丽江云杉复合体及其近缘种的谱系地理与物种形成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第四纪全球气候波动,不仅影响植物种类分布区的改变和相应的遗传结构,而且还可能导致生物物种的适应性进化以及新物种的起源。青藏高原是气候变迁的敏感区。为研究该地区气候变迁对物种分布格局与物种形成的影响,本论文以丽江云杉复合体及其近缘种青扦和紫果云杉为研究对象,进行了分子谱系地理学和物种形成的研究。松科植物线粒体DNA为母系遗传,叶绿体DNA为父系遗传;二者相互结合对于阐述基于种子和花粉介导的基因流、物种分化与杂交渗入具有重要优势。一共对3种5个分类群67个种群678个体进行了形态鉴定和5套序列的测序。
     形态学鉴定表明,青扦和紫果云杉之间不存在形态上混合生长的种群。丽江云杉3个变种(丽江云杉、川西云杉和林芝云杉)在异域分布的地区存在大量的纯和种群;但是这3个分类群与紫果云杉在邻近分布区存在两个或者多个分类群的形态混合种群。叶绿体DNA片段(trnS-trnG,trnL-trnF和ndhK/C)排序后共检测到7种单倍型,分成明显的两支:其中一支主要分布在青扦和紫果云杉内。线粒体nad1和nad5片段共检测到了11种单倍型,分成三支:其中分化较早的一支也是主要分布在青扦和紫果云杉内。典型的青扦和紫果云杉种群之间没有单倍型分化,都固定同一种叶绿体或者线粒体单倍型。但是,丽江云杉每个变种内都发现有两种或者两种以上的叶绿体或者线粒体单倍型。
     通过比较单倍型的进化关系以及地理分布结构,得到如下结论:(1)青扦和紫果云杉是较早分化出来的分支,但它们二者之间的分化较晚或者基因流过于频繁,阻止了二者之间的遗传分化;(2)林芝云杉变种代表了一个独立的物种,它的起源是通过三个谱系杂交而成的,包括丽江云杉变种、川西云杉变种和青扦-紫果云杉谱系;(3)分类群之间存在广泛的杂交;与过去认为花粉更容易在分类群之间杂交渗入的理论相反,研究结果发现种子携带的基因组更容易渗入到邻近分类群中;(4)两个变种丽江云杉和川西云杉的冰期避难所有多个。此外,对丽江云杉物种RAPD研究也证实存在多个避难所。
The climatic oscillations during the Quaternary,not only resulted in the change of distribution range of all species,but also promoted adaptive evolution and origin of new species.The Qinghai-Tibetan Plateau is sensitive to the climatic oscillations due to its complex topology with the high altitude.In order to reveal how this oscillation affected the distribution range and speciation of plants occurring there,the present dissertation studied the phylogeography and possible speciation pattern of Picea likiangensis complex and closely related species.The mitochondrial(mt)genomes are inherited matemally while chloroplast(cp)genomes are inherited paternally in Pinaceae,and their respective variations are important for detecting gene flows mediated respectively by seeds and pollens,and having the great advantages of elucidating species divergence and following hybridization introgression.A total of 678 individuals of 67 populations,representing five taxa of three assumed species were collected and their morphological variations were illustrated.A total of five fragments from mt and cpDNA were sequenced for all individuals.
     No mixed population was found for P.wilsonii and P.purpurea.A few populations are morphologically pure for each of three varieties of P likiangensis (var.likiangensis,var.rubescens and Var.linzhiensis)in their allopatric distribution regions.However,these three taxa and Picea purpurea were morphologically mixed in many populations with two and/or more taxa within their parapatric distribution regions.Three cpDNA fragments(trnS-trnG,trnL-trnF and ndhK/C)identified seven chlorotypes and they clustered into two clades with one mainly occurring in the P. wilsonii-P,purpurea lineage.Two mtDNA fragments(nadl and nad5)identified 11 mitotypes and they grouped into three tentative clades.The earliest diverged one was mainly found in the P.wilsonii-P,purpurea lineage.All typical populations of both P. willsonii and P.purpurea fixed the same mitotype and chlorotype.However,each of three varieties of P.likiangensis contained two or more chlorotypes and mitotypes.
     According to the evolutionary relationships of haplotypes and their distributions, the following conclusions were drawn.(1)P.wilsonii-P,purpurea lineage diverged early and no differentiation was found between them possibly due to the late divergence between them or too frequent gene flow,which stopped the inter-specific mt and cpDNA differentiation although their morphological differentiation is distinct. (2)Var.linzhiensis should be recognized as a distinct species and its origin was involved three lineage through hybridization,including var.likiangensis,var. rubescens and P.wilsonii-P,purpurea lineage.(3)Frequent hybridizations were detected between most taxa.In contrast to the previous expectation that the long-dispersed pollens may result in the introgression,the present results suggested that the seed-mediated gene flow are more likely to result in the introgression of mtDNA genomes between closely related taxa.(4)Multiple refugia were retained for both var.likiangensis and var.rubescens during the glacial ages.Additionally,the final suggestion was also confirmed by the RAPD result.
