钛基复合纳米纤维材料的制备及光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛基半导体是光催化领域的重要材料,其在催化降解、制氢等环境和能源领域得到了广泛的研究和应用。但钛基半导体依然存在以下几个主要问题:第一,以TiO2、ZnxTiyOz等为代表的宽禁带半导体材料太阳光利用率低;第二,光催化剂的光生电子空穴对复合过快,量子效率低;第三,光催化剂在液相应用中难于分离回收。本文以钛基半导体为主线,基于光催化的本征问题和实际应用的挑战,利用静电纺丝技术结合水热、溶剂热、原位还原等方法制备一系列从二元到三元的高活性钛基复合纳米纤维光催化剂,研究材料制备过程对其形貌、微观结构及光催化性能的影响,探究异质结界面之间的相互作用和电荷传输机制,揭示材料的能带结构、微观结构与催化性能的关系,获得具有高催化活性和良好使用性能的光催化材料。具体研究成果如下:
     (1)通过静电纺丝技术和水热方法制备了TiO2@Carbon核壳纳米纤维,期望利用碳层对可见光的吸收实现对TiO2敏化,得到能够对可见光响应的高效光催化剂。形貌和结构研究结果表明2nm左右的石墨化碳层通过C-O-Ti键均匀的构造在TiO2纤维表面,并且可以通过控制实验参数实现碳层厚度从2nm到8nm的调控。光催化性质研究表明TiO2@Carbon核壳纳米纤维能够吸收可见光并呈现了较高的可见光催化活性。通过羟基自由基捕获试验进一步证明了通过可见光激发碳层产生光生电子空穴,通过TiO2纤维实现光生载流子的输运和分离的光催化机理。此外,基于这种一维纳米纤维网毡结构,TiO2@Carbon核壳纳米纤维催化剂在光催化过程中具有优异的可分离及重复使用特性。
     (2)在TiO2@Carbon核壳纳米纤维的基础上,利用液相原位还原方法引入小尺寸、高分散性的Ag纳米颗粒,期望利用TiO2/Ag异质结所形成的肖特基势垒进一步提高量子效率,获得催化效率增强的三元可见光催化剂。研究表明3-5nm的Ag纳米颗粒均匀的引入到TiO2@Carbon核壳纳米纤维体系中,而且,通过对光催化降解罗丹明B和甲基橙两种有机染料的研究,这种三元光催化剂相对于纯TiO2纤维、TiO2@Carbon纤维和TiO2/Ag纤维表现出了增强的可见光催化性质。这种增强可能来源于两方面:贵金属的电子陷阱作用和附近增强的等离子体场效应。此外,基于这种一维纳米网毡结构和碳层对Ag纳米颗粒的保护,该三元催化剂具有优异的可分离及重复使用特性。
     (3)利用水热方法获得了富碳的g-C3N4纳米片,并在泡沫镍上实现了原位固载化,该材料表现出优良的光电流响应和光催化性质。在此基础上,我们利用静电纺丝技术和原位催化法相结合构造了TiO2@g-C3N4核壳纳米纤维。在电纺TiO2纳米纤维的模板催化作用下,以尿素为前驱体,将厚度1nm的g-C3N4均匀的构造在TiO2纤维表面。这种能带匹配的异质结保证了光生载流子的有效分离,使TiO2@g-C3N4核壳纳米纤维在紫外和可见光照射下分别呈现出增强光电流响应和光催化性质。此外,基于这种一维纳米网毡结构,TiO2@g-C3N4核壳纳米纤维催化剂在实际使用中具有优异的可分离及重复使用特性。
     (4)通过静电纺丝法获得TiO2/ZnO纳米纤维,在此基础上,利用液相原位还原方法引入小尺寸、高分散性的Au纳米颗粒,期望利用TiO2/Au和ZnO/Au异质结所形成的肖特基势垒建立电子传递三通道的协同体系,获得催化效率增强的三元光催化剂。研究表明3-5nm的Au纳米颗粒均匀的引入到TiO2/ZnO纳米纤维的表面。通过紫外光催化降解4-硝基酚和甲基橙的研究,这种三元TiO2/ZnO/Au异质结构相对于TiO2/Au和ZnO/Au,表现出了增强的光催化活性和效率。对所得材料光致发光光谱的比较研究证明,这种三元异质结有利于光生电子空穴的分离。此外,这种一维纳米网毡结构,使TiO2/ZnO/Au异质结构具有良好的可分离及重复使用特性。
     (5)通过静电纺丝技术和水热方法制备了Zn2TiO4@Carbon核壳纳米纤维,期望利用石墨化碳层的导电性实现对Zn2TiO4光生电子的传导,得到较高量子产率的高效光催化剂。形貌和结构研究结果表明,通过控制实验参数实现了碳层厚度的调控。紫外光催化性质研究表明,Zn2TiO4@Carbon核壳纳米纤维相对于Zn2TiO4纤维表现出增强的光催化活性。光致发光光谱试验进一步证明了通过Zn2TiO4和石墨化碳层的协同作用可以有效的实现光生载流子的分离和输运的光催化机理。此外,基于这种一维纳米纤维网毡结构,Zn2TiO4@Carbon核壳纳米纤维催化剂在光催化过程中具有良好的可分离及重复使用特性。
     (6)利用静电纺丝技术和溶剂热方法制备了三维开放的ZnTiO3/Bi2MoO6异质结材料。在溶剂热反应过程中,通过调控反应浓度,在ZnTiO3纳米纤维上分别构造了超薄纳米片、纳米颗粒等不同形貌的Bi2MoO6次级结构。可见光催化降解研究表明,ZnTiO3/Bi2MoO6异质结材料具有优于单组份Bi2MoO6纳米粉体的光催化活性。通过对光催化机理的研究发现,异质结构是加快光生电子空穴对分离的主要原因。相对于纳米颗粒形貌,超薄纳米片提高了可见光的利用率。此外,基于这种一维纳米网毡结构,ZnTiO3/Bi2MoO6异质结材料具有优异的可分离及重复使用特性。
Titanium-based semiconductors have been widely studied and used inphotocatalysis. With the potential application in organic degradation and H2production, there still existed several major issues: Firstly, Titanium-basedsemiconductors with wide bandgap suffer from lower sunlight utilization rate, such asTiO2, ZnxTiyOzetc. Secondly, the rapid recombination of photoinduced electrons andholes greatly lowers the quantum efficiency. Thirdly, in the practice application, thephotocatalysts with nanosize are difficult to separate and recycle. Thus, the paperfocuses on the intrinsic problem and the practical application of titanium-basedsemiconductors photocatalytic, a series of nano-photocatalysts from binary to ternarywere fabricated by combining the electrospinning technique, hydrothermal methodand an in situ reduction approach. Such structure with titanium-based semiconductornanofiber as a template to construct heterojunction, shows the concept of "junction" inthe micro-nano-composite structure. And, the super long one-dimensionalnanostructures and unique fiber network structure could improve photocatalyst’sperformance of separation and reuse. The main researches are list as follow:
     (1) The TiO2@carbon core/shell nanofibers were fabricated by combining theelectrospinning technique and hydrothermal method. The results showed that auniform graphite carbon layer (2-8nm) was formed around the electrospun TiO2nanofiber via C-O-Ti bonds. By adjusting the hydrothermal fabrication parameters,the thickness of carbon layer could be easily controlled. The photocatalytic studiesrevealed that the TiO2@C NFs exhibited enhanced photocatalytic efficiency ofphotodegradation of Rhodamine B (RB) compared with the pure TiO2nanofibersunder visible light irradiation, which might be attributed to high separation efficiencyof photogenerated electrons and holes based on the existence of carbon as a sensitizer.Notably, the photocatalytic mechanism was confirmed by the hydroxyl radicalsscavenger experiment.
     (2) Based on TiO2@carbon core/shell nanofibers, Ag nanoparticles werefabricated by an in situ reduction approach. The results showed that a uniformgraphite carbon layer of approximately8nm in thickness was formed around theelectrospun TiO2nanofiber and small Ag nanoparticles (Ag NPs) were dispersed wellinside the carbon layer. And, the TiO2@C/Ag NFs had remarkable light absorption inthe visible region. The photocatalytic studies revealed that the TiO2@C/Ag NFsexhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B(RB) and Methyl orange (MO) compared with the pure TiO2nanofibers,TiO2@carbon core/shell nanofibers and TiO2/Ag nanofibers under visible lightirradiation, which might be attributed to the good light absorption capability and high separation efficiency of photogenerated electron-hole pairs based on thephotosynergistic effect among the three components of TiO2, carbon and Ag. And, theTiO2@C/Ag NFs could be easily recycled due to their one-dimensional nanostructuralproperty.
     (3) We firstly highlight a water-solution synthesis approach at low temperatureto prepare the carbon-rich graphitic carbon nitride nanosheets (CCN). Compared withthe bulk CN prepared by solid-state synthesis at high temperature, the as-obtainedultrathin CCN nanosheets show enhancement of photocurrent and photocatalyticactivity, which could be ascribed to its improved electron transport ability along thein-plane direction, and increased lifetime of photoexcited charge carriers.Three-dimensional (3D) free-standing network composed of TiO2@g-C3N4core/shellnanofibers was fabricated by combining the electrospinning technique and an in situcatalytic approach. The results showed that a uniform g-C3N4layer of approximately1nm in thickness was formed around the electrospun TiO2nanofiber. What’s more,it’s interesting to note that the g-C3N4layer with high quality was formed by an in situcatalytic reaction under a mild condition. And, the as-prepared TiO2@g-C3N4networkexhibited enhancement of photocurrent and photocatalytic activity. The enhancementin performance under UV irradiation was induced by the high separation efficiency ofphotoinduced holes from TiO2to the HOMO of C3N4. Under visible light irradiation,the electron excited from the HOMO to the LUMO of C3N4could inject into the CBof TiO2, making TiO2@g-C3N4present visible light photocatalytic activity. Notably,the free-standing3D nanofibrous network structure could improve photocatalyst’sperformance of separation and reuse.
