中国水旱稻地方品种遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,中国水稻产量一直徘徊不前,这很大程度上是由于亲本的遗传基础狭窄,遗传背景差异小。中国具有丰富的地方稻种资源,其中蕴含着大量的优异基因,但由于缺乏对这些资源遗传基础的总体了解,限制了优异种质在水稻育种中的有效利用。积极开展中国水旱稻地方品种的遗传多样性研究,对旱稻种质资源在水稻育种中的有效利用具有重要的意义。
     以来自中国的165份水稻地方品种和159份旱稻地方品种为材料,利用70对SSR标记探讨了水旱稻地方品种的遗传多样性和遗传结构,并进行了聚类分析。得出如下结果:
     1.在324份水旱稻地方品种的70个SSR多态性位点,共检测到等位基因(Na)572个,平均为8.171,变幅在2—21之间;总的有效等位基因数(Ne)为244.297,变化范围在1.035—9.195之间,平均为3.490;Shannon’s信息指数(I)变化范围在0.104—2.432之间,平均为1.343。RM72、RM232、RM219、RM241、RM224和RM3位点的多态性较高,适于中国水稻种质资源的遗传多样性研究。
     2.在187份粳稻地方品种中,共检测到等位基因502个,其中仅在粳稻中出现的等位基因83个,占16.53%。粳稻平均等位基因数(Na),平均有效等位基因数(Ne)和平均Shannon’s信息指数(I)分别为7.171、2.902和1.120。其中水稻地方品种共检测到等位基因434个,仅在水稻中出现的有53个,占12.21%,水稻地方品种平均Na、平均Ne和平均I,分别为6.200、2.599和1.034;旱稻地方品种共检测到等位基因449个,仅在旱稻中出现的有68个,占15.14%,旱稻地方品种平均Na、平均Ne和平均I,分别为6.414、2.884和1.100。
     3.在137份籼稻地方品种中,共检测到等位基因489个,其中仅在籼稻中出现的等位基因70个,占14.31%。籼稻平均等位基因数(Na),平均有效等位基因数(Ne)和平均Shannon’s信息指数(I)分别为6.986、3.030和1.201。其中水稻地方品种共检测到等位基因397个,仅在水稻种出现的有61个,占15.37%,水稻地方品种平均Na、平均Ne和平均I,分别为5.671、2.617和1.019;旱稻地方品种共检测到等位基因428个,仅在旱稻中出现的有92个,占21.50%,旱稻地方品种平均Na、平均Ne和平均I,分别为6.114、3.195和1.245。
     4.粳稻和籼稻地方品种中,旱稻与水稻的等位基因数差异不显著,旱稻有效等位基因数和Shannon’s信息指数均显著大于水稻,说明同一地理环境下生长的旱稻地方品种的遗传多样性比水稻丰富。
     5.粳型水稻中云南省的资源遗传多样性较为丰富,粳型旱稻中广西,云南,台湾3个省份的资源遗传多样性较为丰富;籼型水稻中贵州省的资源遗传多样性较为丰富,籼型旱稻中贵州、广西、云南和海南4个省份的资源遗传多样性较为丰富。
     6.粳型水稻地方品种不同省份或地区间遗传距离(GD)平均为0.315,旱稻为0.300,说明粳型旱稻不同地区品种间的亲缘关系更近;籼型水稻地方品种不同省份或地区间GD平均为0.244,旱稻为0.356,说明籼型旱稻不同地区品种间的亲缘关系更远。
     7.粳型水旱稻地方品种,不同省份或地区间地理位置或气候条件越近,遗传距离(GD)越小,反之越大;籼型水、旱稻地方品种不同省份或地区间地理位置与GD之间关系不明显,有待于进一步研究。
     8.水旱稻地方品种的聚类及遗传结构分析结果显示,不同组群之间水旱稻种质分布存在明显差异的,对水旱稻之间的遗传差异进行分析研究是有必要的。
     另外,试验中包括20份巴西旱稻种质资源,其在70个SSR标记位点共检测到等位基因232个,每个位点平均等位基因为3.314,平均有效等位基因为2.043,平均Shannon’s信息指数为0.783。
In recent day, because of narrow genetic base and a little difference of genetic background in current rice cultivar, the productivity of rice has been stagnant in China. There are wealthy of rice landraces in China, which contain a large number of excellent genes. Lacking a detailed understanding of the genetic diversity, which limited the excellent rice germplasms effective management and utilization to rice breeding. Detected the genetic diversity of lowland and upland rice landraces in China is great significance for upland rice be used in rice breeding.