引文
1. Abbott RJ, Smith LC, Milne RI, Crawford RMM, Wolff K, Balfour J. 2000. Molecular analysis of plant migration and refugia in the Arctic. Science, 289, 1343-1346.
    2. Abbott RJ.1992. Plant invasion, interspecific hybridization, and the evolution of new plant taxa. Trends in Ecology and Evolution, 7,401-404.
    3. Afzal-Rafiiz, Dodd RS. 2007. Chloroplast DNA supports hypothesis of glacial refigia over postglacial recolonization in disjunct popμLations of black pine (Pinus nigia) in western Europe. Molecular Ecology, 16, 723-736.
    4. Anderson E, Stebbins GL. 1954. Hybridzation as an evolutionary stimulus. Evolution, 8,378-388.
    5. Anderson E. 1949. Introgressive Hybridzation . Wiley, New york.
    6. Aizawa M, Yoshimaru H, Saito H. 2007 Phylogeography of a northeast Asian spruce, Picea jezoensis, inferred from genetic variation observed in organelle DNA markers. Molecular Ecology, 16,3393-3405.
    7. Anderson LL, Hu FS, Nelson DM, Petit RJ, Paige KN. 2006. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences of the USA, 103,12447-12450.
    8. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders SC. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18,489-522.
    9. Avise JC, Walker D. 2000. Abandon all species concepts? A response. Conservation Genetics, 1, 77-80.
    10. Avise JC. 2000. Phylogeography. Harvard University Press, London.
    11. Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
    12. Cheng YP, Hwang SY, and Lin TP. 2005. Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata(Fagaceae). Molecular Ecology, 14,2075-2085.
    13. Cruzan MB, Templeton AR. 2000. Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends in Ecology and Evolution, 15,491-496.
    14. Dobes CH, Mitchell-Olds T, and Koch MA. 2004. Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North America Arabis drummondii, A. ×divaricarpa, and A. holboellii(Brassicaceae). Molecular Ecology, 13, 91-97.
    15. Dobzhansky T. 1937. Genetics and the origin of species. New York: Columbia University. Press.
    16. Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bull, 19,11-15.
    17. Du et al. More introgression with less gene flow: mitochondrial versus chloroplast DNA in the Picea asperata complex in China, and comparison with other Conifers. Unpublished.
    18. Ennos RA. 1994. Estimating the relative rates of pollen and seed migration among plant populations. Heredity, 72,250-259.
    19. Excoffier L, Laval G, Schneider S. 2005. ARLEQUIN (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1,47-50.
    20. Excoffier L, Smouse PE, Quattro JM .1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131,176-191.
    21. Farjon A. 1990. Pinaceae: drawing and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books, Konigstein, Germany.
    22. Farjon A. 2001.World checklist and bibliography of conifers, 2nd edn. Royal Botany. Gard. Kew, England.
    23. Forster PHJ, Bandelt, and Rhol A. 2000. NETWORK 3.1.1.0. Software free available at: www.fluxus-engineering.com.Fluxus Technology Ltd., Cambridge.
    24. Ge XJ, Chiang YC, Chou CH, Chiang TY. 2002. Nested clade analysis of Dunnia sinensis (Rubiaceae), a monotypic genus from China based on organelle DNA sequences. Conservation Genetics, 3, 351-362.
    25. Godbaut J, Jaramillo-Corea JP, Beaulieu J, Bousquet J. 2005. A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. Molecular Ecology, 14, 3497-3512.
    26. Grivet D, Petit RJ. 2002. Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Molecular Ecology, 11, 1351-1362.
    27. Hewitt G. 2000. The genetic legacy of the quaternary ice ages. Nature, 405, 907-913.
    28. Hewitt GM. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B, 359,183-195.
    29. Huang S, Hwang S, Lin T. 2002. Spatial pattern of chloroplast DNA variation of Cyclobalanopsis glauca in Taiwan and East Asia. Molecular Ecology, 11, 2349-2358.
    30. Jaramillo-correa JP, BeauLieu J, and Bousquet J. 2004. Variation in mitochondrial DNA reveals multiple distant glacial refugial in black spruce (Picea mariana) a transcontinental North American conifer, Molecular Ecology, 13, 2735-2747.
    31. Levin DA. 1979. The nature of plant species. Science, 204, 381-384.
    32. Lewontin RC, Birch LC. 1966. Hybridzation as a source of variation for adaptation to new environments. Evolution, 20, 315.