     (4) The TiO2/ZnO nanofibers embedded by Au nanoparticles were fabricated bycombining the electrospinning technique (for TiO2/ZnO nanofibers) and an in situreduction approach (for Au nanoparticles). The results showed that small Aunanoparticles (Au NPs) were dispersed well on the TiO2/ZnO nanofibers (TiO2/ZnONFs). And, the TiO2/ZnO/Au nanofibers showed high charge separation efficiencyunder ultraviolet excitation, as evidenced by photoluminescence spectra. Thephotocatalytic studies revealed that the TiO2/ZnO/Au NFs exhibited enhancedphotocatalytic efficiency of photodegradation of Methyl orange (MO) and4-nitrophenol (4-NP) compared with the pure TiO2nanofibers, ZnO nanofibers andTiO2/ZnO NFs under ultraviolet excitation, which might be attributed to the highseparation efficiency of photogenerated electron-hole pairs based on thephotosynergistic effect among the three components of TiO2, ZnO and Au. And, theTiO2/ZnO NFs could be easily separated and recycled due to their one-dimensionalnanostructural property.
     (5) Zn2TiO4@carbon core/shell nanofibers (Zn2TiO4@C NFs) with differentthinkness of carbon layers (from2to8nm) were fabricated by combining theelectrospinning technique and hydrothermal method. The results showed that a uniform carbon layer was formed around the electrospun Zn2TiO4nanofiber (Zn2TiO4NFs). By adjusting the hydrothermal fabrication parameters, the thickness of carbonlayer varied linearly with the concentration of glucose and was, thus, able to becontrolled with a resolution in the nanometer range. Furthermore, the core/shellformed between Zn2TiO4and carbon enhanced the charge separation of pure Zn2TiO4under ultraviolet excitation, as evidenced by photoluminescence spectra. Thephotocatalytic studies revealed that the Zn2TiO4@C NFs exhibited enhancedphotocatalytic efficiency of photodegradation of Rhodamine B (RB) compared withthe pure Zn2TiO4NFs under ultraviolet excitation, which might be attributed to highseparation efficiency of photogenerated electrons and holes based on the synergisticeffect between carbon and Zn2TiO4. Notably, the Zn2TiO4@C NFs could be easilyrecycled due to their one-dimensional nanostructural property.
     (6) The3D open Bi2MoO6/ZnTiO3hierarchical heterostructures with Bi2MoO6ultrathin nanosheets grown on hexagonal-phase ZnTiO3nanofibers were fabricated bycombining the electrospinning technique and solvothermal method. The hierarchicalheterostructures synergistic system exhibited exceptional visible-light photocatalyticactivity, which might be attributed to the synergistic system with excellent chargeseparation characteristics and the unique morphology of Bi2MoO6nanosheets. What’smore, the3D open structure supported on nanofibrous candidates could be easilyrecycled easily by sedimentation without a decrease of the photocatalytic activity.
引文
[1] Yoneyama H, Yamashita Y, Tamura H. Heterogeneous photocatalytic reduction of dichromateon n-type semiconductor catalysts[J]. Nature,1979,282:817-818.
    [2] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293:269-271.
    [3] Khan S, Al-Shahry M, Ingler W, Jr. Efficient Photochemical Water Splitting by a ChemicallyModified n-TiO2[J]. Science,2002,297:2243-2245.
    [4] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode [J]. Nature,1972,238:37-38.
    [5] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion inaqueous solution at titanium dioxide powder [J]. J Am Chem Soc,1977,99:303-304.
    [6] Linsebigler A, Lu G, Yates J. Photocatalysis on TiO2Surfaces: Principles, Mechanisms, andSelected Results[J]. Chem Rev,1995,95:735-758.
    [7] Fox M, Dulay M. Heterogeneous photocatalysis[J]. Chem Rev,1993,93:341-357.
    [8] Chen X, Lou Y, Samia A C, Burda C. Coherency strain effects on the opticalresponse of core-Shell heteronanostructures [J]. Nano Lett,2003,3:799-803.
    [9]翟俊英,化工百科全书(第15卷,无机钛化合物)[M].北京,化学工业出版社,539-542.
    [10]Diebold U. The surface science of titanium dioxide [J]. Surface Science Reports,2003,48(5-8):53-229.
    [11]Obuchi E. Titania photocatalytic [J]. Journal of the Electrochemical Society,1996,143(9):191-193.
    [12]Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of CH3COOHwith H2O on small-particle TiO2: size quantization effects and reaction intermediates[J]. J Phys Chem,1987,91(16):4305-4310.
    [13]Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2nanoparticles[J]. Nano Lett,2003,3(8):1049-1051.
    [14]Batzill M, Morales E H, Diebold U. Influence of nitrogen doping on the defectformation and surface properties of TiO2anatase and rutile [J]. Phys Rev Lett,2006,96(2):026103.
    [15]Diwald O, Thompson T L, Zubkov T, etal. Photochemical activity ofnitrogen-doped rutile TiO2(110) in visible light [J]. J Phys Chem B,2004,108(19):6004-6008.
    [16]Valentin C D, Pacchioni G, Selloni A, et al. Characterization of paramagneticspecies in N-doped TiO2powders by EPR spectroscopy and DFT calculations [J]. JPhys Chem B,2005,109(23):11414-11419.
    [17]Valentin D, Pacchioni C, Selloni G A.Origin of the photoactivity of N-dopedanatase and rutile TiO2[J]. Phys Rev B,2004,70(8):085116.
    [18]Wang Z S, Ebina Y, Takada K. Inorganic multilayer assembly of Titaniasemiconductor nanosheets and Ru complexes [J]. Langmuir,2003,19(22):9534-9537.
    [19]Jakob M, Levanon H. Charge distribution between UV-irradiated TiO2and goldnanoparticles: determination of shift in the Fermi level [J]. Nano Letters,2003,3(3):353-358.
    [20]SubramanianV, Wolf E E, Kamat P V. Catalysis with TiO2/Gold nanocomposites.Effect of metal particle size on the Fermi level equilibration [J]. J Am Chem Soc,2004,126(15):4943-4950.
    [21]Naoi K, Ohko Y, Tasuma T. TiO2films loaded with silver nanoparticles:control ofmulticolor photochromic behavior [J]. J Am Chem Soc,2004,126(11):3664-3668.
    [22]Subramanian V, Wolf E, Kamat P V. Influence of metal/metal ion concentrationon the photocatalytic activity of TiO2/Au composite nanoparticles [J]. Langmuir2003,19(2):469-474.
    [23]Gong X, Selloni A, Dulub O, Jacobson P, Diebold U. Small Au and Pt clusters atthe anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygenvacancies [J]. J Am Chem Soc,2008,130(1):370-381.
    [24]Formo E, Lee E, Campbell D, et al. Functionalization of electrospun TiO2nanofibers with Pt nanoparticles and nanowires for catalytic applications [J]. NanoLetters,2008,8(2):668-672.
    [25]LinsebiglerA L,Lu G-Q,Yates J t. Photocaltalysis on TiO2surfaces,principles,Mechanisms, and selected results [J]. Chem Rev,1995,95(3):735-738.
    [26]Miyoshi H, Mori H, Yoneyama H. Light-induced decomposition of saturatedcarboxylic acids on iron oxide incorporated clay suspended in aqueous solutions [J].Langmuir,1991,7(3):503-507.
    [27]Domen K, Kudo A, Tanaka A, et al. Overall photodecomposition of water on alayered niobite catalyst [J]. Catalysis Today,1990,8(1):77-84.
    [28]Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2and CdS/TiO2heterojunctionsas an available configuration for photocatalytic degradation of organic pollutant [J]. JPhotochem Photobiol A Chem,2004,163(3):569-580.
    [29]Ostermann R, Li D,Yin Y D, et al. V2O5Nanorods on TiO2nanofibers: A newclass of hierarchical nanostructures enabled by electrospinning and calcination [J].Nano Lett,2006,6(6):1297-1302.
    [30]Nasr C, Kamat P V, Hotchandani S. Photoelectrochemistry of compositesemiconductor thin films. Photosensitization of the SnO2/TiO2coupled system with aRuthenium polypyridyl complex [J]. J Phys Chem B,1998,102(49):10047-10052.
    [31]Chen X, Lou Y, Samia A C, Burda C. Coherency strain effects on the opticalresponse of core-shell heteronanostructures [J]. Nano Lett,2003,3(6):799-803.
    [32]Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxificationeffects of TiO2thin film photocatalysts [J]. Environ Sci Technol1998,32(5):726-728.
    [33]桑丽霞,傅希贤.LaBO3(B=Fe, Co)中氧的迁移与光催化反应活性[J].高等学校化学学报,2003,24:320-323.
    [34] Ishii T,Kato H,Kudo A.H2evolution from an aqueous methanol solution onSrTiO3photocatalysts codoped with chromium and tantalumions under visible lightirradiation[J].J Photochem Pbotobio A,2004,163:181-186.
