and pH sensors based on the swelling behavior of hydrogels [J]. Sensors and Actuators B:Chemical,2005,111-112:555-561.
    [97]Galaev I.Y., Mattiasson B.O..Smart polymers and what they could do in biotechnology and medicine [J].Trends in biotechnology,1999,17:335-340.
    [98]赵玉强,张志斌,刘宁,许文来.智能水凝胶的应用[J].现代化工,2007,27:66-69.
    [99]Drurg J.L., Mooney.J.. Hydrogels for tissue engineering:scaffold design variables and applications [J].Biomaterials,2003,24:4337-351.
    [100]Borkenhagen M., Clemence J. F., Sigrist H., et al. Three-dimensional extracellular matrix engineering in the nervous system[J]. Journal of Biomedical Materials Research Part A,1998,40:392-400.
    [101]Lin C.C., Metters A.T.. Hydrogels in controlled release formulations:Network design and mathematical modeling [J]. Advanced Drug Delivery Reviews,2006,58:1379-1408.
    [102]Ikada Y., Jamshidi K.,et al. Stereocomplex Formation between Enantiomeric Poly(L-lactides)[J]. Macromolecules,1987,20:904-906.
    [103]Lim D.W., Choi S.H., Park T.G.. A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s [J]. Macromolecular Rapid Communicatioan,2000,21:464-471.
    [104]Jong S. J., Hennink W. E., et al. Novel Self-assembled Hydrogels by Stereocomplex Formation in Aqueous Solution of Enantiomeric Lactic Acid Oligomers Grafted To Dextran [J]. Macromolecules,2000,33:3680-3686.
    [105]Li S.M., Vert M.. Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization of L(D)-Lactide in the Presence of Poly(ethylene glycol)[J]. Macromolecules,2003,36:8008-8014.
    [106]Roberts G. A. F., Domszy J. G.. Determination of the viscometric constants for chitosan [J]. International journal of biological macromolecules,1982,4:374-377.
    [107]Domard A., Grey C., Rinaudo M., Terrassin C.. 13C and 1H-NMR spectroscopy of chitosan and N-trimethyl chloride derivatives [J]. International Journal of Biological Macromolecules,1986,9:233-237.
    [108]包光迪.甲壳素的利用[M].北京:科技卫生出版社,1958.
    [109]Dijk-Wolthuis W. N. E., Bosch J. J. K., Kerk-van Hoof A., Hennink W. E.. A new class of polymerizable dextrans with hydrolysable groups:hydroxyethyl methacrylated dextran with and without oligolactate spacer [J]. Polymer,1997,38:6235-6242.
    [110]Kister G., Cassanas G., Vert M.. Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s[J]. Polymer,1995,39:267-273.
    [111]Wu L.P., Wang L., Wang X.J., Xu K.T.. Synthesis, characterizations and biocompatibility of novel biodegradable star block copolymers based on poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone). Acta Biomaterials,2010,6:1079-1089.
    [112]Prabaharan M., Grailer J.J., et.al. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn(?) H40, poly(1-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery[J]. Biomaterials,2009,30:3009-3019.
    [113]Jiang H.L., Xu C.X., Cho C.S., et al. The suppression of lung tumorigenesis by aerosol/delivered folate-chitosan-graft-polyethylenimineAkt1 shRNA complexes through the Akt signaling pathway[J]. Biomaterials,2009,30:5844-5852.
    [114]Singh D.K., Ray A.R.. Biomedical Applications of Chitin, Chitosan, and Their Derivatives[J]. Macromolecular Chemistry and Physics,2000,40:69-83.
    [115]Kurita K., Kojima T., Nishiyama Y., Shimojoh M.. Synthesis and Some Properties of Nonnatural Amino Polysaccharides:Branched Chitin and Chitosan [J].Macromolecules,2000, 33:4711-4716.
    [116]Lee K.Y., Mooney D.J.. Hydrogels for tissue engineering [J]. Chemical Reviews,2001, 7:1869-1879.
    [117]Francis Suh J.-K., Matthew H.W. T.. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering:a review[J]. Biomaterials,2000,21:2589-2598.
    [118]Chenite A., Chaputa C., Wang D. et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ [J]. Biomaterials,2000,21:2155-2161.
    [119]Mi F.L., Kuan C.Y., Shyu S.S., Lee S.T., Chang S.F.. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde-cross-linked chitosan gel and their effects on microspheres preparation and drug release [J]. Carbohydrate Polymers,2000,41:389-396.
    [120]Ono K., Saito Y., Yura H., Ishikawa K., Kurita A., Akaike T., Ishihara M.. Photocrosslinkable chitosan as a biological adhesive [J]. Journal of Biomedical Materials Research Part A,1999,49:289-295.
    [121]Qiu Y., Park K.. Enviroment-sensitive hydrogels for drug delivery [J].Advanced Drug Delivery Reviews,2001,53:321-339.
    [122]Boucard N., Viton C., Domard A.. New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium [J]. Biomacromolecules,2005,6:3227-3237.
    [123]Montembault A., Viton C., Domard A.. Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium [J]. Biomaterials,2005,26:933-943.
    [124]Zhang X.Z., Wu.Q., Chu. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels [J]. Biomaterials,2004,25:3793-3805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700