慢性阻塞性肺疾病患者调节性T细胞核转录因子Foxp3的表达及单核苷酸多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章Foxp3+调节性T细胞在肺功能正常吸烟者及慢性阻塞性肺疾病患者肺部组织中的表达及意义
     目的:本研究旨在观察Foxp3+调节性T细胞(regulatory T cell, Treg细胞)在肺功能正常的吸烟者和吸烟的稳定期慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)患者肺组织中的表达,并探讨Foxp3+调节性T细胞在COPD肺部炎症反应及获得性免疫反应发生机制中的作用。
     方法:将需手术治疗的周围型肺癌患者分为肺功能正常非吸烟组(N组,10例)、肺功能正常吸烟组(S组,10例)、吸烟稳定期COPD组(COPD组,10例)。于手术切除标本中选取距肺癌病灶5cm以上的新鲜正常肺组织,苏木精-伊红(hematoxylin and eosin, HE)染色观察各组平均肺泡面积,免疫组化法检测CD4+T细胞、Foxp3+T细胞在肺泡壁的表达,荧光定量PCR法和Western blot法检测肺组织匀浆中Foxp3mRNA和蛋白表达水平,分析Foxp3+T细胞与肺泡肺气肿破坏和肺功能降低的相关关系。
     结果:COPD组平均肺泡面积(152345±24497μ m2)明显大于S组(106551±15815μ m2)和N组(50708±14125μ m2),S组与N组对比也有明显差异(P值均<0.05)。肺泡壁CD4+T细胞数在COPD组(22±8个/m)明显高于S组(16±6个/mm)和N组(6±2个/mm);Foxp3+T细胞在COPD组(3±1个/mm)明显低于S组(4±1个/mm)和N组(5±1个/mm),并且S组明显低于N组(P值均<0.05)。肺组织匀浆中Foxp3的mRNA表达水平在COPD组(0.431±0.109)明显降低,其次是S组(0.930±0.413),在N组为1.391±0.312(P值均<0.05)。肺组织匀浆Foxp3蛋白表达水平与mRNA表达结果一致,在N组为0.824±0.180,S组0.504±0.218,COPD组0.307±0.051(P值均<0.05)。肺泡壁上表达的Foxp3+细胞与CD4+细胞表达呈负相关(R=-0.681,P<0.001),与平均肺泡面积呈负相关(R=-0.797,P<0.001)。肺组织匀浆中Foxp3mRNA和蛋白含量分别与FEV1%pred呈正相关(R=0.601,P<0.001;R=0.573,P=0.001)。
     结论:Foxp3+T细胞在肺功能正常吸烟者和稳定期COPD患者肺部表达明显减少,与肺泡壁肺气肿破坏程度和肺功能降低密切相关,提示Foxp3+T细胞减少参与了COPD肺部炎症和获得性免疫失调。
     第二章调节性T细胞核转录因子Foxp3在肺功能正常吸烟者和
     不同分级慢性阻塞性肺疾病患者外周血的表达及意义
     目的:本研究旨在观察调节性T细胞(regulatory T cell,Treg细胞)核转录因子Foxp3在肺功能正常吸烟者和不同分级慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)患者外周血中的表达,并探讨其意义。
     方法:以病人外周血为研究对象,分为4组即肺功能正常非吸烟组(N组,20例)、肺功能正常吸烟组(S组,20例)、吸烟稳定期COPD1-2级组(COPD1-2级组,20例),吸烟稳定期COPD3-4级组(COPD3-4级组,20例)。收集病人外周血做荧光定量PCR,检测Foxp3mRNA表达水平,分析其与COPD分级、肺功能降低的关系。
     结果:外周血Foxp3的mRNA表达水平在COPD3-4组(0.498±0.235)和COPD1-2组0.931±0.237)明显降低,其次是S组(1.215±0.258),在N组表达最高(1.452±0.254),四组间两两比较均有差别(P值均<0.05),并且Foxp3mRNA表达水平与FEV1%pred呈正相关关系(R=0.758,P<0.001)。
     结论:Foxp3mRNA表达水平在吸烟肺功能正常者和COPD病人体内表达明显降低,并且随着COPD病情分级加重而降低更明显,提示Foxp3+Treg细胞减少很可能与COPD病情严重程度密切相关。
     第三章调节性T细胞核转录因子Foxp3单核苷酸多态性与慢性阻塞性肺疾病关联的研究
     目的:探讨调节性T细胞(regulatory T cell,Treg细胞)核转录因子Foxp3单核苷酸多态性(single nucleotide polymorphism, SNP)与慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)的关系,以及SNP出现的相关危险因素。
     方法:以病人外周血为研究对象,分为4组即肺功能正常非吸烟组(N组,61例)、肺功能正常吸烟组(S组,81例)、吸烟稳定期COPD1-2级组(COPD1-2级组,65例),吸烟稳定期COPD3-4级组(COPD3-4级组,117例),采用Taqman探针法荧光定量PCR对Foxp3基因四个位点rs2280883. rs3761548、rs3761549、rs5902434进行基因分型。
     结果:FOXP3基因四个SNP位点均符合哈迪-温伯格(Hardy-Weinberg)遗传平衡定律。SNP位点rs5902434在COPD3-4级组,COPD1-2级组,S组,N组中分布有差异(P<0.05)。logistic多因素回归分析发现携带-/-基因型个体罹患COPD1-2级和3-4级风险均降低(COPD1-2级:OR=0.278,95%CI=0.079-0.974;COPD3-4级:OR=0.235,95%CI=0.074-0.747)。-/-基因型对FEVl%pred=30-50的病人有保护作用(OR=0.222,95%CI=0.094-0.525);对FEV1/FVC<50和FEV1/FVC=50-70的病人均有保护作用(FEV1/FVC<50:OR=0.295,95%CI=0.130-0.666; FEV1/FVC=50-70:OR=0.337,95%CI=0.131-0.866).-/ATT基因型对FEV1%pred=30-50的病人有保护作用(OR=0.359,95%CI=0.150-0.863)。单倍体分析发现-单倍体对吸烟的非COPD者易感(OR=1.746,95%CI=1.048-2.914);-单倍体对FEV1%pred=30-50和FEV1/FVC<50的病人均有保护作用(FEV1%pred=30-50:OR=0.582,95%CI=0.358-0.946; FEV1/FVC<50:OR=0.622,95%CI=0.403-0.961).对吸烟史、年龄、BMI、民族因素综合分析发现,非汉族人群较汉族人群更容易出现-/ATT基因型(OR=2.277,95%CI=1.022-5.072)。