    [35] Wang Z, Saxena S, Zha C. S. In situ x-ray diffraction and Raman spectroscopy ofpressure-induced phase transformation in spinel Zn2TiO4[J]. Phys Rev B,2002,66:024103-024109.
    [36] Chaves A, Lima S, Araujo R, Maurera M, Longo E, Pizani P, Simoes L, SoledadeL, Souza A, dos Santos I. M. G. Photoluminescence in disordered Zn2TiO4[J]. J SolidState Chem,2006,179:985-992.
    [37] Jang J, Borse P, Lee J, Lim K, Jung O, Jeoung E, Bae J, Won M, Kim H. G.Energy band structure and photocatalytic property of Fe-doped Zn2TiO4material[J].Bull Korean Chem Soc,2009,30:3021-3024.
    [38] Yang Y. Sun X, Tay B, Wang J, Dong Z, Fan H. M. Twinned Zn2TiO4spinelnanowires using ZnO nanowires as a template[J]. Adv Mater,2007,19:1839-1844.
    [40] Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y. Bi4Ti3O12nanosheets/TiO2submicron fibers heterostructures: in situ fabrication and high visiblelight photocatalytic activity[J]. J Mater Chem,2011,21:6922-6927.
    [41] Sulaeman U, Yin S, Sato T. Solvothermal synthesis of designednonstoichiometric strontium titanate for efficient visible-light photocatalysis[J]. ApplPhys Lett,2010,97:103102.
    [42] Hoffmann M, Martin S, Choi W, Bahnemann D. W. Environmental applicationsof semiconductor photocatalysis[J]. Chem Rev,1995,95:69-96.
    [43] Khan S, Al-Shahry M, Ingler W, Jr. Efficient photochemical water splitting by achemically modified n-TiO2[J]. Science,2002,297:2243-2245.
    [44] Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P.Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292:1897-1899.
    [45] Yang L, Luo S, Liu S, Cai Q. Graphitized Carbon Nanotubes Formed inTiO2Nanotube Arrays: A Novel Functional Material with Tube-in-TubeNanostructure[J]. J Phys Chem C,2008,112:8939-8943.
    [46] Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Y. Feng, Synthesis ofvisible-light responsive graphene oxide/TiO2composites with p/n heterojunction[J].ACS Nano,2010,4:6425-6432.
    [47] Dresselhaus M, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives onCarbon Nanotubes and Graphene Raman Spectroscopy[J]. Nano Lett,2010,10:751-758.
    [48] Irie H, Watanabe Y, Hashimoto K. Carbon-doped Anatase TiO2Powders as aVisible-light Sensitive Photocatalyst[J]. Chem Lett,2003,32:772-773.
    [49] Lu J, Yang J, Wang J, Lim A, Wang S, Loh K. One-Pot Synthesis of FluorescentCarbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite inIonic Liquids[J]. ACS Nano,2009,3:2367-2375.
    [50] Sun X, Li Y. Colloidal Carbon Spheres and Their Core/Shell Structures withNoble-Metal Nanoparticles[J]. Angew Chem, Int Ed,2004,43:597-601.
    [51] Li H, Kang Z, Liu Y, Lee S. Carbon nanodots: synthesis, properties andapplications[J]. J. Mater. Chem.,2012,22:24230-24253.
    [52] Titirici M, Antonietti M, Thomas A. A Generalized Synthesis of Metal OxideHollow Spheres Using a Hydrothermal Approach[J]. Chem Mater,2006,18:3808-3812.
    [53] Dong F, Wang H, Wu Z. One-Step “Green” Synthetic Approach for MesoporousC-Doped Titanium Dioxide with Efficient Visible Light Photocatalytic Activity[J]. JPhys Chem C,2009,113:16717-16723.
    [54] Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, Antonietti M, TitiriciMaria-Magdalena. One-Step Solvothermal Synthesis of a Carbon@TiO2DyadeStructure Effectively Promoting Visible-Light Photocatalysis[J]. Adv Mater,2010,22:3317-3321.
    [55] Dong G, Zhao K, Zhang L. Carbon self-doping induced high electronicconductivity and photoreactivity of g-C3N4[J]. Chem Commun,2012,48:6178–6180.
    [56] Li J, Shen B, Hong Z. A facile approach to synthesize novel oxygen-dopedg-C3N4with superior visible-light photoreactivity[J]. Chem Commun,2012,48:12017–12019.
    [57] Wang Y, Wang Z, Muhammad S, He J. Graphite-like C3N4hybridized ZnWO4nanorods: Synthesis and its enhanced photocatalysis in visible light[J].CrystEngComm,2012,14:5065–5070.
    [58] Chai B, Peng T, Mao J. Graphitic carbon nitride (g-C3N4)–Pt-TiO2nanocomposite as an efficient photocatalyst for hydrogen production under visiblelight irradiation[J]. Phys Chem Chem Phys,2012,14:16745–16752.
    [59] Sun J, Yuan Y, Qiu L, et al. Fabrication of composite photocatalyst g-C3N4–ZnOand enhancement of photocatalytic activity under visible light[J]. Dalton Trans,2012,41:6756–6763.
    [60] Wang Y, Bai X, Pan C, et al. Enhancement of photocatalytic activity of Bi2WO6hybridized with graphite-like C3N4[J]. J Mater Chem,2012,22:11568–11573.
    [61] Sun L, Zhao X, Jia C, et al. Enhanced visible-light photocatalytic activity ofg-C3N4–ZnWO4byfabricating a heterojunction: investigation based on experimentaland theoretical studies[J]. J Mater Chem,2012,22,23428–23438.
    [62] Chong S, Jones J, Khimyak Y, et al. Tuning of gallery heights in a crystalline2Dcarbon nitride network[J]. J Mater Chem A,2013,1:1102–1107.
    [63] Mukesh A, Smrati G, Andrij P, Nikolaos E, Manfred S. A facile approach tofabrication of ZnO TiO2hollow spheres[J]. Chem Mater,2009,21:5343-5348.
    [64] Liu R, Ye H, Xiong X, Liu H. Fabrication of TiO2/ZnO composite nanofibers byelectrospinning and their photocatalytic property[J]. Mater Chem Phy,2010,121:432-439.
    [65] Yan X, Zou C, Gao X, Gao Wei. ZnO/TiO2core–brush nanostructure: processing,microstructure and enhanced photocatalytic activity[J]. J Mater Chem,2012,22:5629-5640.
    [66] Mani J, Sakeek H, Habouti S, Dietze M, Es-Souni M. Macro-meso-porous TiO2,ZnO and ZnO-TiO2-composite thick films properties and application tophotocatalysis[J]. Catal Sci Technol,2012,2:379-385.
    [67] Zhang Z, Shao C, Li X, Zhang L, Xue H, Wang C, Liu Y. Electrospun nanofibersof ZnO/SnO2Heterojunction with high photocatalytic activity[J]. J Phys Chem C,2010,114:7920-7929.
    [68] Zhang P, Shao C, Li X, Zhang M, Sun Y, Lu N, Wang K, Liu Y, In situ assemblyof well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergisticheterostructure with enhanced photocatalytic activity[J]. Journal of HazardousMaterials,2012,237:331-338.
    [69] Wang C, Shao C, Zhang X, Liu Y. SnO2nanostructures-TiO2nanofibersheterostructures: controlled fabrication and high photocatalytic properties[J]. InorgChem,2009,48:7261-7268.
    [70] Li N, Zhu L, Zhang W, Yu Y, Zhang W, Hou M. Modification of TiO2nanorodsby Bi2MoO6nanoparticles for high performance visible-light photocatalysis[J]. JAlloy Compd,2011,47:9770-9775.
    [71] Xu Q, Ng Y, Zhang Y, et al. A three-way synergy of triple-modifiedBi2WO6/Ag/N-TiO2nanojunction film for enhanced photogenerated chargesutilization[J]. Chem Commun,2011,47:8641-8643.
    [72] Shang M, Wang W, Ren J, Sun S, et al. A practical visible-light-driven Bi2WO6nanofibrous mat prepared by electrospinning[J]. J Mater Chem,2009,19):6213-6218.
    [73] Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y. Bi4Ti3O12nanosheets/TiO2submicron fibers heterostructures: in situ fabrication and high visiblelight photocatalytic activity[J]. J Mater Chem,2011,21:6922-6927.
    [74] Zhang M, Shao C, Zhang P, Zhang X, Liu Y, Carbon-modified BiVO4microtubes embedded by Ag nanoparticles with high photocatalytic activity undervisible light[J]. Nanoscale,2012,4:7501-7508.
    [75] Zhang M, Shao C, Zhang P, Zhang X, Liu Y, Bi2MoO6microtubes: Controlledfabrication by using electrospun polyacrylonitrile microfibers as template and theirenhanced visible light photocatalytic activity[J]. Journal of Hazardous Materials,2012,225:155-163.
    [76] Li P, Wei Z, Wu T, Peng Q, Li Y. Au-ZnO hybrid nanopyramids and theirphotocatalytic properties[J]. J Am Chem Soc,2011,133:5660-5663.
    [77] Herrmann J, Tahiri H, Ait-Ichou Y, Lassaletta G, Gonzalez-Elipe A, FernandezA. Characterization and photocatalytic activity in aqueous medium of TiO2andAg-TiO2coatings on quartz[J]. Appl Catal, B,1997,13:219.