     The genetic diversity, genetic difference and cluster of 165 lowland rice and 159 upland rice landraces from China were discussed using 70 pairs of SSR markers. The results were summarized as follow:
     1. A total of 572 alleles were detected from all tested 324 accessions with 70 SSR markers, and the alleles per pair of primers were ranged from 2 to 21 with the mean value of 8.171. The effective number of alleles (Ne) were 244.297, and varied from 1.035—9.195 with the average was 3.490. Shannon's Information index (I) were changed from 0.104—2.432, and the average was 1.343. Among the SSR markers, RM72、RM232、RM219、RM241、RM224 and RM3 showed high polymorphism than the others, so they were fit for assessment the genetic diversity of rice germplasm resources.
     2. A total 502 alleles were identified from 187 Japonica rice landraces, there were 83 alleles which were only appeared in Japonica rice, accounting for 16.53%. The mean value of alleles per loci was 7.171, the effective number of alleles (Ne) per loci was 2.902, and the average of Shannon's Information index (I) was 1.120. In the lowland rice, a total of 434 alleles were assessed, there were 53 alleles which only appeared in lowland rice, accounting for 12.21%, the mean value of Na、Ne and I were 6.200、2.599 and 1.034 in Japonica lowland rice; In the upland rice, a total of 449 alleles were assessed, there were 68 alleles only present in upland rice, accounting for 15.14%, the average of Na、Ne and I were 6.414、2.884 and 1.100 in Japonica upland rice.
     3. A total 489 alleles were detected from 137 Indica rice landraces, there were 70 alleles which were only present in Indica rice, accounting for 14.31%, with an average of alleles per loci was 6.986 , the effective number of alleles (Ne) per loci was 3.030 , and the mean value of Shannon's Information index (I) was 1.201. In the lowland rice, a total of 397 alleles were identified, there were 61 alleles only appeared in lowland rice, accounting for 5.37%, the average of Na、Ne and I were 5.671、2.617 and 1.019 in Indica lowland rice; In the upland rice, a total of 428 alleles were detected, there were 92 alleles only appeared in upland rice, accounting for 21.50%, the mean value of Na、Ne and I were 6.114、3.195 and 1.245 in Indica upland rice.
     4. In Japonica and Indica rice landraces, test of significance on the mean of alleles of the SSR loci showed that there were no significant difference between the upland and lowland rice, while the upland rice was more the effective number of alleles (Ne) and shannon's Information index (I) than lowland rice, so in the same geographical origins, upland rice landraces were more genetic diversity than lowland rice.
     5. In Japonica rice landraces, the most genetically diverse of district was Yunnan province in lowland rice, but Guangxi, Yunnan and Taiwan for upland rice; In Indica rice landraces, the most genetically diverse of region was Guizhou province in lowland rice, but Guizhou, Guangxi, Yunnan and Hainan for upland rice.
     6. The mean value of genetic distance (GD) indices for Japonica rice landraces from different region were 0.315 in lowland rice, but 0.300 in upland rice, so the relationship among upland rice is more closer. The average of genetic distance indices for Indica rice from different area were 0.244 in lowland rice, but 0.356 in upland rice, so the relationship among lowland rice is more closer.
     7. The japonica lowland and upland rice landraces from the different provinces which had the more geographical or climate proximity had the small genetic distance index, the contrary has also set up. However the correlated relation was not distinct in indica lowland and upland rice landraces, so it needed further study in indica rice.
     8. Cluster and genetic structure of lowland and upland rice landraces showed that there are some differences in the distribution among the groups. So it’s necessary to detect the genetic difference between lowland and upland rice.
     In addition, a total of 232 alleles were assessed in 20 germplasm resources from Brazil with 70 SSR markers, with the mean value of Na、Ne and I were 3.314、2.043 and 0.783.