    33. Ledig FT, Hodgskiss PD, Krutovskii KV, Neale DB, Eguiluz-Piedra T. 2004. Relationship among the spruces (Picea, Pinaceae) of southwestern North America. Systematic Botany, 29,275-292.
    34. Maddison, DR. 1991. The Discovery and Importance of Multiple Island of Most-Parsimonous Trees. Systematic Zoology, 40, 315-328.
    35. Mayr E. 1942. Systenatics and the origin of species. New York: Columbia University. Press.
    36. Mayr E. 1954. Change of genetic environment and evolution. In: Evolution as a process. London: Allen & Unwin.
    37. Mayr E. 1970. Populations, species and evolution. Cambridge: Harvard University Press.
    38. Meng LH, Yang R, Abbott R, Miehe G, Hu TH, and Liu JQ. 2007. Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pineaceae) in the Qing-Tibetan Plateau and adjacent highlands. Molecular Ecology, 16,4128-4137.
    39. Mitton JB, Kreiser BR, Latta RG. 2000. Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Molecular Ecology, 9, 91-97.
    40. Nei M .1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci, USA, 70, 3321-3323.
    41. Newton AC, Allnutt T, Gillies ACM, Lowe A, Ennos RA. 1999. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends in Ecology and Evolution, 14,140-145.
    42. Peng XL, Zhao CM, Wu GL, Liu JQ. 2007. Genetic variation and phylogeographic history of Picea likiangensis revealed by RAPD markers. Tree Structure and Function, 21, 457-464.
    43. Pons O, Petit RJ. 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144,1237-1245.
    44. Ran JH, Wei XX, Wang XQ. 2006. Molecular phylogeny and biogeography of Picea (Pinaceae): Implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution, 41,405-419.
    45. Richardson BA, Brunsfeld SJ, Klopfenstein NB. 2002. DNA from bird-dispersal seed and wind-disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (pinus albicaμLis). Molecular Ecology, 11,215-227.
    46. Rieseberg LH, Ellstrand NC.1993. What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant sciences, 12, 213-241.
    47. Schonswetter P, Stehlik I, Holderegger R, Tribsce A. 2005. Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology, 14,3547-3555.
    48. Schonswetter P, Stehlik I, Holderegger R, Tribsce A. 2005. Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology, 14, 3547-3555.
    49. Simpson GG.1961. Principles of Animal Taxonomy. Columbia University Press, New York.
    50. Soltis DE, Gitzendanner MA, Strenge DD, Solits PS. 1997. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of North America. Plant Systematics and Evolution, 206, 353-373.
    51. Soltis DE, Morris AB, Mclachlan JS, Manos PS, and Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Molecular Ecology, 5,4261-4293.
    52. Su YJ, Wang T, Zheng B, Jiang Y, Chen GP, Ouyang PY, Sun YF. 2005. Genetic differentiation of relictual popμLations of Alsophila spinulosa in southern China inferred from cpDNA trnL-F noncoding sequences. Molecular Phylogenetics and Evolution, 34, 323-333.
    53. Swofford DL. 2002. PAUP* 4.0: Phylogenetic Analysis Using Parsimony(*, and other methods). Beta version 4.0b1.0. Sinauer Associates, Sunderland.
    54. Stebbins GL. 1950. Variation and Evolution in plants. New York, Columbia University press.
    55. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7,453-464.
    56. Templeton AR, Routman E, Phillips CA . 1995. Seperating popuLation structure from popuLation history: a cladistic analysis of the geographic distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140, 767-782.
    57. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The ClustalX windows interface: flexible strategies for mμLtiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24,4876-4882.
    58. Wu CI. 2001. The genic view of the process of speciation . Journal of Evolutionary Biology, 14, 851-865.
    59. Wagner DB (1992) Nuclear, chloroplast and mitochondrial DNA polymorphisms as biochemical markers in population genetic analysis of forest trees. New Forests, 6, 373-390.
    60. Zhang Q, Chiang TY, George M, Chung JD, Cheng YP, Hwang SY.2005. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molecular Ecology, 14,3513-3524.
    61.陈嵘.1937.中国树木分类学.39.
    62.郝景胜.1951.中国裸子植物志.69.
    63.洪德元.植物细胞分类学.北京:科学出版社,1990.
    64.吴征镒1987.西藏植物区系的起源及其演化.北京:科学出版社.吴征镒(主编),西藏植物志.第5卷,Pp.874-902.
    65.张晗.1998.生物进化.北京:北京大学出版社,Pp.127.
    66.郑万钧,傅立国.1978.中国植物志(第七卷).北京:科学出版社,168-196.
    67.郑万钧.1961中国树木学.157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700