电磁诱导的单光子和多光子带隙结构及相位光栅
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以电磁感应光透明为背景,研究了驻波诱导的单光子和多光子带隙结构以及相位光栅,共分为四部分。
     一、基于电磁感应透明和光子禁带的全光路由
     在这部分我们研究了被一个行波场和一个完美驻波场共同耦合的四能级Tripod系统的光学响应。首先计算了两个耦合场失谐相等(△。=△g)情况下的布洛赫波矢以及反射率和透射率谱,发现若行波场拉比频率为零,即四能级系统退化为三能级Λ系统,这时由于驻波节点为零产生的残余吸收,带隙结构很差:若行波场拉比频率不等于零,带隙结构接近完美(反射率超过95%)。
     其次我们考虑了两个耦合场失谐不相等(△c≠△g)的情况。通过计算系统的反射谱和透射谱,发现系统存在一个高反射带的同时还存在一个高透射带。这是因为当△c≠△g时,两个耦合场引起的EIT窗口不再重合,只有探测场失谐分别等于△c和△g时,探测场才会与行波场和驻波场产生有效的相互作用,从而在这两个位置分别产生一个EIT窗口(高透射带)和一个光子禁带(高反射带)。透射带和反射带的位置主要由△c和△g决定,因此两者的位置可以发生交换。
     利用此光学可控的高反射带和透射带,我们设计了一种可以传输和分布弱光信号的全光路由。路由结构如图1,A、B、C是通讯网络中的三个结点,结点B代表我们所研究的被行波场和驻波场共同耦合的Tripod型系统。进入结点B的两个信号(信号1和2)在空间和时间上重合。若信号1的频率落入透射带,信号2的频率落入反射带,那么信号1将被传输(透射)至指向结点C的透射信道(t-channel),信号2将被传输至(反射)指向结点A的反射信道(r-channel)。若我们调节两个耦合场的参数,使两个带的位置交换,那么原本进入t-channel的信号1将被传输至r-channel,而原本进入r-channel的信号2将被传输至t-channel。
     二、基于自发辐射相干的双光子带隙
     在这部分我们在存在自发辐射相干(SGC)的系统中建立了驻波诱导的双光子带隙结构。所采用的能级系统是包含两个距离很近上能态的双A系统。两个上能态与两个基态分别被一个弱探测场和强驻波场驱动,并且两个上能态向两个基态的白发辐射存在相干(SGC系数分别用p1和p2表示)。通过计算发现,无论是对称结构还是反对称结构,当p1=p2=1时,即系统存在最大的SGC效应时,在共振点两侧各形成一个接近完美的光子带隙。为研究SGC对带隙的影响,我们分别计算了不同SGC参数p1和p2下的带隙结构。对于对称和反对称这两种结构,随着p1和p2的下降两个带隙反射率都降低,但是不同的结构,反射率受p1和p2降低的影响不同。对于反对称结构,p1的影响更主要,p1最大时就可以保证带隙具有高反射率;对于对称结构,p1和p2对带隙的影响相同,只有两者都最大时,才能获得高反射率的带隙。通过分析不同SGC强度下的吸收谱,我们讨论了具有高反射率的双光子带隙形成的原因:驻波场引起的非均匀量子干涉效应把原本的一个透明区域劈裂成两个EIT窗口,并且使每个窗口内介质的折射率在空间上呈周期变化,同时SGC效应进一步抑制了驻波节点处的吸收,提供了实现光子带隙所需的高透明背景。
     最后我们研究了耦合场拉比频率和两个上能级的间隔对带隙的影响。随着拉比频率的增加,带隙逐渐变宽,但反射率随之降低。随着能级间隔逐渐增大,两个带隙的反射率先逐渐增大之后开始下降。
     三、三光子带隙结构及扩展
     目前关于电磁诱导的光子带隙的研究主要停留在单个或两个带隙的产生及应用上。在这部分里我们扩展了单光子及双光子带隙的研究,探讨了多光子带隙的建立。首先我们考虑了一个被驻波场和行波场共同驱动的三Λ系统,该系统同时存在探测跃迁的SGC和驱动跃迁的SGC。利用传输矩阵方法分析介质的光学响应发现,当探测跃迁和驱动跃迁的SGC都最大时,在三个不同区域出现了三个光子带隙,每个带隙的反射率均达到92%。然而,无论是当探测跃迁还是共振跃迁的SGC效应逐渐减弱时,EIT窗口处的吸收逐渐增强,以至于三个带隙的反射率都逐渐降低,带隙逐渐被破坏。考虑到在真实的原子中找不到存在SGC效应的系统,我们在一个在缀饰态图像下与三重Λ系统等价、被两个行波场和一个驻波场共同驱动的五能级链式M系统中同样获得了光学可调的三光子带隙,并重点研究了耦合场强度对带隙结构的影响以确定获得最佳带隙所需的条件。通过分析以上的研究结果,我们相信在多重Λ及链式Λ系统中能够建立多带隙结构。
     四、电磁诱导相位光栅
     在这部分,我们首先介绍了利用大失谐的双拉曼共振消除双光子吸收获得巨克尔非线性的方法。与用EIT产生巨克尔非线性的方法相比,这种方法不需要强的耦合激光,可实现几十个光子水平的非线性,但缺点是存在线性吸收,不过线性吸收可以通过增大拉曼跃迁同激发态的失谐来抑制。在此基础上,我们把该双拉曼结构中的控制场换成驻波场,设计出一种高衍射效率的相位光栅。我们利用傅里叶变换的方法计算了平面电磁波正入射的Frannhofer衍射,发现在一定参数下一级衍射效率超过30%。通过计算同样参数下的透射率及相移发现,透射的信号由于受到控制光的调制而获得π相移,同时透射率与控制光强度无关,即不依赖空间变量,因此该光栅接近理想的正弦光栅。之后我们详细分析了失谐、退相位速率及拉曼间隔等参数对衍射效率的影响,为实验上的验证提供了支持。与用基于EIT的三阶非线性建立的相位光栅相比,本章研究的相位光栅衍射效率更高,不需要大的光学深度,并且能实现弱控制光衍射。
In this thesis, based on electromagnetically induced transparency, we study the double and multiple photonic band gaps and phase grating induced by the standing-wave field, which consists of four parts.