引文
[1].陈亮,梁春阳,孙传清,德敏,姜廷波,王斌,王象坤. AFLP和RFLP标记检测水稻亲本遗传多样性比较研究[J].中国农业科学, 2002, 35 (6) : 589~595.
    [2].丁立,齐永文,张洪亮,张冬玲,王美兴,李自超,汤圣祥.中国三系杂交稻恢复系资源的遗传多样性[J].作物学报, 2007, 33(10): 1587~1594.
    [3].段世华,毛加宁,朱英国.利用RAPD分子标记对我国杂交水稻主要恢复系的DNA多态性研究[J].武汉大学学报(理学版), 2001, 47(4): 508~512.
    [4].樊叶杨,庄杰云,吴建利,孙宝龙,郑康乐.应用微卫星标记鉴别水稻籼粳亚种[J].遗传, 2000, 22 (6): 392~394.
    [5].方宣钧,黄育民,陈启锋,孙梅.若干水稻品种(组合)的等位酶和RAPD遗传分析[J].中国农业科学, 1999, 32(2): 1~8.
    [6].盖红梅,陈成斌,沈法富,张万霞,任民,王玉薇,杨庆文.广西武宣濠江流域普通野生稻居群遗传多样性及保护研究[J].植物遗传资源学报, 2005, 6(2): 156~162.
    [7].龚志莲,郭辉军,周开元,殷寿华,吴芳.西双版纳社区旱稻品种多样性现状调查报告[J].云南植物研究, 2001, Suppl.Ⅻ: 178~186.
    [8].龚志莲,郭辉军,盛才余,周开元.西双版纳社区旱稻品种多样性与就地保护初探[J].生物多样性, 2004, 12(4): 427~434.
    [9].韩龙植,曹桂兰.中国稻种资源收集、保存和更新现状[J].植物遗传资源学报, 2005, 6(3): 359~364.
    [10].何风华,曾瑞珍,席章营, Akshay Talukdar,张桂权.不同Waxy基因型水稻的遗传多样性[J].分子植物育种, 2003, 1(2): 179~186.
    [11].何光华,裴炎,杨光伟,谢戎.我国中籼杂交稻亲本的DNA变异性研究[J].作物学报, 2000, 26(4): 449~454.
    [12].侯永翠,郑有良,魏育明.青藏高原近缘野生大麦醇溶蛋白遗传多样性分析[J].西南农业学报, 2004, 17(5): 545~551.
    [13].胡志昂等.研究遗传多样性的基本原理和方法.见:生物多样性研究的原理与方法.北京:中国科技出版社, 1994, 117~122.
    [14].华蕾,袁筱萍,余汉勇,王一平,徐群,汤圣祥,魏兴华.我国水稻主栽品种SSR多样性的比较分析[J].中国水稻科学, 2007, 21(2): 150~154.
    [15].黄建勋,张凯,江良荣,黄育民,王侯聪, SSR标记对籼稻品种的遗传多样性分析[J].厦门大学学报:自然科学版, 2006, 45(1): 120~124.
    [16].黄燕红,孙新立,王象坤.中国栽培稻遗传多样性中心和起源研究[J].植物遗传资源学报, 2005, 6(2): 125~129.
    [17].金伟栋,程保山,洪德林.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究[J].中国农业科学, 2008, 41(11): 3822~3830.
    [18].李亚非,陈成斌,张万霞,梁世春,杨庆文.我国北回归线区域普通野生稻遗传多样性和遗传结构研究[J].植物资源学报, 2007, 8(3): 280~284.
    [19].李耀华,陈禅友,余衍正.斑豆品种资源的聚类分析[J].武汉植物学研究, 1997, 15(3): 225~261.
    [20].李云海,钱前,曾大力,孙宗修.我国主要杂交水稻亲本的RAPD鉴定及遗传关系研究[J].作物学报, 2000, 26(2): 171~176.
    [21].李自超,张洪亮,曾亚文,申时全,孙传清,王象坤.云南稻种资源表型遗传多样性的研究[J].作物学报, 2001, 27(6): 832~837.
    [22].刘纯杰,张兆山.任意引物PCR及其应用研究进展[J].生物技术通讯, 2003, 14(4): 320~323.
    [23].刘金,关建平,徐东旭,张晓艳,顾竟,宗绪晓.小扁豆种质资源SSR标记遗传多样性及群体结构分析[J].作物学报, 2008, 34(11): 1901~1909.