    [78] Kowalska E, Mahaney O, Abe R, Ohtani B. Visible-light-induced photocatalysisthrough surface plasmon excitation of gold on titania surfaces[J]. Phys Chem ChemPhys,2010,12:2344-2355.
    [79] Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically chargedliquid jets of polymer solutions in electrospinning, Journal of Applied Physics,2000,87(9I):4531-4547.
    [80] Greiner A, Wendorff J H. Electrospinning: A fascination method for thepreparation of ultrathin fibers[J]. Angew Chem Int Ed,2007,46:5670-5703.
    [81] Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedicalresearch[J]. Macromol Rapid Commun,2008,29(22):1775-1792.
    [82] McCann J T, Marquez M, Xia Y. Highly porous fibers by electrospinning into acryogenic liquid[J]. J Am Chem Soc,2006,128(5):1436-1437.
    [83] Li D, Xia Y,Direct fabrication of composite and ceramic hollow nanofibers byelectrospinning[J]. Nano Lett,2004,4(5):933-938.
    [84] Liu Y, Zhang X, Xia Y, et al. Magnetic-filed-assisted electrospinning of alignedstraight and wavy polymeric nanofibers[J]. Adv Mater,2010,22(22):2454-2457.
    [85] Zhang D, Chang J. Electrospinning of three-dimensional nanofibrous tubes withcontrollable architectures[J]. Nano Lett,2008,8(10):3283-3287.
    [86] Pol V G, Koren E, Zaban A. Fabrication of continuous conducting gold wires byelectrospinning[J]. Chem Mater,2008,20(9):3055-3062.
    [87] Barakat N A M, Woo K, Kanjwal M A, et al. Surface plasmon resonances, opticalproperties, and electrical conductivity thermal hysteresis of silver nanofibers producedby the electrospinning technique[J]. Langmuir,2008,24(20):11982-11987.
    [88] Shui J, Li J C M. Platinum nanowires produced by electrospinning[J]. Nano Lett,2009,9(4):1307-1314.
    [89] Bazilevsky A V, Yarin A L, Megaridis C M. Co-electrospinning of core-shellfibers using a single-nozzle technique[J]. Langmuir,2007,23(5):2311-2314.
    [90] You Y, Lee S W, Youk J H, et al. In vitro degradation behavior of non-porousultra-fine poly(glycolic acid)/poly(L-lactic acid) fibers and porous ultra-finepoly(glycolic acid) fibers[J]. Polymer Degradation and Stability,2005,90:441-448.
    [91] McCann J T, Marquez M, Xia Y. Highly porous fibers by electrospinning into acryogenic liquid[J]. J Am Chem Soc,2006,128(5):1436-1437.
    [92] McKee M G, Wilkes G L, Colby R H, et al. Correlations of solution rheologywith electrospun fiber formation of linear and branched polyesters[J].Macromolecules,2004,37(5):1760-1767.
    [93] Wei M, Kang B, Sung C, et al. Core-sheath structure in electrospun nanofibersfrom polymer blends[J]. Macromol Mater Eng,2006,291(11):1307-1314.
    [94] Kim C, Jeong Y I, Ngoc BT N, et al. Synthesis and characterization of porouscarbon nanofibers with hollow cores through the thermal treatment of electrospuncopolymeric nanofibers webs[J]. Small,2007,3(1):91-95.
    [95] Su C, Shao C, Liu Y. Synthesis of heteroarchitectures of PbS nanostructureswell-erected on electrospun TiO2nanofibers[J]. J Colloid Interface Sci,2010,346(2):324-329.
    [96] Formo E, Lee E, Campbell D, et al. Functionalization of electrospun TiO2nanofibers with Pt nanoparticles and nanowires for catalytic applications[J]. NanoLett,2008,8(2):668-672.
    [97] Wang C, Zhang X, Shao C, et al. Rutile TiO2nanowires on anatase TiO2nanofibers: A branched heterostructured photocatalysts via interface-assistedfabrication approach[J]. J Colloid Interface Sci,2011,363(1):157-164.
    [98] Zhang M, Shao C, Guo Z, et al. Hierarchical nanostructures of copper(Ⅱ)phthalocyanine on electrospun TiO2nanofibers: Controllable solvothermal-fabricationand enhanced visible photocatalytic properties[J]. ACS Appl Mater Interfaces,2011,3(2):369-377.
    [99] Mu J, Che, B, Guo Z, et al. Tin oxide (SnO2) nanoparticles/electrospun carbonnanofibers (CNFs) heterostructures: Controlled fabrication and high capacitivebehavior[J]. J Colloid Interface Sci,2011,356(2):706-712.
    [100] Onozuka K, Ding B, Tsuge Y, Electrospinning processed nanofibrous TiO2membranes for photovoltaic applications[J]. Nanotechnology,2006,17(4):1026-1031.
    [101] Guan H, Shao C, Chen B, et al. A novel method for making CuO superfinefibres via an electrospinning technique[J]. Inorganic Chemistry Communications,2003,6(11):1409-1411.
    [102] Guan H, Shao C, Wen S, et al. Preparation and characterization of NiOnanofibres via an electrospinning technique[J]. Inorganic Chemistry Communications,2003,6(10):1302-1303.
    [103] Wang Y, Ramos I, Santiago-Avilés J, Electrical characterization of a singleelectrospun porous SnO2nanoribbon in ambient air,(2007) Nanotechnology,18(43),art. no.435704.
    [1] Yoneyama H, Yamashita Y, Tamura H. Heterogeneous photocatalytic reduction ofdichromate on n-type semiconductor catalysts[J]. Nature,1979,282:817-818.
    [2] Asahi R, Morikawa T, OHwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293:269-271.
    [3] Khan S, Al-Shahry M, Ingler W, Jr. Efficient Photochemical Water Splitting by aChemically Modified n-TiO2[J]. Science,2002,297:2243-2245.
    [4] Hoffmann M, Martin S, Choi W, Bahnemannt D. Environmental Applications ofSemiconductor Photocatalysis[J]. Chem Rev,1995,95:69-96.
    [5] Kamat P. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J].Chem Rev,1993,93:267-300.
    [6] Linsebigler A, Lu G, Yates J. Review Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results[J]. Chem Rev,1995,95:735-758.
    [7] Anpo M, Takeuchi M. The design and development of highly reactive titaniumoxide photocatalysts operating under visible light irradiation[J]. J Catal,2003,216:505-516.
    [8] Serpone N, Lawless D, Disdier J, Herrmann J. The surface science of titaniumdioxide Surface Science Reports,1994,10:643-652.
    [9] Arana J, DIaz O, Saracho M, Rodriguez J, Melian J, Pena J. Photocatalyticdegradation of formic acid using Fe/TiO2catalysts: the role of Fe3+/Fe2+ions in thedegradation mechanism[J]. Appl. Catal., B,2001,32:49-61.
    [10] Choi W, Termin A, Hoffmann M. The Role of Metal Ion Dopants inQuantum-Sized TiO2: Correlation between Photoreactivity and Charge CarrierRecombination Dynamics[J]. J Phys Chem,1994,98:13669-13679.
    [11] Wang J, Mao B, Gole J, Burda C. Visible-light-driven reversible and switchablehydrophobic to hydrophilic nitrogen-doped titania surfaces: correlation withphotocatalysis[J]. Nanoscale,2010,2:2257-2261.
    [12] In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikho M, Wright D,Lambert R. Effective Visible Light-Activated B-Doped and B,N-CodopedTiO2Photocatalysts[J]. J Am Chem. Soc,2007,129:13790-13791.
    [13] Sakthivel S, Kisch H. Daylight Photocatalysis by Carbon-Modified TitaniumDioxide[J]. Angew. Chem, Int Ed,2003,42:4908-4911.
    [14] Valentin C, Pacchioni G, Selloni A. Theory of Carbon Doping of TitaniumDioxide[J]. Chem. Mater.,2005,17:6656-6665.
    [15] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293:269-271.
    [16] Zhang L, Fu H, Zhu Y. Efficient TiO2Photocatalysts from Surface Hybridizationof TiO2Particles with Graphite-like Carbon[J]. Adv Funct Mater,2008,18:2180-2189.
    [17] Zhong J, Chen F, Zhang J. Carbon-Deposited TiO2: Synthesis, Characterization,and Visible Photocatalytic Performance[J]. J Phys Chem C,2010,114:933-939.
    [18] Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, Antonietti M, TitiriciMaria-Magdalena. One-Step Solvothermal Synthesis of a Carbon@TiO2DyadeStructure Effectively Promoting Visible-Light Photocatalysis[J]. Adv Mater,2010,22:3317-3321.
    [19] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W. Visible lightphotodegradation of4-chlorophenol with a coke-containing titanium dioxidephotocatalyst[J]. Appl Catal, B,2001,32:215-227.
    [20] Zhang Z, Shao C, Li X, Zhang L, Xue H. Electrospun Nanofibers ofZnO SnO2Heterojunction with High Photocatalytic Activity[J]. J Phys Chem. C,2010,114:7920-7925.
    [21] Liu Z, Sun D, Guo P, Leckie J. An Efficient Bicomponent TiO2/SnO2NanofiberPhotocatalyst Fabricated by Electrospinning with a Side-by-Side Dual SpinneretMethod[J]. Nano Lett,2007,7:1081-1085.
    [22] Choi SK, Kim S, Lim SK, Park H. Photocatalytic comparison of TiO2nanoparticles and electrospun TiO2nanofibers: effects of mesoporosity andinterparticle charge transfer[J]. J. Phys. Chem. C,2010,114:16475-16480.