     I. All-optical routing using dynamically induced transparency windows and photonic band gaps
     In this part, we investigate the optical response of a Tripod system coupled by a travelling-wave (TW) and a perfect standing-wave (SW) field. First, we calculate the Bloch vector and corresponding reflection and transmission spectra in the case of the same detunings of two coupling fields (Δc=Ag). We find that if the Rabi frequency of TW equals to zero, i.e., this four level Tripod-type system degenerates into a three levelΔ-type one, the photonic bandgap (PBG) cannot be well formed due to the absorption at nodes of perfect SW. However, if the Rabi frequency of TW is not zero, a nearly perfect photonic bandgap appears with reflectivity exceeding 95%.
     Second, we consider the case that the SW grating and the TW coupling may be assigned to have different detunings (Δc≠Δg). From the reflection and transmission spectra, we find a high-transmission region with comparable width appear besides a high-reflection band gap. This is because the TW coupling and the SW grating effectively interact with the weak probe at different probe detuningsΔp via two-photon transitions whenΔc is different with Ag, and the two effectively interaction atΔc andΔg correspond to an electromagnetically induced transparency window (high-transmission region) and a photonic bandgap (high-reflection region). Moreover, the positions of transmission region and reflection region are mainly determined byΔc andΔg, respectively. Thus, the high-reflection and the high-transmission region may exchange their positions as we modulate the TW and SW detunings as well as the misaligned angle of the forward and backward components of SW.
     We devise an efficient scheme for the all-optical routing of weak light signals using the high-transmission region and the high-reflection band gap with controllable positions and widths. The schematic is showed in Fig.1, where A, B and C are the nodes in information network. In particular, node B is the Tripod-type system dressed by a TW coupling and a perfect SW grating. The two signals labeled by 1 and 2 overlap in space and time. If the frequency of signal 1 falls in the high-transmission region while that of signal 2 falls in the high-reflection region, signal 1 will be routed (transmitted) into the t channel toward node C while signal 2 will be routed (reflected) into the r channel toward node A. If we make the two regions exchange their positions by modulating the parameters of two couplings, the routing process is totally inversed to allow signal 1 (signal 2) going into the r channel (the t channel).
     II. Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence
     In this part, we develop a double-PBG structure induced by a SW field in the presence of spontaneously generated coherence (SGC). The system we investigate is a double-A system consisting of two closely lying upper doublets coupled to a low level by a strong SW field and another low populated level by a weak probe field. There are coherences generated by spontaneous emission from doublets to two ground states, the intensities of which are represented by p1 and p2, respectively. By calculating the PBG structure and the reflection spectra, we find that no matter in symmetric or dissymmetric system, two symmetric PBGs with high reflectivities are generated at left and right wings of the probe resonance in the presence of p1=p2=1 and both PBGs become poorly developed and hardly defined with reduced probe reflectivities when either p1 or p2 is decreased to weaken the SGC effect. However, to obtain the good double-PBG structure, in symmetric system both p1 and p2 should be maximal, while in dissymmetric system only p1 need to be maximal. Through the reflection spectra in different SGC intensities, we explain the formation of two well developed PBGs. The underlying physics is that the SW coupling splits the transparent background into two space-dependent EIT windows, and SGC can suppress the absorption at SW nodes further which provided a high transparent background. At last we discuss the impacts of Rabi frequency of SW field and the interval of the doublets on the two PBGs. When Rabi frequency of SW gradually increases, the width of two PBGs get wider and wider accompanying with the reduction of their reflectivities. As the interval of the doublets increase gradually, the reflection rates of the two bandgaps, firstly, increase gradually, and then begin to decline.
     III. Triple photonic band gap structure and expansion.
     So far all investigations on dynamically induced PBGs are restricted in the controlled generation and potential application of one or two band-gaps. In this part, we extend our research on single and double PBGs and demonstrate a feasible scheme for generation of multiple PBGs. We first study a triple-A system interacting with a weak probe field and a strong driving field as well as exhibiting the SGC effects on both probe transitions and driving transitions. By analyzing the optical response of this system with transfer-matrix method, we can see that in the presence of maximal SGC on both probe and driving transitions, a triple-PBG structure manifests with probe reflectivities up to 92% in three different spectral regions. However, when the intensity of SGC on either probe or driving transition decreases, the probe absorption arising from nodes of SW within three EIT windows gets larger so that the reflectivities inside all the three bandgaps become smaller, which means the three PBGs are destroyed. Considering the difficulty of finding an atom or molecule existing SGC effect, we obtain the triple-PBG structure in a five-level chain-A system without SGC which in the dressed state representation of two additional TW coupling fields is equivalent to a five-level triple-A system with SGC. Then we study the impact of Rabi frequency of coupling fields on three bandgaps in order to determine the conditions for perfect bandgaps. Analyzing the results from the preceding investigations of double- and triple-PBG structures, we believe that more PBGs may be simultaneously generated in multiple-A system and chain-A system.