    [24].刘炜,李自超,史延丽,王坚,马洪文,张洪亮,利用SSR标记进行粳稻品种的遗传多样性研究[J].西南农业学报, 2005, 18(5): 509~513.
    [25].罗林广.分子标记及其在作物遗传育种中的应用[J].江西农业学报, 1997, 9(1): 45~54.
    [26].罗小金,贺浩华,付军如,陈小荣,孙俊立,张洪亮,李自超.利用SSR分子标记划分籼型水稻杂种优势群[J].杂交水稻, 2006, 21(1): 61~64.
    [27].卢宝荣.稻种遗传资源多样性的开发利用和保护[J].生物多样性, 1998, 6(1): 63~72.
    [28].齐永文,张冬玲,张洪亮,李自超.中国水稻选育品种遗传多样性及其近50年变化趋势[J].科学通报, 2006, 51(6): 693~699.
    [29].邱芳,伏健民,金德敏,王斌.遗传多样性的分子检测[J].生物多样性, 1998, 6(2): 143~150.
    [30].曲竹蓉,喻乐辉,尹升华.番茄熟性的主分量与模糊聚类分析[J].西南农业大学, 1990, 12(1): 11~15.
    [31].任光俊,周良强,陆贤军,高方远,康海岐,刘光春,罗利军.旱稻种质的遗传差异和配合力分析[J].分子植物育种, 2005. 3(5): 663~675.
    [32].任民,陈成斌,荣廷昭,张万霞,盖红梅,杨庆文.桂东南地区普通野生稻遗传多样性研究[J].植物遗传资源学报, 2005, 6(1): 31~36.
    [33].沈浩,刘登义.遗传多样性概述[J].生物学杂志, 2001, 18(3): 5~8.
    [34].施立明,贾旭,胡志昂.遗传多样性.见:陈灵芝,主编.中国的生物多样性现状及其保护对策.北京:科学出版社, 1993: 31~113.
    [35].束爱萍,金钟焕,张三元,曹桂兰,南钟浩,李圭星,卢勤,高熙宗,韩龙植.世界不同地理来源粳稻品种的遗传相似性研究[J].中国农业科学, 2008, 41(7): 1879~1886.
    [36].束爱萍,张媛媛,曹桂兰,卢勤,张三元,韩龙植.中国不同省份粳稻选育品种的遗传相似性[J].中国农业科学, 2009, 42(10): 3381~3387.
    [37].孙其信, Proc J.D..小麦杂种优势群研究:Ⅰ.利用RAPD标记研究小麦品种间遗传差异[J].农业生物技术报, 1996, 4(2): 103~110.
    [38].唐梅,裴炎,何光华.四川省籼型杂交水稻保持系的随机扩增多态性研究[J].西南农业学报, 2000, 13(1): 12~15.
    [39].汤圣祥,江云珠,魏兴华,李自超,余汉勇.中国栽培稻同工酶的遗传多样性[J].作物学报, 2002, 28 (2): 203~207.
    [40].汤圣祥,魏兴华,江云珠,余汉勇,王一平,袁筱萍.中国台湾栽培稻种质资源的等位酶遗传多样性[J].中国农业科学, 2005, 38(3): 433~438.
    [41].王家祥,陈友桃,黄娟,乔卫华,张万霞,杨庆文.中国普通野生稻(Oryza rufipogon Griff.)原生境保护与未保护居群的遗传多样性比较[J].作物学报, 2009, 35(8): 1474~1482.
    [42].王三良,许可.我国籼型杂交水稻育种现状、问题及对策[J].杂交水稻, 1996, (3): 1~4.
    [43].王象坤,孙传清,中国栽培稻起源与演化研究专集[M],北京:中国农业大学出版社, 1992.
    [44].王艳红,王辉,高立志.普通野生稻(Oryza rufipogon Griff.)的SSR遗传多样性研究[J].西北植物学报, 2003, 23(10): 1750~1754.
    [45].王一凡,周毓珩.北方节水稻作[M].沈阳:辽宁科学技术出版社, 2000.