    [23] Dobb MG, Guo H, Johnson DJ, Image analysis of lattice imperfections in carbonfibers[J].Carbon,1995,33:1115-1120.
    [24] Pennock GM, Taylor GH, Fitz Gerald JD. Microstructure in a series ofmesophase pitch-based fibers from DuPont: zones, folds, and disclinations[J]. Carbon,1993,31:591-603.
    [25] Yang L, Luo S, Liu S, Cai Q. Graphitized Carbon Nanotubes Formed inTiO2Nanotube Arrays: A Novel Functional Material with Tube-in-TubeNanostructure[J]. J Phys Chem C,2008,112:8939-8943.
    [26] Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation andvisible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J].Appl. Catal, B,2007,69:138-144.
    [27] Yu J, Yu H, Cheng B. The Effect of Calcination Temperature on the SurfaceMicrostructure and Photocatalytic Activity of TiO2Thin Films Prepared by LiquidPhase Deposition[J]. J Phys Chem B,2003,107:13871-13879.
    [28] Dong F, Wang H, Wu Z. One-Step “Green” Synthetic Approach for MesoporousC-Doped Titanium Dioxide with Efficient Visible Light Photocatalytic Activity[J]. JPhys Chem C,2009,113:16717-16723.
    [29] Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Y. Feng, Synthesis ofvisible-light responsive graphene oxide/TiO2composites with p/n heterojunction[J].ACS Nano,2010,4:6425-6432.
    [30] Dresselhaus M, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives onCarbon Nanotubes and Graphene Raman Spectroscopy[J]. Nano Lett,2010,10:751-758.
    [31] Zhang W, Cui J, Tao C, Wu Y, Li Z, Ma L, Wen Y, Li G. A Strategy for ProducingPure Single-Layer Graphene Sheets Based on a Confined Self-Assembly Approach[J].Angew. Chem., Int Ed,2009,48:5864-5868.
    [32] Lu J, Yang J, Wang J, Lim A, Wang S, Loh K. One-Pot Synthesis of FluorescentCarbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite inIonic Liquids[J]. ACS Nano,2009,3:2367-2375.
    [33] Sun X, Li Y. Colloidal Carbon Spheres and Their Core/Shell Structures withNoble-Metal Nanoparticles[J]. Angew Chem, Int Ed,2004,43:597-601.
    [34] Titirici M, Antonietti M, Thomas A. A Generalized Synthesis of Metal OxideHollow Spheres Using a Hydrothermal Approach[J]. Chem Mater,2006,18:3808-3812.
    [35] Irie H, Watanabe Y, Hashimoto K. Carbon-doped Anatase TiO2Powders as aVisible-light Sensitive Photocatalyst[J]. Chem Lett,2003,32:772-773.
    [36] Zschoerper N, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T, Flynn effectson sub-factors of episodic and semantic memory: parallel gains over time and thesame set of determining factors[J]. Carbon,2009,47,2174-2185.
    [37] Niederberger M, Garnweitner G, Krumeich F, Nesper R, Colfen H, Antonietti M.Tailoring the Surface and Solubility Properties of nanocrystalline titania by anonaqueous In situ functionalization process[J]. Chem Mater,2004,16,1202-1208.
    [1]Yoneyama H, Yamashita Y, Tamura H. Heterogeneous photocatalytic reduction ofdichromate on n-type semiconductor catalysts[J]. Nature,1979,282:817-818.
    [2]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis inNitrogen-Doped Titanium Oxides[J]. Science,2001,293:269-271.
    [3]Khan S, Al-Shahry M, Ingler W, Jr. Efficient Photochemical Water Splitting by aChemically Modified n-TiO2[J]. Science,2002,297:2243-2245.
    [4]Linsebigler A, Lu G, Yates J. Photocatalysis on TiO2Surfaces: Principles,Mechanisms, and Selected Results[J]. Chem Rev,1995,95:735-758.
    [5]Fox M, Dulay M. Heterogeneous photocatalysis[J]. Chem Rev,1993,93:341-357.
    [6]Anpo M, Takeuchi M. The design and development of highly reactive titaniumoxide photocatalysts operating under visible light irradiation[J]. J Catal,2003,216:505-516.
    [7]Diebold U. The surface science of titanium dioxide[J]. Surf Sci Rep,2003,48:53-229.
    [8]Arana J, DIaz O, Saracho M, Rodriguez J, Melian J, Pena J. Photocatalyticdegradation of formic acid using Fe/TiO2catalysts: the role of Fe3+/Fe2+ions in thedegradation mechanism[J]. Appl. Catal., B,2001,32:49-61.
    [9]Wang J, Mao B, Gole J, Burda C. Visible-light-driven reversible and switchablehydrophobic to hydrophilicnitrogen-doped titania surfaces: correlation withphotocatalysis[J]. Nanoscale,2010,2:2257-2261.
    [10]In S, Orlov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikho M, Wright D,Lambert R. Effective Visible Light-Activated B-Doped and B,N-CodopedTiO2Photocatalysts[J]. J Am Chem Soc,2007,129:13790-13791.
    [11]Sakthivel S, H. Kisch. Daylight Photocatalysis by Carbon-Modified TitaniumDioxide[J]. Angew Chem, Int Ed,2003,42:4908-4911.
    [12]Nguyen T, Wu J, Chiou C. Photoreduction of CO2over Ruthenium dye-sensitizedTiO2-based catalysts under concentrated natural sunlight[J]. Catal Commun,2008,9:2073-2076.
    [13]Peng T, Dai K, Yi H, Ke D, Cai P, Zan L. Photosensitization of differentruthenium(II) complex dyes on TiO2for photocatalytic H2evolution undervisible-light[J]. Chem Phys Lett,2008,460:216-219.
    [14]Zhang M, Shao C, Guo Z, Zhang Z, Mu J, Cao T, Liu Y. HierarchicalNanostructures of Copper(II) Phthalocyanine on Electrospun TiO2Nanofibers:Controllable Solvothermal-Fabrication and Enhanced Visible PhotocatalyticProperties[J]. ACS Appl Mater Interfaces,2011,3:369-377.
    [15]Li G, Zhang D, Yu J. A New Visible-Light Photocatalyst: CdS Quantum DotsEmbedded Mesoporous TiO2Environ[J]. Sci Technol,2009,43:7079–7085.
    [16]Xu Q, Wellia D, Ng Y, Amal R, Tan T. Synthesis of Porous and Visible-LightAbsorbing Bi2WO6/TiO2Heterojunction Films with Improved Photoelectrochemicaland Photocatalytic Performances[J]. J Phys Chem C,2011,115:7419–7428.
    [17]Primo A, Corma A, Garca H. Phys. Titania supported gold nanoparticles asphotocatalyst[J]. Chem Chem Phys,2011,13:886-910.
    [18]Zhang H, Wang G, Chen D, Lv X, Li J. Tuning PhotoelectrochemicalPerformances of Ag-TiO2Nanocomposites via Reduction/Oxidation of Ag[J]. ChemMater,2008,20:6543–6549
    [19]Zhang L, Fu H, Zhu Y. Efficient TiO2Photocatalysts from Surface Hybridizationof TiO2Particles with Graphite-like Carbon[J]. Adv Funct Mater,2008,18:2180-2189.
    [20]Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W. Visible lightphotodegradation of4-chlorophenol with a coke-containing titanium dioxidephotocatalyst[J]. Appl Catal, B,2001,32:215-227.
    [21]Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y.TiO2@carbon core/shell nanofibers: Controllable preparation and enhanced visiblephotocatalytic properties[J]. Nanoscale,2011,3:2943-2949.
    [22]Herrmann J, Tahiri H, Ait-Ichou Y, Lassaletta G, Gonzalez-Elipe A, Fernandez A.Characterization and photocatalytic activity in aqueous medium of TiO2andAg-TiO2coatings on quartz[J]. Appl Catal, B,1997,13:219.
    [23]Evano D, Chumanov G. Blue shift in gold nanoparticles after surfaceprotection[J]. Phys. Chem. Chem. Phys.,2005,6:1221.
    [24]Kowalska E, Mahaney O, Abe R, Ohtani B. Visible-light-induced photocatalysisthrough surface plasmon excitation of gold on titania surfaces[J]. Phys Chem ChemPhys,2010,12:2344-2355.
    [25]Kumar M, Krishnamoorthy S, Tan L, Chiam S, Tripathy S, Gao H. Field Effectsin Plasmonic Photocatalyst by Precise SiO2Thickness Control Using Atomic LayerDeposition[J]. ACS Catal,2011,1:300-308.
    [26]Graf P, Mantion A, Haase A, Thunemann A, Masic A, Meier W, Luch A, TaubertA. Silicification of Peptide-Coated Silver Nanoparticles—A Biomimetic SoftChemistry Approach toward Chiral Hybrid Core Shell Materials[J]. ACS Nano,2011,5:820-833.
    [27]Dobb M, Guo H, Johnson D. Image analysis of lattice imperfections in carbonfibres[J]. Carbon,1995,33:1115-1120.
    [28]Pennock G, Taylor G, Fitz G Microstructure in a series of mesophase pitch-basedfibers from du pont: zones, folds, and disclinations[J]. Carbon,1993,31:591-603.
    [29]Wiley B, Herricks T, Sun Y, Xia Y. Polyol Synthesis of SilverNanoparticles: Use of Chloride and Oxygen to Promote the Formation ofSingle-Crystal, Truncated Cubes and Tetrahedrons[J]. Nano Lett,2004,4:1733-1739.