     IV. Electromagnetically induced phase grating
     We first introduce a method from a paper for achieving giant Kerr nonlinearities between two weak laser beams, which is based on Raman resonance with far detuning from the excited state to eliminate the two-photon absorption. The key advantage of our scheme over EIT is that the coupling laser beam can be arbitrary small even at the several photons level. The key disadvantage is that the single-photon linear absorption of beams is not eliminated. However the single-photon linear absorption can be suppressed by enlarging the detuning between the Raman transition and the excited state. On these bases, we introduce a SW control field instead of TW control field in this Raman transition and then propose an electromagnetically induced phase grating (EIG). For the case in which the incident probe laser is a plane wave, we show the Fraunhofer diffraction by the Fourier transform and find that the first-order diffraction efficiency of the grating exceeds 30%. From the analysis expression of the transmission and phase shift, we find a large phase modulation of the transmission function is observed reaching a peak phase shift value ofπ, and the transmissivity is not relevant to the intensity of control field, i.e., transmissivity is space-independent. Thus this phase grating is very close to an ideal sinusoidal phase grating. In order to find the experimentally achievable parameters, we show how the parameters such as detuning, the dephasing rate of Raman transition and interval of separation of the two Raman resonances affect the diffraction efficiency. Compared with the phase grating based on the Kerr nonlinearity of an atomic medium under electromagnetically induced transparency, the diffraction efficiency of this grating proposed here is high with a lower absorption length of sample and the intensity of the control field may be extremely weak.
引文
[1]COURANT H. Associated Photons in K-Particle Decays Observed with a Multiplate Cloud Chamber [J]. Phys. Rev.,1955,99:282-287.
    [2]SCHAWLOW A L and TOWNES C H. Infrared and Optical Masers [J]. Phys. Rev.,1958,112:1940-1949.
    [3]AUTLER S H and TOWNES C H. Stark Effect in Rapidly Varying Fields [J]. Phys. Rev.,1955,100:703-722.
    [4]JAVAN A. Theory of a Three-Level Maser [J]. Phys. Rev.,1957,107: 1579-1589.
    [5]HANSCH T, KEIL R, SCHABERT A, et al. Interaction of laser light waves by dynamic stark splitting [J]. Z. Physik,1969,226:293-296.
    [6]HANSCH T and TOSCHEK P. Theory of a three-level gas laser amplifier [J]. Z. Physik,1970,236:213-244.
    [7]FANO U. Effects of Configuration Interaction on Intensities and Phase Shifts [J]. Phys. Rev.,1961,124:1866-1878.
    [8]MOLLOW B R. Power Spectrum of Light Scattered by Two-Level Systems [J]. Phys. Rev.,1969,188:1969-1975.
    [9]WU F Y, EZEKIEL S, DUCLOY M, et al. Observation of Amplification in a Strongly Driven Two-Level Atomic System at Optical Frequencies [J]. Phys. Rev. Lett.,1977,38:1077-1080.
    [10]GRANDCL, EACUTE, MENT D, et al. Parametric oscillation in sodium vapor [J]. Phys. Rev. Lett.,1987,59:44-47.
    [11]KHITROVA G, VALLEY J F and GIBBS H M. Gain-feedback approach to optical instabilities in sodium vapor [J]. Phys. Rev. Lett.,1988,60: 1126-1129.
    [12]ALZETTA G, GOZZINI A, MOI L, et al., An experimental method for the absorption of r.f. transitions and laser beat resonances in oriented sodium vapor [J]. Nuov. Cim.1976,36B:5.
    [13]ARIMONDO E and ORRIOLS G, Nonabsorbing atomic coherence by coherent two-photon transitions in a three-level optical pumping [J]. Nuov. Cim. Lett.1976,7:333.
    [14]ARIMONDO E, Progress in Optics, edited by E. Wolf, Vol. ⅩⅩⅩⅤ, p.259.
    [15]ASPECT A, ARIMONDO E, KAISER R, et al. Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping [J]. Phys. Rev. Lett.,1988,61:826-829.
    [16]BOLLER K J, IMAMOLU A and HARRIS S E. Observation of electromagnetically induced transparency [J]. Phys. Rev. Lett.,1991,66: 2593-2596.
    [17]FIELD J E, HAHN K H and HARRIS S E. Observation of electromagnetically induced transparency in collisionally broadened lead vapor [J]. Phys. Rev. Lett.,1991,67:3062-3065.
    [18]HARRIS S E. Electromagnetically Induced Transparency [J]. Phys. Today, 1997,50:36-42.
    [19]HARRIS S E. Electromagnetically induced transparency with matched pulses [J]. Phys. Rev. Lett.,1993,70:552-555.
    [20]KIVSHAR Y S and QUIROGA-TEIXEIRO M L. Influence of cross-phase modulation on soliton switching in nonlinear optical fibers [J]. Opt. Lett., 1993,18:980-982.
    [21]HARRIS S E. Lasers without inversion:Interference of lifetime-broadened resonances [J]. Phys. Rev. Lett.,1989,62:1033-1036.
    [22]SCULLY M O, ZHU S-Y and GAVRIELIDES A. Degenerate quantum-beat laser:Lasing without inversion and inversion without lasing [J]. Phys. Rev. Lett.,1989,62:2813-2816.
    [23]SCULLY M O, ZHU S Y, NARDUCCI L, et al. Gain and threshold in noninversion lasers [J]. Opt. Commun.,1992,88:240-248.
    [24]SCULLY M O, ZHU S Y and FEARN H. Lasing without inversion [J]. Z. Phys. D,1992,22:471-481.
    [25]HARRIS S E and MACKLIN J J. Lasers without inversion:Single-atom transient response [J]. Phys. Rev. A,1989,40:4135-4137.
    [26]FLEISCHHAUER M, KEITEL C H, SCULLY M 0, et al. Lasing without inversion and enhancement of the index of refraction via interference of incoherent pump processes [J]. Opt. Commun.,1992,87:109-114.
    [27]IMAMOGLU A and HARRIS S E. Lasers without inversion:interference of dressed lifetime-broadened states [J]. Opt. Lett.,1989,14:1344-1346.