    [46].王一平,魏兴华,华蕾,袁筱萍,余汉勇,徐群,汤圣祥.不同地理来源旱稻种质资源的遗传多样性分析[J].作物学报, 2007, 33(12): 2034~2040.
    [47].王忠安.两系杂交水稻亲本间多态性的SSR分析[J].杂交水稻, 2004, 19(2): 59~61.
    [48].王中仁.植物等位酶分析[M].北京:科学出版社, 1996: 1~3
    [49].吴芳,殷寿华,张远辉.云南热区传统陆稻品种的形态农艺性状多样性研究[J].广西农业生物科学, 2003, 22(4): 244~248.
    [50].严华军,吴乃虎. DNA分子标记技术及其在植物遗传多样性研究中的应用[J].生命科学, 1996, 8(3): 32~36.
    [51].杨庆文,戴陆园,时津霞,张万霞,任军方,苗晗.云南元江普通野生稻(Oryza rufipogonGriff)遗传多样性分析及保护策略研究[J].植物遗传资源学报2004, 5(1): 1~5.
    [52].杨学辉,袁洁,陈小均,阮仁超,何海永,吴石平,王云月.贵州旱稻种质资源的SSR遗传多样性分析[J].分子植物育种, 2009, 7(5): 890~896.
    [53].杨志奇.中国粳稻地方品种孕穗期耐冷性鉴定及遗传多样性分析. [杨志奇硕士学位论文].北京:中国农业科学院研究生院, 2008.
    [54].杨忠义,苏艳,曹永生.云南稻种资源多样性的生态地理分布研究[J].植物遗传资源学报, 2008, 9(4): 475~479.
    [55].应存山,盛锦山,罗利军,张丽华.中国优异稻种资源[M].北京:中国农业出版社,1997.
    [56].应杰政,施勇烽,庄杰云,薛庆中.用微卫星标记评估中国水稻主栽品种的遗传多样性[J].中国农业科学, 2007, 40(4): 649~654.
    [57].游俊梅,陈惠查,金桃叶,阮仁超.贵州地方旱稻种植资源遗传多样性评价[J].种子, 2005, (4): 79~84.
    [58].曾莉娟.旱稻种质类缘鉴别与遗传基础RAPD分析. [曾莉娟硕士学位论文].广州:华南热带农业大学, 2001.
    [59].张冬玲,张洪亮,魏兴华,齐永文,王美兴,孙俊立,丁立,汤圣祥,裘宗恩,曹永生,王象坤,李自超.贵州栽培稻的遗传结构及其遗传多样性[J].科学通报, 2006, 51(23): 2747~2754.
    [60].张冬玲.中国栽培稻的遗传演化及核心种质的构建. [张冬玲博士学位论文].北京:中国农业大学, 2007.
    [61].张洪亮,李自超,曹永生,裘宗恩,余萍,王象坤.表型水平上检验水稻核心种质的参数比较[J].作物学报, 2003, 29(2): 252~257.
    [62].张金渝,张建华,杨晓洪,金航,王波,肖植文,孔令明,米艳华,华秋瑾.用SSR标记划分云南糯玉米地方品种资源遗传类群的研究[J].玉米科学, 2007, 15(1): 53~58.
    [63].张媛媛.中国不同地理来源籼稻地方品种遗传多样性分析. [张媛媛硕士学位论文].北京:中国农业科学院研究生院, 2005.
    [64].张媛媛,曹桂兰,韩龙植.中国不同地理来源籼稻地方品种的亲缘关系研究[J].作物学报, 2007, 33(5): 757~762.
    [65].赵国珍,杨世准,曹永灿,李彀镎,苏振喜,朱振华,邹茜,戴陆园.云南粳稻和韩国粳稻的遗传差异分析[J].分子植物育种, 2008, 6(3): 451~456.
    [66].赵家铭,王昌华,张燕之,郑文静,我国北方发展水稻旱作的必要性和可行性分析[J].安徽农业科学, 2008, 36(6): 2274~2275.
    [67].赵素珍.旱稻品种遗传差异的RAPD分析. [赵素珍硕士学位论文].呼和浩特:内蒙古农业大学, 2001.
    [68].周良强.几个旱稻材料的配合力和分子标记聚类分析. [周良强硕士学位论文].雅安:四川农业大学, 2002.