    [30]Tang S, Vongehr S, Meng X. Controllable incorporation of Ag andAg–Au nanoparticles in carbonspheres for tunable optical and catalytic properties[J].J Mater Chem,2010,20:5436-5445.
    [31]Kobayashi Y, Salgueirino-Maceira V, Liz-Marzan L. Deposition of SilverNanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating[J]. ChemMater,2001,13:1630-1633.
    [32]Yang L, Luo S, Liu S, Cai Q. Graphitized Carbon Nanotubes Formed in TiO2Nanotube Arrays: A Novel Functional Material with Tube-in-Tube Nanostructure[J].J Phys Chem C,2008,112:8939-8943.
    [33]Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z. Low temperature preparation andvisible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J].Appl Catal, B,2007,69:138-144.
    [34]Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, Guo Z, Li X, Wang C, Liu Y.In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubesfor catalytic reduction of4-nitrophenol[J]. Chem Commun,2011,47:3906-3908.
    [35]Yu J, Yu H, Cheng B. The Effect of Calcination Temperature on the SurfaceMicrostructure and Photocatalytic Activity of TiO2Thin Films Prepared by LiquidPhase Deposition[J]. J Phys Chem B,2003,107:13871-13879.
    [36]Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, Antonietti M, Titirici M.One-Step Solvothermal Synthesis of a Carbon@TiO2Dyade Structure EffectivelyPromoting Visible-Light Photocatalysis[J]. Adv Mater,2010,22:3317-3321.
    [37]Dresselhaus M, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives onCarbon Nanotubes and Graphene Raman Spectroscopy[J]. Nano Lett,2010,10:751-758.
    [38]Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y. Synthesis ofVisible-Light Responsive Graphene Oxide/TiO2Composites with p/nHeterojunction[J]. ACS Nano,2010,4:6425-6432.
    [39]Lin Y, Watson K, Fallbach M, Ghose S, Smith J, et al. Rapid, Solventless, BulkPreparation of Metal Nanoparticle-Decorated Carbon Nanotubes[J]. ACS Nano,2009,3:871-884.
    [40]Corio P, Brown S, Marucci A, Pimenta M, Kneipp K, Dresselhaus G,Dresselhaus M. Surface-enhanced resonant Raman spectroscopy of single-wall carbonnanotubes adsorbed on silver and gold surfaces[J]. Phys Rev B,2000,61:13202-13211.
    [41]Kim K, Lee H, Choi J, Youn Y, Choi J, Lee H, Kang T, Jung M, Shin H, Lee H,Kim S, Kim B. Scanning Photoemission Microscopy of Graphene Sheets on SiO2[J]Adv Mater,2008,20:3589-3591.
    [42]Dai Z, Shi F, Zhang B, Li M, Zhang Z. Effect of sizing on carbon fiber surfaceproperties and fibers/epoxy interfacial adhesion[J]. Appl Surf Sci,2011,257:6980-6985.
    [43]Fran ois A, Christophe J, Yasmine A, Philippe J, Philippe T, Michel P, Paul G. R.XPS analysis of chemical functions at the surface of Bacillus subtilis[J]. J ColloidInterf Sci,2007,309:49-55.
    [44]Lin D, Wu H, Zhang R, Pan W. Enhanced Photocatalysis of ElectrospunAg ZnO Heterostructured Nanofibers[J]. Chem Mater,2009,21:3479-3484.
    [45]Yu J, Zhang L, Zheng Z, Zhao J. Synthesis and Characterization of PhosphatedMesoporous Titanium Dioxide with High Photocatalytic[J]. Activity Chem Mater,2003,15:2280.
    [46]Zschoerper N, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T. Analyticalinvestigation of the composition of plasma-induced functional groups on carbonnanotube sheets[J]. Carbon,2009,47:2174-2185.
    [47]Roodenko K, Gensch M, Rappich J, Hinrichs K, Esser N, Hunger R.Time-Resolved Synchrotron XPS Monitoring of Irradiation-Induced NitrobenzeneReduction for Chemical Lithography[J]. J Phys Chem B,2007,111:7541–7549.
    [48]Lettmann C, Hildenbrand K, Kisch H, Macyk W,. Maier W. Visible lightphotodegradation of4-chlorophenol with a coke-containing titanium dioxidephotocatalyst[J]. Appl Catal, B,2001,32:215-217.
    [49]Sun S, Wang W, Zhang L, Shang M, Wang L. Ag@C core/shell nanocompositeas a highly efficient plasmonic photocatalyst[J]. Catal Commun,2009,11:290-293.
    [50]Zhong J, Chen F, Zhang J. Carbon-Deposited TiO2: Synthesis, Characterization,and Visible Photocatalytic Performance[J]. J. Phys Chem C,2010,114:933-939.
    [51]Choi S, Kim S, Lim S, Park H. Photocatalytic Comparison of TiO2Nanoparticlesand Electrospun TiO2Nanofibers: Effects of Mesoporosity and Interparticle ChargeTransfer[J]. J Phys Chem C,2010,114:16475-16480.
    [52]Meng Z, Zhu L, Choi J, Chen M, Oh W. Effect of Pt treated fullerene/TiO2on thephotocatalytic degradation of MO under visible light[J]. J Mater Chem,2011,21:7596-7603.
    [53]Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, YoshidaN, Watanabe T. A Plasmonic Photocatalyst Consisting of Silver NanoparticlesEmbedded in Titanium Dioxide[J]. J Am Chem Soc,2008,130:1676-1680.
    [1] Cohen M L. Caleulation of bulk moduli of diamondand zinc-blende solids[J].Physieal ReviewB,1985,32:7988–7991.
    [2] Du A, Sanvito S, Li Z, et al. Hybrid graphene and graphitic carbon nitridenanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, andenhanced visible light response[J]. J Am Chem Soc,2012,134:4393–4397.
    [3] Pan C, Xu J, Wang Y, et al. Dramatic activity of C3N4/BiPO4photocatalyst withcore/shell structure formed by self-assembly[J]. Adv Funct Mater,2012,22:1518–1524.
    [4] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy andenvironmental applications[J]. Energy Environ Sci,2008,1:205–221.
    [5] Zheng Y, Liu J, Liang J, et al. Graphitic carbon nitride materials: controllablesynthesis and applications in fuel cells and photocatalysis[J]. Energy Environ Sci,2012,5:6717–6731.
    [6] Fu J, Tian Y, Chang B, Xi F, Dong X. BiOBr–carbon nitride heterojunctions:synthesis, enhanced activity and photocatalytic mechanism[J]. J Mater Chem,2012,22:21159–21166.
    [7] Zou X, Li G, Wang Y, et al. Chem Commun, Direct conversion of urea intographitic carbon nitride over mesoporous TiO2spheres under mild condition[J].2011,47:1066–1068.
    [8] Zhang Y, Mori T, Ye J, Antonietti M. Phosphorus-doped carbon nitride solid:enhanced electrical conductivity and photocurrent generation[J]. J Am Chem Soc,2010,132:6294–6295.
    [9] Zheng Y, Jiao Y, Chen J, et al. Nanoporous graphitic-C3N4@Carbon metal-freeelectrocatalysts for highly efficient oxygen reduction[J]. J Am Chem Soc,2011,133:20116–20119.
    [10] Zhang X, Xie X, Wang H, et al. Enhanced photoresponsive ultrathingraphitic-phase C3N4nanosheets for bioimaging[J]. J Am Chem Soc,2013,135:1821.
    [11] Wang X, Maeda K, Chen X, et al. Polymer semiconductors for artificialphotosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride withvisible light[J]. J Am Chem Soc,2009,131:1680–1681.
    [12] Niu P, Zhang L, Liu G, Cheng H. Graphene-like carbon nitride nanosheets forimproved photocatalytic activities[J]. Adv Funct Mater,2012,22:4763–4770.
    [13] Nizam Uddin M, Yang Y. Sol-gel synthesis of well-crystallized C3N4nanostructures on stainless steel substrates[J]. J Mater Chem,2009,19:2909–2911.
    [14] Schmidt C, Jansen M. New directions in carbonitride research: synthesis ofresin-like dense-packed C3N4using a hydrogen-free precursor[J]. J Mater Chem,2010,20:4183–4192.
    [15] Kang M, Luo D, Luo X, et al. Crystalline beryllium carboxylate frameworks withrutile-type and cubic-C3N4topologies[J]. CrystEngComm,2012,14:95–97.
    [16] Liao G, Chen S, Quan X, Yu H, Zhao H. Graphene oxide modified g-C3N4hybridwith enhanced photocatalytic capability under visible light irradiation[J]. J MaterChem,2012,22:2721–2726.
    [17] Dong G, Zhao K, Zhang L. Carbon self-doping induced high electronicconductivity and photoreactivity of g-C3N4[J]. Chem Commun,2012,48:6178–6180.
    [18] Li J, Shen B, Hong Z. A facile approach to synthesize novel oxygen-dopedg-C3N4with superior visible-light photoreactivity[J]. Chem Commun,2012,48:12017–12019.
    [19] Wang Y, Wang Z, Muhammad S, He J. Graphite-like C3N4hybridized ZnWO4nanorods: Synthesis and its enhanced photocatalysis in visible light[J].CrystEngComm,2012,14:5065–5070.