    [28]ZHU S Y, SCULLY M O, FEARN H, et al. Lasing without inversion [J]. Z. Phys. D,1992,22:483-493.
    [29]KOCHAROVSKAYA O, MANDEL P and RADEONYCHEV Y V. Inversionless amplification in a three-level medium [J]. Phys. Rev. A,1992, 45:1997-2005.
    [30]TAN W, LU W and HARRISON R G. Lasing without inversion in a V system due to trapping of modified atomic states [J]. Phys. Rev. A,1992,46: R3613-R3616.
    [31]BERGOU J, AACUTE, NOS A, et al. Quantum theory of a noninversion laser with injected atomic coherence [J]. Phys. Rev. A,1991,43:4889-4900.
    [32]GHERI K M and WALLS D F. Squeezed lasing without inversion or light amplification by coherence [J]. Phys. Rev. A,1992,45:6675-6686.
    [33]FRY E S, LI X, NIKONOV D, et al. Atomic coherence effects within the sodium D1 line:Lasing without inversion via population trapping [J]. Phys. Rev. Lett.,1993,70:3235-3238.
    [34]LUKIN M, SCULLY M, WELCH G, et al. Lasing without inversion:the road to new short-wavelength lasers [J]. Laser Phys.,1996,6:436-447.
    [35]SCULLY M O. Enhancement of the index of refraction via quantum coherence [J]. Phys. Rev. Lett.,1991,67:1855-1858.
    [36]FLEISCHHAUER M, KEITEL C H, SCULLY M O, et al. Resonantly enhanced refractive index without absorption via atomic coherence [J]. Phys. Rev. A,1992,46:1468-1487.
    [37]HARRIS S E, FIELD J E and KASAPI A. Dispersive properties of electromagnetically induced transparency [J]. Phys. Rev. A,1992,46: R29-R32.
    [38]JAIN M, MERRIAM A J, KASAPI A, et al. Elimination of Optical Self-Focusing by Population Trapping [J]. Phys. Rev. Lett.,1995,75: 4385-4388.
    [39]SCULLY M O and FLEISCHHAUER M. High-sensitivity magnetometer based on index-enhanced media [J]. Phys. Rev. Lett.,1992,69:1360-1363.
    [40]HARRIS S E, FIELD J E and IMAMOGBREVELU A. Nonlinear optical processes using electromagnetically induced transparency [J]. Phys. Rev. Lett., 1990,64:1107-1110.
    [41]HAKUTA K, MARMET L and STOICHEFF B P. Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen [J]. Phys. Rev. Lett.,1991,66:596-599.
    [42]HEMMER P R, KATZ D P, DONOGHUE J, et al. Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium [J]. Opt. Lett.,1995,20:982-984.
    [43]JAIN M, XIA H, YIN G Y, et al. Efficient Nonlinear Frequency Conversion with Maximal Atomic Coherence [J]. Phys. Rev. Lett.,1996,77:4326-4329.
    [44]FLEISCHHAUER M and SCULLY M O. Quantum sensitivity limits of an optical magnetometer based on atomic phase coherence [J]. Phys. Rev. A, 1994,49:1973-1986.
    [45]LUKIN M D, FLEISCHHAUER M, ZIBROV A S, et al. Spectroscopy in Dense Coherent Media:Line Narrowing and Interference Effects [J]. Phys. Rev. Lett.,1997,79:2959-2962.
    [46]HACKEL R P and EZEKIEL S. Observation of Subnatural Linewidths by Two-Step Resonant Scattering in 12 Vapor [J]. Phys. Rev. Lett.,1979,42: 1736-1739.
    [47]LUKIN M D, FLEISCHHAUER M, SCULLY M O, et al. Intracavity electromagnetically induced transparency [J]. Opt. Lett.,1998,23:295-297.
    [48]KASAPI A, JAIN M, YIN G Y, et al. Electromagnetically Induced Transparency:Propagation Dynamics [J]. Phys. Rev. Lett.,1995,74: 2447-2450.
    [49]SCHMIDT O, WYNANDS R, HUSSEIN Z, et al. Steep dispersion and group velocity below c/3000 in coherent population trapping [J]. Phys. Rev. A,1996, 53:R27-R30.
    [50]KASH M M, SAUTENKOV V A, ZIBROV A S, et al. Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas [J]. Phys. Rev. Lett.,1999,82:5229-5232.
    [51]HAU L V, HARRIS S E, DUTTON Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas [J]. Nature,1999,397:594-598.
    [52]BUDKER D, KIMBALL D F, ROCHESTER S M, et al. Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation [J]. Phys. Rev. Lett.,1999,83:1767-1770.
    [53]WEI C and MANSON N B. Observation of the dynamic Stark effect on electromagnetically induced transparency [J]. Phys. Rev. A,1999,60: 2540-2546.
    [54]TURUKHIN A V, SUDARSHANAM V S, SHAHRIAR M S, et al. Observation of Ultraslow and Stored Light Pulses in a Solid [J]. Phys. Rev. Lett.,2001,88:023602-1-4.
    [55]FLEISCHHAUER M and LUKIN M D. Dark-State Polaritons in Electromagnetically Induced Transparency [J]. Phys. Rev. Lett.,2000,84: 5094-5097.
    [56]MATSKO A B, ROSTOVTSEV Y V, KOCHAROVSKAYA O, et al. Nonadiabatic approach to quantum optical information storage [J]. Phys. Rev. A,2001,64:043809.
    [57]PHILLIPS D F, FLEISCHHAUER A, MAIR A, et al. Storage of Light in Atomic Vapor [J]. Phys. Rev. Lett.,2001,86:783-786.
    [58]KARR J P, BAAS A, HOUDR, et al. Squeezing in semiconductor microcavities in the strong-coupling regime [J]. Phys. Rev. A,2004,69: 031802(R)-1-4.