    [69].朱明雨,王云月,住有用,卢宝荣.云南地方水稻品种遗传多样性分析及其保护意义[J].华中农业大学学报, 2004, 23(2): 187~191.
    [70].朱作峰,孙传清,姜延波,付强,王象坤.水稻品种SSR与RFLP及其与杂种优势的关系比较研究[J].遗传学报, 2001, 28(8): 738~745.
    [71].朱作峰,孙传清,付永彩,张培江,王象坤.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性[J].中国农业科学, 2002, 35(12): 1437~1441.
    [72].宗绪晓,关建平,王述民,刘庆昌.中国豌豆地方品种SSR标记遗传多样性分析[J].作物学报, 2008, 34(8): 1330?1338.
    [73].宗绪晓, Rebecca Ford, Robert R Redden,关建平,王述民.豌豆属(Pisum)SSR标记遗传多样性结构鉴别与分析[J].中国农业科学, 2009, 42(1): 36~46.
    [74].Akagi H., Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet, 1997, 94(1): 61~67.
    [75].Allard R.W., Jain S.K., Workman P.L.. The genetics of inbreeding populations. Advances in Genetic, 1968, 14: 55~131.
    [76].Baranger A., Aubert G., Arnau G., Laine A.L., Deniot G., Potier J., Weinachter C., Lejeune-Henaut I., Lallemand J., Burstin J..Genetic diversity within Pisum sativum using protein and PCR-based markers. Theor Appl Genet, 2004, 108: 1309~1321.
    [77].Botstein D., White R.L., Skolnick M, Davis R.W.. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32(3): 314~331.
    [78].Brookes A.J.. The essence of SNPs. Gene, 1999, 234:177~186.
    [79].Brown S.M., Kresovich S.. Molecular characterization for plant genetic resources conservation. P:85–93. In A.H. Pater son (ed.) Genome mapping in plants. R.G. Landes, New York. 1996.
    [80].Chang T.T..The origin, evolution, cultivation,dissemination, and diversification of Asian andAfrican rices. Euphytica, 1976, 25: 435~441.
    [81].Edwards K., Johnstone C., Thompson C.A.. Simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6): 1349.
    [82].Friebe B.,Jiang J.,Tuleen N.. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet, 1995, 90:150~156.
    [83].Fukunaga K., Hill J., Vigouroux Y., Matsuoka Y., Sanchez J., Liu K., Buckler E.S., Doebley J.. Genetic diversity and population structure of teosinte. Genetics, 2005, 169: 2241~2254.
    [84].Evanno G., Regnaut S., Goudet J.. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005,14: 2611~2620.
    [85].Gao L.Z., Schaal B.A., Zhang C.H., Jia J.Z., Dong Y.S.. Assessment of population genetic structure in common wild rice Oryza rufipogon Griff. using microsatellite and allozyme markers. Theor Appl Genet,2002,106:173~180.
    [86].Gill B.S.,Friebe B., Endo T.R.. Standard karyotype and nomenclature system for description of chromosome band and structural aberrations in wheat (Triticum aestivum). Gemome, 1991, 34:830~839.
    [87].Glaszmann J.C.. Isozymes and classification of Asian rice vrieties. Theor Appl Genet. 1987, 74:21~30.
    [88].Hoz. Simple sequence repeat primers used in polymerase chain reaction amlifications to studygenetic diversity in barley. Genome, 1996, 39: 112~117.
    [89].Konieczny A., Ausubel F.M.. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. The Plant Journal. 1993, 4: 403~410.
    [90].Kumar S., Tamura K., Nei M.. MEGA3: Integrated software formolecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004, 5: 150~163.
    [91].Lee S.J, Devos K.M.. Characterzation of loci contaning microsatellite sequences among Canadian wheat cultivars. Genome, 1995, 38: 1037~1040.
    [92].Maughan P.J., Maroof. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome, 1995,38:715~723.
    [93].Mullis K.B., Falcoma F., Scharf S.. Specific amplification of DNA in vitro:the polymerase chain reaction. Cold Spring Harbor Symp Biol.1986,51:263~273.
    [94].Nakagabra M.. The differentiation, classification and center of genetic diversity of cultivated rice (Oryza sativa L.) by isozyme analysis. Trop. Agric. Res. Ser, 1978,11:77~82.