    [20] Chai B, Peng T, Mao J. Graphitic carbon nitride (g-C3N4)–Pt-TiO2nanocomposite as an efficient photocatalyst for hydrogen production under visiblelight irradiation[J]. Phys Chem Chem Phys,2012,14:16745–16752.
    [21] Sun J, Yuan Y, Qiu L, et al. Fabrication of composite photocatalyst g-C3N4–ZnOand enhancement of photocatalytic activity under visible light[J]. Dalton Trans,2012,41:6756–6763.
    [22] Wang Y, Bai X, Pan C, et al. Enhancement of photocatalytic activity of Bi2WO6hybridized with graphite-like C3N4[J]. J Mater Chem,2012,22:11568–11573.
    [23] Sun L, Zhao X, Jia C, et al. Enhanced visible-light photocatalytic activity ofg-C3N4–ZnWO4byfabricating a heterojunction: investigation based on experimentaland theoretical studies[J]. J Mater Chem,2012,22,23428–23438.
    [24] Chong S, Jones J, Khimyak Y, et al. Tuning of gallery heights in a crystalline2Dcarbon nitride network[J]. J Mater Chem A,2013,1:1102–1107.
    [25] Ye S, Qiu L, Yuan Y, et al. Facile fabrication of magnetically separable graphiticcarbon nitride photocatalysts with enhanced photocatalytic activity under visiblelight[J]. J Mater Chem A,2013,1,3008–3015.
    [26] Xu J, Wu H, Wang X, et al. A new and environmentally benign precursor for thesynthesis of mesoporous g-C3N4with tunable surface area[J]. Phys Chem Chem Phys,2013,15:4510–4517.
    [27] Cui Y, Ding Z, Fu X, Wang X. Construction of conjugated carbon nitridenanoarchitectures insolution at low temperatures for photoredox catalysis[J]. AngewChem,2012,124:11984–11988.
    [28] Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionallyordered macroporous graphitic C3N4/Carbon composite electrocatalyst[J]. AngewChem,2012,124:3958–3962.
    [29] Niu P, Zhang L, Liu G, Cheng H. Graphene-like carbon nitride nanosheets forimproved photocatalytic activities[J]. Adv Funct Mater,2012,22:4763–4770.
    [30] Yang S, Gong Y, Zhang J, et al. Exfoliated graphitic carbon nitride nanosheets asefficient catalysts for hydrogen evolution under visible light[J]. Adv Mater,2013,25:2452–2456.
    [1] Hoffmann M, Martin S, Choi W, Bahnemann D. W. Environmental applications ofsemiconductor photocatalysis[J]. Chem Rev B,1995,95:69-96.
    [2] O’Regan, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J]. Nature,1991,353:737-740.
    [3] Khan S, Al-Shahry M, Ingler W, Jr. Efficient photochemical water splitting by achemically modified n-TiO2[J]. Science,2002,297:2243-2245.
    [4] Zhang Z, Shao C, Li X, Zhang L, Xue H, Wang C, Liu Y. Electrospun nanofibersof ZnO/SnO2Heterojunction with high photocatalytic activity[J]. J Phys Chem C,2010,114:7920-7929.
    [5] Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y. Bi4Ti3O12nanosheets/TiO2submicron fibers heterostructures: in situ fabrication and high visiblelight photocatalytic activity[J]. J Mater Chem,2011,21:6922-6927.
    [6] Zhang P, Shao C, Zhang M, Guo Z, Mu J, Zhang Z, Zhang X, Liu Y. Bi2MoO6ultrathin nanosheets on ZnTiO3nanofibers: A3D open hierarchical heterostructuressynergistic system with enhanced visible-light-driven photocatalytic activity[J]. JHazard Mater,2010,217:422-428.
    [7] Wang C, Shao C, Zhang X, Liu Y. SnO2nanostructures-TiO2nanofibersheterostructures: controlled fabrication and high photocatalytic properties[J]. InorgChem,2009,48:7261-7268.
    [8] Liu R, Ye H, Xiong X, Liu H. Fabrication of TiO2/ZnO composite nanofibers byelectrospinning and their photocatalytic property[J]. Mater Chem Phy,2010,121:432-439.
    [9] Yan X, Zou C, Gao X, Gao Wei. ZnO/TiO2core–brush nanostructure: processing,microstructure and enhanced photocatalytic activity[J]. J Mater Chem,2012,22:5629-5640.
    [10] Xu Q, Ng Y, Zhang Y, Loo J, Amal R, Tan T. A three-way synergy oftriple-modified Bi2WO6/Ag/N-TiO2nanojunction film for enhanced photogeneratedcharges utilization[J]. Chem Commun,2011,47:8641-8643.
    [11] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. Core/shell nanofibersof TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalyticactivity[J]. J Mater Chem,2011,21:17746-17753.
    [12] Wu Y, Liu H, Zhang J, Chen F. Enhanced photocatalytic activity ofnitrogen-doped titania by deposited with gold[J]. J Phys Chem C,2009,113:14689-14695.
    [13] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. In situ assembly ofwell-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs)for catalytic reduction of4-nitrophenol[J]. Nanoscale,2011,3:3357-3363.
    [14] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. TiO2@carboncore/shell nanofibers: Controllable preparation and enhanced visible photocatalyticproperties[J]. Nanoscale,2011,3:2943-2949.
    [15] Yang Y, Sun X, Tay B, Wang J, Dong Z, Fan H. Twinned Zn2TiO4spinelnanowires using ZnO nanowires as a template[J]. Adv Mater,2007,19:1839-1844.
    [16] Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y. Mesoporous Au/TiO2nanocompositeswith enhanced photocatalytic activity[J]. J Am Chem Soc,2007,129:4538-4539.
    [17] Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, Guo Z, Li X, Wang C, Liu Y.In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubesfor catalytic reduction of4-nitrophenol[J]. Chem Commun,2011,47:3906-3908.
    [18] Wang Y, Shi R, Lin J, Zhu Y. Enhancement of photocurrent and photocatalyticactivity of ZnO hybridized with graphite-like C3N4[J]. Energy Environ Sci,2011,4:2922-2929.
    [19] Zhang P, Shao C, Zhang M, Guo Z, Mu J, Zhang Z, Zhang X, Liang P, Liu Y.Controllable synthesis of Zn2TiO4@carbon core/shell nanofibers with enhancedphotocatalytic performance[J]. J Hazard Mater,2012, http://dx.doi.org/10.1016/j.jhazmat.2012.05.102.
    [20] Jakob M, Levanon H. Charge distribution between UV-irradiated TiO2and goldnanoparticles: determination of shift in the Fermi level[J]. Nano Lett,2003,3:353-358.
    [21] Li P, Wei Z, Wu T, Peng Q, Li Y. Au-ZnO hybrid nanopyramids and theirphotocatalytic properties[J]. J Am Chem Soc,2011,133:5660-5663.
    [22] Mani J, Sakeek H, Habouti S, Dietze M, Es-Souni M. Macro-meso-porous TiO2,ZnO and ZnO-TiO2-composite thick films properties and application tophotocatalysis[J]. Catal Sci Technol,2012,2:379-385.
    [1] Regan B, Gratzel M. A low-cost high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films[J]. Nature,1991,353:737-740.
    [2] Hoffmann M, Martin S, Choi W, Bahnemann D. W. Environmental applications ofsemiconductor photocatalysis[J]. Chem Rev,1995,95:69-96.
    [3] Khan S, Al-Shahry M, Ingler W, Jr. Efficient photochemical water splitting by achemically modified n-TiO2[J]. Science,2002,297:2243-2245.
    [4] Huang M, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P.Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292:1897-1899.
    [5] Kind H, Yan H, Messer B, Law M, Yang P. Nanowire ultraviolet photodetectionand optical switches[J]. Adv Mater,2002,14:158-160.
    [6] Mukesh A, Smrati G, Andrij P, Nikolaos E, Manfred S. A facile approach tofabrication of ZnO TiO2hollow spheres[J]. Chem Mater,2009,21:5343-5348.
    [7] Zhang P, Shao C, Zhang M, Guo Z, Mu J, Zhang Z, Zhang X, Liu Y. Bi2MoO6ultrathin nanosheets on ZnTiO3nanofibers: A3D open hierarchical heterostructuressynergistic system with enhanced visible-light-driven photocatalytic activity[J]. J.Hazard. Mater.2010,217:422-428.
    [8] Nicholas T, Michael K, Suresh C. P. Crystallization and phase-transitioncharacteristics of sol-gel-synthesized zinc titanates[J]. Chem Mater,2011,23:1496-1504.
    [9] Yang Y. Sun X, Tay B, Wang J, Dong Z, Fan H. M. Twinned Zn2TiO4spinelnanowires using ZnO nanowires as a template[J]. Adv Mater,2007,19:1839-1844.
    [10] Wang Z, Saxena S, Zha C. S. In situ x-ray diffraction and Raman spectroscopy ofpressure-induced phase transformation in spinel Zn2TiO4[J]. Phys Rev B,2002,66:024103-024109.
    [11] Chaves A, Lima S, Araujo R, Maurera M, Longo E, Pizani P, Simoes L, SoledadeL, Souza A, dos Santos I. M. G. Photoluminescence in disordered Zn2TiO4[J]. J SolidState Chem,2006,179:985-992.
    [12] Jang J, Borse P, Lee J, Lim K, Jung O, Jeoung E, Bae J, Won M, Kim H. G.Energy band structure and photocatalytic property of Fe-doped Zn2TiO4material[J].Bull Korean Chem Soc,2009,30:3021-3024.