    [59]CHEN Y-F, WANG S-H, WANG C-Y, et al. Manipulating the retrieved width of stored light pulses [J]. Phys. Rev. A,2005,72:053803-1-4.
    [60]CHEN Y-F, WANG C-Y, WANG S-H, et al. Low-Light-Level Cross-Phase-Modulation Based on Stored Light Pulses [J]. Phys. Rev. Lett., 2006,96:043603-1-4.
    [61]CHEN Y-F, KUAN P-C, WANG S-H, et al. Manipulating the retrieved frequency and polarization of stored light pulses [J]. Opt. Lett.,2006,31: 3511-3513.
    [62]EISAMAN M D, ANDRE A, MASSOU F, et al. Electromagnetically induced transparency with tunable single-photon pulses [J]. Nature,2005,438: 837-841.
    [63]WANG H-H, KANG Z-H, JIANG Y, et al. Erasure of stored optical information in a Pr3+:Y2SiO5 crystal [J]. Appl. Phys. Lett.,2008,92: 011105-1-3.
    [64]CARRENO O F and ANTON M A. Controlled release of stored pulses in a double-quantum-well structure [J]. J. Phys. B:At. Mol. Opt. Phys.,2009,42: 215508-1-12.
    [65]HEINZE G, RUDOLF A, BEIL F, et al. Storage of images in atomic coherences in a rarc-earth-ion-doped solid [J]. Phys. Rev. A,2010,81: 011401-1-4.
    [66]ANDRE A and Lukin M D. Manipulating Light Pulses via Dynamically Controlled Photonic Band gap [J]. Phys. Rev. Lett.,2002,89:143602-1-4.
    [67]BAJCSY M, ZIBROV A S and LUKIN M D. Stationary pulses of light in an atomic medium [J]. Nature,2003,426:638-641.
    [68]ANDRE A, BAJACSY M, ZIBROV A S, et al. Nonlinear Optics with Stationary Pulses of Light [J]. Phys. Rev. Lett.,2005,94:063902-1-4.
    [69]ZIMMER F E, ANDRE A, LUKIN M D, et al. Coherent control of stationary light pulses [J]. Opt. Commun.,2006,264:441-453.
    [70]HANSEN K R and M(?)LMER K. Trapping of light pulses in ensembles of stationary A atoms [J]. Phys. Rev. A,2007,75:053802-1-8.
    [71]HANSEN K R and M(?)LMER K. Stationary light pulses in ultracold atomic gases [J]. Phys. Rev. A,2007,75:065804-1-4.
    [72]NIKOGHOSYAN G and FLEISCHHAUER M. Stationary light in cold-atomic gases [J]. Phys. Rev. A,2009,80:013818-1-5.
    [73]LIN Y-W, LIAO W-T, PETERS T, et al. Stationary Light Pulses in Cold Atomic Media and without Bragg Gratings [J]. Phys. Rev. Lett.,2009,102: 213601-1-4.
    [74]WU J-H, ARTONI M and LA ROCCA G C. Decay of stationary light pulses in ultracold atoms [J]. Phys. Rev. A,2010,81:033822-1-8.
    [75]WU J-H, ARTONI M and LA ROCCA G C. Stationary light pulses in cold thermal atomic clouds [J]. Phys. Rev. A,2010,82:013807-1-7.
    [76]HARRIS S E and YAMAMOTO Y. Photon Switching by Quantum Interference [J]. Phys. Rev. Lett.,1998,81:3611-3614.
    [77]SCHMIDT H and RAM R J. All-optical wavelength converter and switch based on electromagnetically induced transparency [J]. Appl. Phys. Lett., 2000,76:3173-3175.
    [78]HAM B S and HEMMER P R. Coherence Switching in a Four-Level System: Quantum Switching [J]. Phys. Rev. Lett.,2000,84:4080-4083.
    [79]HAM B S. Experimental demonstration of all-optical 1 x 2 quantum routing [J]. Appl. Phys. Lett.,2004,85:893-895.
    [80]HAM B S. Observations of delayed all-optical routing in a slow-light regime [J]. Phys. Rev. A,2008,78:011808(R)-1-4.
    [81]BROWN A W and XIAO M. All-optical switching and routing based on an electromagnetically induced absorption grating [J]. Opt. Lett.,2005,30: 699-701.
    [82]LIN W-H, LIAO W-T, WANG C-Y, et al. Low-light-level all-optical switching based on stored light pulses [J]. Phys. Rev. A,2008,78: 033807-1-7.
    [83]WU J-H, GAO J-Y, XU J-H, et al. Ultrafast All Optical Switching via Tunable Fano Interference [J]. Phys. Rev. Lett.,2005,95:057401-1-4.
    [84]WEI X, ZHANG J and ZHU Y. All-optical switching in a coupled cavity-atom system [J]. Phys. Rev. A,2010,82:033808-1-4.
    [85]AGARWAL G S. Nature of the quantum interference in electromagnetic-field-induced control of absorption [J]. Phys. Rev. A,1997, 55:2467-2470.
    [86]Kocharovskaya O A and Khanin Y I. Coherent amplication of an ultrashort pulse in a 3-level medium without a population-inversion, JETP Lett.,1988,48:630-634.
    [87]XIAO M, LI Y-Q, JIN S-Z, et al. Measurement of Dispersive Properties of Electromagnetically Induced Transparency in Rubidium Atoms [J]. Phys. Rev. Lett.,1995,74:666-669.
    [88]ZHAO Y, WU C, HAM B-S, et al. Microwave Induced Transparency in Ruby [J]. Phys. Rev. Lett.,1997,79:641-644.
    [89]HAM B S, HEMMER P R and SHAHRIAR M S. Efficient electromagnetically induced transparency in a rare-earth doped crystal [J]. Opt. Commun.,1997,144:227-230.