    [95].Nybom H.. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 2004, 13: 1143~1155.
    [96].Oka H.I. Origin of cultivated rice. Jnp Sci Soc Press, Tokyo.1988.
    [97].Olufowote J.O., Xu Y., Chen X., Park W.D., Beachell H.M3, Dilday R.H., Goto M., McCouch S.R.. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.)using microsatellite and RFLP markers. Genome, 1997, 40: 370~378.
    [98].Plaschke J., Ganal M.W., Roder M.S.. Detection of genetic diversity in closely related 6 keed wheat using microsatellite markers. Theor Appl Genet. 1995, 91: 1001~1007.
    [99].Pritchard J.K., Stephens M., Donnelly P.. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945~959.
    [100].Rohlf F.. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Applied Biostatistic, Setauket, NY.
    [101].Wang X.K., Li R.H, Sun C.Q.. Identification and classification of subspecies of Asian cultivated rice and their hybrid. Chinese Sciences Bulletin, 1998, 43(22):1864~1872.
    [102].Wang M.X., Zhang H.L., Zhang D.L., Pan D.J., Li D.Y., Fan Z.L.,Qi Y.W., Sun J.L., Yang Q.W., Li C., Li Z.C.. Geographical genetic diversity and divergence of common wild rice (O. rufipogon Griff.) in China. Chinese Science Bulletin, 2008, 53:1~8.
    [103].Wang M.X., Zhang H.L., Zhang D.L., Qi Y.W., Fan Z.L., Li D.Y., Pan D.J., Cao Y.S., Qiu Z.E., Yu P., Yang Q.W., Wang X.K., Li Z.C.. Genetic structure of Oryza rufipogon Griff. in China. Heredity, 2008, 1–9.
    [104].Williams J.G.K., Kubelik A.R., Livak K.J.. DNA polymorphisms amplified by arbitrary ptimers are useful as genetic markers. Nucl Acids Res. 1990, 18: 6231~6235.
    [105].Temnykh S., DeClerck G., LuKashova A., Lipovich L., Cartinhour S., McCouch S..Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency、length variation、transposon associations、and genetic marker potential.Genome Research,2001,11:1441~1452.
    [106].Tu M., Lu B.R., Zhu Y.Y., Wang Y.Y.. Abundant within-varietal genetic diversity in rice germplasm from Yunnan Province of China revealed by SSR fingerprints.Biochem Genet, 2007, 45: 789~801.
    [107].Yang G.P.. Comparative analysis of microsatellite DNA polymorphism in lendrce and cultivars of rice. Mol Gen Gent, 1994, 245: 187~194.
    [108].Yu G.Q., Bao Y., Shi, C.H., Dong C.Q., Ge S.. Genetic diversity and population differentiation of Liaoning weedy rice detected by RAPD and SSR markers. Biochemical Genetics, Vol. 2005. 43:5~6.
    [109].Yu L.X., Nguyen H.T.. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L.).Theor Appl Genet, 1994, 87: 668~672.
    [110].Zeng Y.W., Shen S.Q., Li Z.C.,Yang Z.Y., Wang X.K., Zhang H.L., Wen G.S.. Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.)in Yunnan, China.Genetic Resources and Crop Evolution.2003, 50(6): 567~577.
    [111].Zeng Y.W., Zhang H.L., Li Z.C., Shen S.Q., Sun J.L., Wang M.X., Liao D.Q., Liu X., Wang X.K., Xiao F.H., Wen G.S.. Evaluation of genetic diversity of rice landraces (Oryza sativa L.) in Yunnan, China. Breeding Science, 2007, 57: 91~99.
    [112].Zhang Q.F., Saghai Maroof M.A., Lu T.Y., Shen B.Z.. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis.Theor Appl Genet,1992,83:495~499.
    [113].Zhang Q.F.. A diallel analysis of heterosis in elite hybrid rice based on RFLPs andmicrosatellites.Theor Appl Genet.1994, 89: 185~19.
    [114].Zhang Y.Z., Cheng K.S., Zhou H., He Q.R.. Geographical origin and evolution of Asian cultivated rice (Oryza sativa L.) as seen from esterase zymograms, Southwest China. J Agric Sci,1989,2:1~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700