    [13] Chen Z, Derking A, Koot W, van Dijk M. P. Dehydrogenation of isobutane overzinc titanate thin film catalysts[J]. J Catal,1996,161:730-741.
    [14] Matsumoto Y. Energy positions of oxide semiconductors and photocatalysis withiron complex oxides[J]. J Solid State Chem,1996,126:227-234.
    [15] Wan L, Li X, Qua Z, Shi Y, Li H, Zhao Q, Chen G. Facile synthesis ofZnO/Zn2TiO4core/shell nanowires for photocatalytic oxidation of acetone[J]. JHazard Mater,2010,184:864-868.
    [16] Liang H, Zhang W, Ma Y, Cao X, Guan Q, Xu W, Yu S. H. Highly activecarbonaceous nanofibers: A versatile scaffold for constructing multifunctionalfree-standing membranes[J]. ACS Nano,2011,5:8148-8161.
    [17] Silva R. Properties of amorphous carbon[J]. Institution of engineering andtechnology: Hertfordshire, U.K.,2003.
    [18] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. TiO2@carboncore/shell nanofibers: Controllable preparation and enhanced visible photocatalyticproperties[J]. Nanoscale,2011,3:2943-2949.
    [19] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. Core/shell nanofibersof TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalyticactivity[J]. J Mater Chem,2011,21:17746-17753.
    [20] Guo Y, Wang H, He C, Qiu L, Cao X. Uniform carbon-coated ZnO nanorods:microwave-assisted preparation, cytotoxicity, and photocatalytic activity[J]. Langmuir,2009,25:4678-4684.
    [21] Zhao L, Chen X, Wang X, Zhang Y, Wei W, Sun Y, Antonietti M, Titirici M. M.One-step solvothermal synthesis of a Carbon@TiO2dyade structure effectivelypromoting visible-light photocatalysis[J]. Adv Mater,2010,22:3317-3321.
    [22] Hou J, Jiao S, Zhu H, Kumar R. V. Carbon-modified bismuth titanate nanorodswith enhanced visible-light-driven photocatalytic property[J]. CrystEngComm,2011,13:4735-4740.
    [23] Yang Y, Scholz R, Fan H, Hesse D, Gosele U, Zacharias M. Multitwinned spinelnanowires by assembly of nanobricks via oriented attachment: a case study ofZn2TiO4[J]. ACS Nano,2009,3:555-562.
    [24] Manik S, Bose P, Pradhan S. Microstructure characterization and phasetransformation kinetics of ball-milled prepared nanocrystalline Zn2TiO4by Rietveldmethod[J]. Mater Chem Phys,2003,82:837-847.
    [25] Dobb M, Guo H, Johnson D. Image analysis of lattice imperfections in carbonfibers[J]. Carbon,1995,33:1115-1120.
    [26] Pennock G, Taylor G, Fitz, Gerald J. D. Microstructure in a series of mesophasepitch-based fibers from Dupont: zones, folds, and disclinations[J]. Carbon,1993,31:591-603.
    [27] Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisueb C, Supaphol P.Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers andtheir subsequent pyrolysis to carbon fibers[J]. Polym Int,2006,55:825-833.
    [28] Turchi C, Ollis D. Photocatalytic degradation of organic water contaminants:mechanisms involving hydroxyl radical attack[J]. J Catal,1990,122:178-192.
    [29] Lee M, Park S, Lee G, Ju C, Hong S. Synthesis of TiO2particles by reversemicroemulsion method using nonionic surfactants with different hydrophilic andhydrophobic group and their photocatalytic activity[J]. Catal Today,2005,101:283-290.
    [30] Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a highperformance photocatalyst[J]. ACS Nano,2010,4:380-386.
    [31] Zhang L, Fu H, Zhu Y. F. Efficient TiO2photocatalysts from surfacehybridization of TiO2particles with graphite-like carbon[J]. Adv Funct Mater,2008,18:2180-2189.
    [32] Wang Y, Shi R, Lin J, Zhu Y. Enhancement of photocurrent and photocatalyticactivity of ZnO hybridized with graphite-like C3N4[J]. Energy Environ Sci,2011,4:2922-2929.
    [33] Zhang L, Cheng H, Zong R, Zhu Y. Photocorrosion suppression of ZnOnanoparticles via hybridization with graphite-like carbon and enhanced photocatalyticactivity[J]. J Phys. Chem C,2009,113:2368-2374.
    [1] Shang M, Wang W, Ren J, Sun S, et al. A practical visible-light-driven Bi2WO6nanofibrous mat prepared by electrospinning[J]. J Mater Chem,2009,19):6213-6218.
    [2] Zhang Z, Wang W, Shang M, Yin W. Low-temperature combustion synthesis ofBi2WO6nanoparticles as a visible-light-driven photocatalyst[J]. J Hazard Mater,2010,177:1013-1018.
    [3] Xu Q, Ng Y, Zhang Y, et al. A three-way synergy of triple-modifiedBi2WO6/Ag/N-TiO2nanojunction film for enhanced photogenerated chargesutilization[J]. Chem Commun,2011,47:8641-8643.
    [4] Shang M, Wang W, Ren J, et al. Nanoscale Kirkendall effect for the synthesis ofBi2MoO6boxes via a facile solution-phase method[J]. Nanoscale,2011,3:1474-1476.
    [5] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis of hierarchicalflower-like Bi2MoO6hollow spheres as high performance visible-light drivenphotocatalysts[J]. J Mater Chem,2011,21:887-892.
    [6] Yin W, Wang W, Sun S. Photocatalytic degradation of phenol over cage-likeBi2MoO6hollow spheres under visible-light irradiation[J]. Catal Commun,2010,11:647-650.
    [7] Zhou T, Hu J, Li J. Er3+doped bismuth molybdate nanosheets with exposed {010}facets, enhanced photocatalytic performance[J]. Appl Catal B: Environ,2011,110:221-230.
    [8] Zhao X, Liu H, Shen Y, Qu J. Photocatalytic reduction of bromate at C60modifiedBi2MoO6under visible light irradiation[J]. Appl Catal B: Environ,2011,106:63-68.
    [9] Li N, Zhu L, Zhang W, Yu Y, Zhang W, Hou M. Modification of TiO2nanorods byBi2MoO6nanoparticles for high performance visible-light photocatalysis[J]. J AlloyCompd,2011,47:9770-9775.
    [10] Zhang Z, Shao C, Li X, Zhang L, Xue H, Wang C, Liu Y. Protein folding as flowacross a network of folding-unfolding pathways.1. The mid-transition case[J]. J PhysChem C,2010,114:7920-7929.
    [11] Wang C, Shao C, Zhang X, Liu Y. SnO2nanostructures-TiO2nanofibersheterostructures: controlled fabrication and high photocatalytic properties[J]. InorgChem,2009,48:7261-7268.
    [12] Cao T, Li Y, Wang C, Zhang Z, Zhang M, Shao C, Liu Y. Bi4Ti3O12nanosheets/TiO2submicron fibers heterostructures: in situ fabrication and high visiblelight photocatalytic activity[J]. J Mater Chem,2011,21:6922-6927.
    [13] Sulaeman U, Yin S, Sato T. Solvothermal synthesis of designednonstoichiometric strontium titanate for efficient visible-light photocatalysis[J]. ApplPhys Lett,2010,97:103102.
    [14] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. TiO2@carboncore/shell nanofibers: Controllable preparation and enhanced visible photocatalyticproperties[J]. Nanoscale,2011,3:2943-2949.
    [15] Zhang P, Shao C, Zhang Z, Zhang M, Mu J, Guo Z, Liu Y. Core/shell nanofibersof TiO2@carbon embedded by Ag nanoparticle with enhanced visible photocatalyticactivity[J]. J Mater Chem,2011,21:17746-17753.
    [16] Chen D, Zhang H, Li X, Li J. Biofunctional titania nanotubes forvisible-light-activated photoelectrochemical biosensing[J]. Anal Chem,2010,82:2253-2261.
    [17] Xu Y, Langford C. H. UV-or visible-light-induced degradation of X3B on TiO2nanoparticles: the influence of adsorption[J]. Langmuir,2001,17:897-902.
    [18] Li X, Lv K, Deng K, Tang J, Su R, Sun J, Chen L. Synthesis and characterizationof ZnO and TiO2hollow spheres with enhanced photoreactivity[J]. Mater Sci Eng B,2009,158:40-47.
    [19] Nethercot A. H. Prediction of fermi energies and photoelectric thresholds basedon electronegativity concepts[J]. Phys Rev Lett,1974,33:1088-1091.
    [20] Zhang H, Lv X, Li Y, Chen D, Li L, Li J.H. P25-Graphene composite as a highperformance photocatalyst[J]. ACS Nano,2010,4:380-386.
    [21] Long M, Cai W, Kisch H. Photoelectrochemical properties of nanocrystallineAurivillius phase Bi2MoO6film under visible light irradiation[J]. Chem Phy Lett,2008,461:102-105.
    [22] Li H., Bian Z, Zhu J, Zhang D, Li G, Huo Y, Li H, Lu Y. F. Mesoporous titaniaspheres with tunable chamber stucture and enhanced photocatalytic activity[J]. J AmChem Soc,2007,129:8406-8407.
    [23] Li G, Liu J, Jiang G. Facile synthesis of spiny mesoporous titania tubes withenhanced photocatalytic activity[J]. Chem Commun,2011,47:7443-7445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700