    [90]SERAPIGLIA G B, PASPALAKIS E, SIRTORI C, et al. Laser-Induced Quantum Coherence in a Semiconductor Quantum Well [J]. Phys. Rev. Lett., 2000,84:1019-1022.
    [91]KUZNETSOVA E, KOCHAROVSKAYA O, HEMMER P, et al. Atomic interference phenomena in solids with a long-lived spin coherence [J]. Phys. Rev.A,2002,66:063802-1-3.
    [92]LUKIN M D, YELIN S F, FLEISCHHAUER M, et al. Quantum interference effects induced by interacting dark resonances [J]. Phys. Rev. A,1999,60: 3225-3228.
    [93]PASPALAKIS E and KNIGHT P L. Electromagnetically induced transparency and controlled group velocity in a multilevel system [J]. Phys. Rev.A,2002,66:015802-1-4.
    [94]AGARWAL G S and HARSHAWARDHAN W. Inhibition and Enhancement of Two Photon Absorption [J]. Phys. Rev. Lett.,1996,77:1039-1042.
    [95]SAFFMAN M, WALKER T G, OSLASH, et al. Quantum information with Rydberg atoms [J]. Rev. Mod. Phys.,2010,82:2313-2363.
    [96]SCHMIDT H and IMAMOGDLU A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency [J]. Opt. Lett.,1996,21: 1936-1938.
    [97]REBICACUTE S, VITALI D, OTTAVIANI C, et al. Polarization phase gate with a tripod atomic system [J]. Phys. Rev. A,2004,70:032317-1-8.
    [98]JOSHI A and XIAO M. Phase gate with a four-level inverted-Y system [J]. Phys. Rev. A,2005,72:062319-1-5.
    [99]PETROSYAN D and MALAKYAN Y P. Magneto-optical rotation and cross-phase modulation via coherently driven four-level atomsin a tripod configuration [J]. Phys. Rev. A,2004,70:023822-1-9.
    [100]LI S, YANG X, CAO X, et al. Enhanced Cross-Phase Modulation Based on a Double Electromagnetically Induced Transparency in a Four-Level Tripod Atomic System [J]. Phys. Rev. Lett.,2008,101:073602-1-4.
    [101]LO H-Y, SU P-C and CHEN Y-F. Low-light-level cross-phase modulation by quantum interference [J]. Phys. Rev. A,2010,81:053829-1-5.
    [102]THOMPSON R, STOICHEFF B, ZHANG G, et al. Nonlinear generation of 103 nm radiation with electromagnetically-induced transparency in atomic hydrogen [J]. Quan. Opt.,1994,6:349-358.
    [103]DORMAN C and MARANGOS J P. Resonant sum-difference frequency mixing enhanced by electromagnetically induced transparency in krypton [J]. Phys. Rev. A,1998,58:4121-4132.
    [104]SCHMIDT H, CAMPMAN K L, GOSSARD A C, et al. Tunneling induced transparency:Fano interference in intersubband transitions [J]. Appl. Phys. Lett.,1997,70:3455-3457.
    [105]BUFFA R, CAVALIERI S and TOGNETTI M V. Coherent control of temporal pulse shaping by electromagnetically induced transparency [J]. Phys. Rev.A,2004,69:033815-1-4.
    [106]NOVIKOVA I, PHILLIPS N B and GORSHKOV A V. Optimal light storage with full pulse-shape control [J]. Phys. Rev. A,2008,78:021802(R)-1-4.
    [107]ZHU S-Y, CHAN R C F and LEE C P. Spontaneous emission from a three-level atom [J]. Phys. Rev.A,1995,52:710-716.
    [108]ZHU S-Y and SCULLY M O. Spectral Line Elimination and Spontaneous Emission Cancellation via Quantum Interference [J]. Phys. Rev. Lett.,1996, 76:388-391.
    [109]LI F-L and ZHU S-Y. Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields [J]. Phys. Rev.A,1999,59:2330-2341.
    [110]PASPALAKIS E, KYLSTRA N J and KNIGHT P L. Transparency Induced via Decay Interference [J]. Phys. Rev. Lett.,1999,82:2079-2082.
    [111]MENON S and AGARWAL G S. Gain components in the Autler-Townes doublet from quantum interferences in decay channels [J]. Phys. Rev. A,1999, 61:013807-1-8.
    [112]WU J-H, ZHANG H-F and GAO J-Y. Probe gain with population inversion in a four-level atomic systemwith vacuum-induced coherence [J]. Opt. Lett., 2003,28:654-656.
    [113]XU W-H, WU J-H and GAO J-Y. Effects of spontaneously generated coherence on transient process in a Lambda system [J]. Phys. Rev. A,2002, 66:063812-1-6.
    [114]KOZLOV V V, ROSTOVTSEV Y and SCULLY M O. Inducing quantum coherence via decays and incoherent pumping with application to population trapping, lasing without inversion, and quenching of spontaneous emission [J]. Phys. Rev. A,2006,74:063829-1-10.
    [115]YANG X and ZHU S. Control of coherent population transfer via spontaneous decay-induced coherence [J]. Phys. Rev. A,2008,77: 063822-1-6.
    [116]NIU Y and GONG S. Enhancing Kerr nonlinearity via spontaneously generated coherence [J]. Phys. Rev. A,2006,73:053811-1-6.
    [117]WANG D and ZHENG Y. Quantum interference in a four-level system of a 87Rb atom:Effects of spontaneously generated coherence [J]. Phys. Rev. A, 2011,83:013810-1-7.
    [118]CARRENO F, CALDERON O G., ANTON M A, et al. Superluminal and slow light in Lambda -type three-level atoms via squeezed vacuum and spontaneously generated coherence [J]. Phys. Rev. A,2005,71:063805-1-11.
    [119]BORTMAN-ARBIV D, WILSON-GORDON A D and FRIEDMANN H. Phase control of group velocity:From subluminal to superluminal light propagation [J]. Phys. Rev. A,2001,63:043818-1-7.
    [120]ANTON M A, CALDERON O G, and CARRENO F. Spontaneously generated coherence effects in a laser-driven four-level atomic system [J]. Phys. Rev. A,2005,72:023809-1-12.
    [121]JOSHI A, YANG W and XIAO M. Effect of spontaneously generated coherence on the dynamics of multi-level atomic systems [J]. Phys. Lett. A, 2004,325:30-36.
    [122]LI Z-H, WANG D-W, ZHENG H, et al. Quantum interference due to energy shifts and its effect on spontaneous emission [J]. Phys. Rev. A,2010,82: 050501(R)-1-4.
    [123]AGARWAL G S. Anisotropic Vacuum-Induced Interference in Decay Channels [J]. Phys. Rev. Lett.,2000,84:5500-5503.
    [124]YANG Y, XU J, CHEN H, et al. Quantum Interference Enhancement with Left-Handed Materials [J]. Phys. Rev. Lett.,2008,100:043601-1-4.
    [125]YANNOPAPAS V, PASPALAKIS E and VITANOV N V. Plasmon-Induced Enhancement of Quantum Interference near Metallic Nanostructures [J]. Phys. Rev. Lett.,2009,103:063602-1-4.
    [126]YABLONOVITCH E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics [J]. Phys. Rev. Lett.,1987,58:2059-2062.
    [127]JOHN S. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett.,1987,58:2486-2489.
    [128]ARTONI M, LA ROCCA G and BASSANI F. Resonantly absorbing one-dimensional photonic crystals [J]. Phys. Rev. E,2005,72:046604-1-11.
    [129]Born M and Wolf E. Principles of Optics,6th ed. (Cambridge University Press, Cambridge, UK,1980).
    [130]ARTONI M and LANBSPROCCA G C. Optically Tunable Photonic Stop Bands in Homogeneous Absorbing Media [J]. Phys. Rev. Lett.,2006,96: 073905-1-4.
    [131]HE Q-Y, XUE Y, ARTONI M, et al. Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals [J]. Phys. Rev. B,2006,73:195124-1-7.
    [132]HE Q-Y, WU J-H, WANG T-J, et al. Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids [J]. Phys. Rev. A,2006,73:053813-1-6.
    [133]WU J-H, LA ROCCA G C and ARTONI M. Controlled light-pulse propagation in driven color centers in diamond [J]. Phys. Rev. B,2008,77: 113106-1-4.
    [134]WU J-H, ARTONI M and LA ROCCA G C. Controlling the photonic band structure of optically driven cold atoms [J]. J. Opt. Soc. Am. B,2008,25: 1840-1849.
    [135]FRIEDLER I, KURIZKI G and PETROSYAN D. Deterministic quantum logic with photons via optically induced photonic band gaps [J]. Phys. Rev. A, 2005,71:023803-1-8.
    [136]WU J-H, ARTONI M and LA ROCCA G C. All-Optical Light Confinement in Dynamic Cavities in Cold Atoms [J]. Phys. Rev. Lett.,2009,103: 133601-1-4.
    [137]LI D W, ZHANG L, ZHUO Z C, et al. Electromagnetically induced photonic bandgap in hot Cs atoms [J]. J. Opt. Soc. Am. B,2010,27:690-695.
    [138]LING H Y, LI Y-Q and XIAO M. Electromagnetically induced grating: Homogeneously broadened medium [J]. Phys. Rev. A,1998,57:1338-1344.
    [139]DE ARAUJO L E E. Electromagnetically induced phase grating [J]. Opt. Lett.,2010,35:977-979.
    [140]MITSUNAGA M and IMOTO N. Observation of an electromagnetically induced grating in cold sodium atoms [J]. Phys. Rev. A,1999,59:4773-4776.
    [141]BUSCH K and JOHN S. Liquid-Crystal Photonic-Band-Gap Materials:The Tunable Electromagnetic Vacuum [J]. Phys. Rev. Lett.,1999,83:967-970.
    [142]TAN H W, VAN DRIEL H M, SCHWEIZER S L, et al. Nonlinear optical tuning of a two-dimensional silicon photonic crystal [J]. Phys. Rev. B,2004, 70:205110-1-5.
    [143]FLEISCHHAUER M, IMAMOGLU A and MARANGOS J P. Electromagnetically induced transparency:Optics in coherent media [J]. Rev. Mod. Phys.,2005,77:633-673.
    [144]AKULSHIN A M, BARREIRO S and LEZAMA A. Steep Anomalous Dispersion in Coherently Prepared Rb Vapor [J]. Phys. Rev. Lett.,1999,83: 4277-4280.
    [145]KIM K, MOON H S, LEE C, et al. Observation of arbitrary group velocities of light from superluminal to subluminal on a single atomic transition line [J]. Phys. Rev. A,2003,68:013810-1-4.
    [146]LIU C, DUTTON Z, BEHROOZI C H, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses [J]. Nature,2001,409:490-493.
    [147]LONGDELL J J, FRAVAL E, SELLARS M J, et al. Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid [J]. Phys. Rev. Lett.,2005,95:063601-1-4.
    [148]VEWINGER F, APPEL J, FIGUEROA E, et al. Adiabatic frequency conversion of optical information in atomic vapor [J]. Opt. Lett.,2007,32: 2771-2773.
    [149]WANG H-H, LI A-J, DU D-M, et al. All-optical routing by light storage in a Pr3+:Y2SiO5 crystal [J]. Appl. Phys. Lett.,2008,93:221112-1-3.
    [150]HAM B S, SHAHRIAR M S and HEMMER P R. Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal [J]. Opt. Lett.,1997,22:1138-1140.
    [151]HEMMER P R, TURUKHIN A V, SHAHRIAR M S, et al. Raman-excited spin coherences in nitrogen-vacancy color centers in diamond [J]. Opt. Lett., 2001,26:361-363.
    [152]PHILLIPS M C, WANG H, RUMYANTSEV I, et al. Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence [J]. Phys. Rev. Lett.,2003,91:183602-1-4.
    [153]GAO J-W, WU J-H, BA N, et al. Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps [J]. Phys. Rev.A,2010,81:013804-1-4.
    [154]ARKHIPKIN V G and HELLER Y I. Radiation amplification without population inversion at transitions to autoionizing states [J]. Phys. Lett. A, 1983,98:12-14.
    [155]GAO J, GUO C, GUO X, et al. Observation of light amplification without population inversion in sodium [J]. Opt. Commun.,1992,93:323-327.
    [156]BERGMANN K, THEUER H and SHORE B W. Coherent population transfer among quantum states of atoms and molecules [J]. Rev. Mod. Phys., 1998,70:1003-1025.
    [157]FLEISCHHAUER M, KEITEL C H, NARDUCCI L M, SCULLY M O, ZHU S-Y, ZUBAIRY M S. Lasers without inversion:Interference of lifetime-broadened resonances [J]. Opt. Commun.,1992,94:599-608.
    [158]PASPALAKIS E, GONG S-Q and KNIGHT P L. Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom [J]. Opt. Commun.,1998,152:293-298.
    [159]FOUNTOULAKIS A, TERZIS A F and PASPALAKIS E. Coherent phenomena due to double-dark states in a system with decay interference [J]. Phys. Rev. A,2006,73:033811-1-8.
    [160]OOI C H R. Effects of spontaneously generated coherence on two-photon correlation in a double-cascade scheme [J]. Phys. Rev. A,2007,75: 043818-1-8.
    [161]DAS S and AGARWAL G S. Photon-photon correlations as a probe of vacuum-induced coherence effects [J]. Phys. Rev. A,2008,77:033850-1-7.
    [162]WAN R-G, KOU J, KUANG S-Q, et al. Controlled light-pulse propagation via dynamically induced double photonic band gaps [J]. Opt. Express,2010, 18:15591-15596.
    [163]CUI C-L, WU J-H, GAO J-W, et al. Double photonic bandgaps dynamically induced in a tripod system of cold atoms [J]. Opt. Express,2010,18: 4538-4546.
    [164]PASPALAKIS E, KYLSTRA N J and KNIGHT P L. Transparency of a short laser pulse via decay interference in a closed V-type system [J]. Phys. Rev.A,2000,61:045802-1-4.
    [165]ASPNES D. Local-field effects and effective-medium theory:A microscopic perspective [J]. Am. J. Phys,1982,50:704-709.
    [166]何琼毅.相于驻波场驱动下介质的光谱特征与相干光学烧孔实现光速减慢[D].吉林:吉林大学物理学院,2007.
    [167]KANG H, HERNANDEZ G and ZHU Y. Slow-Light Six-Wave Mixing at Low Light Intensities [J]. Phys. Rev. Lett.,2004,93:073601-1-4.
    [168]GAO J-W, ZHANG Y, BA N, et al. Dynamically induced double photonic bandgaps in the presence of spontaneously generated coherence [J]. Opt. Lett., 2010,35:709-711.
    [169]KUANG S-Q, WAN R-G, KOU J, et al. Tunable double photonic bandgaps in a homogeneous atomic medium [J]. J. Opt. Soc. Am. B,2010,27: 1518-1522.
    [170]LI Z-H, WANG D-W, ZHENG H, et al. Effect of the counterrotating-wave terms on the spontaneous emission from a multilevel atom [J]. Phys. Rev. A, 2009,80:023801-1-11.
    [171]LI L, WANG X, YANG J, et al. Comment on "Experimental Observation of Spontaneous Emission Cancellation" [J]. Phys. Rev. Lett.,2000,84:4016.
    [172]FICEK Z and SWAIN S. Simulating quantum interference in a three-level system with perpendicular transition dipole moments [J]. Phys. Rev. A,2004, 69:023401-1-10.
    [173]Xu Q, Zhou H-D, Meng G J, et al. Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference [J]. J. Phys. B:At. Mol. Opt. Phys.,2007,40:3197-3210.
    [174]WU J-H, LI A-J, DING Y, et al. Control of spontaneous emission from a coherently driven four-level atom [J]. Phys. Rev. A,2005,72:023802-1-5.
    [175]WU J H, RACZYNSKI A, ZAREMBA J, et al. Tunable photonic metamaterials [J]. J. Mod. Opt.,2009,56:768-783.
    [176]XIAO Z-H, SHIN S G AND KIM K. An electromagnetically induced grating by microwave modulation [J]. J. Phys. B:At. Mol. Opt. Phys.,2010, 43:161004.
    [177]YAVUZ D D and SIKES D E. Giant Kerr nonlinearities using refractive-index enhancement [J]. Phys. Rev. A,2010,81:035804-1-4.
    [178]YAVUZ D D. Refractive Index Enhancement in a Far-Off Resonant Atomic System [J]. Phys. Rev. Lett.,2005,95:223601-1-4.
    [179]BRANDT S, NAGEL A, WYNANDS R, et al. Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz [J]. Phys. Rev. A,1997,56:R1063-R1066.
    [180]ERHARD M and HELM H. Buffer-gas effects on dark resonances:Theory and experiment [J]. Phys. Rev. A,2001,63:043813-1-3.
    [181]MIKHAILOV E E, SAUTENKOV V A, NOVIKOVA I, et al. Large negative and positive delay of optical pulses in coherently prepared dense Rb vapor with buffer gas [J]. Phys. Rev. A,2004,69:063808-1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700