     结论:FOXP3基因位点rs5902434与男性罹患COPD有关,并且-/-基因型和-单倍体型对COPD病人及肺功能降低有保护作用;但吸烟和年龄因素并非该位点突变的影响因素。该结果提示Foxp3+Treg细胞单核苷酸多态性可能是COPD发病的上游危险因素,其多态性不受吸烟和年龄等COPD危险因素的影响。
CHAPTER I
     Foxp3+regulatory T cell in lung tissues of smokers with normal lung function and patients with chronic obstructive pulmonary disease
     Objective:This study aimed to observe the expression of Foxp3+regulatory T cell (Treg cell) in the lung tissues of smokers with normal lung function and patients with COPD, and dicusse the role of Foxp3+Treg cell in the lung inflammation and acquired immune response.
     Methods:The patients with peripheral lung cancer who performed surgery were divided into non-somking group with normal lung function (N group,10cases), smoking group with normal lung function (S group,10cases) and smoking with stable COPD group (COPD group,10cases). The fresh normal lung tissues from the surgical specimens were selected, which is over5cm from the lung cancer resection. The average alveolar area was detected by HE, Foxp3+cells in alveolar walls were analysed by immunohistochemistry. The level of Foxp3mRNA in lung tissues was analyzed by quantitative real-time polymerase chain reaction (PCR). The levels of Foxp3protein in lung tissues was analyzed by Western blot.
     Results:The average alveolar area in COPD group(152345±24497μm2) was significantly larger than that in the S group (106551±15815μm2) and in N group (50708±14125μm2)(P<0.05). The CD4+T cells in alveolar wall in the COPD group (22±8/mm) were more than that in S group (16±6/mm) and in N group (6±2/mm). Foxp3+Treg cells in the COPD group (3±1/mm) were less than that in S group (4±1/mm) and N group (5±1/mm), and that in S group was less than in N group. The Foxp3mRNA expression in lung tissues was decreased in the COPD group (0.431±0.109) followed by that in S group (0.930±0.413), compared with that in N group (1.391±0.312)(P values were all<0.05). The Foxp3protein expression in lung tusses was decreased in COPD group (0.307±0.051) followed by that in S group (0.504±0.218), compared with that in N group (0.824±0.180)(P values<0.05). There was a negative correlation between the numbers of Foxp3+cells and CD4+cells (R=-0.681, P<0.001). And the Foxp3+cell number was negatively correlated with mean alveolar area (R=-0.797, P<0.001). The levels of Foxp3mRNA and protein in lung tissues were both positively correlated with FEV1%pred (R=0.601, P <0.001; R=0.573, P=0.001).
     Conclusions:The expression of Foxp3+T cell was decreased in the lung tissues of smokers with normal lung function and COPD patients, which was correlated with alveolar mean area and reduced lung function, suggesting decreased Foxp3+T cell may participate lung inflammation and acquired immune response in COPD patients.
     CHAPTER II
     Transcription factor Foxp3of regulatory T cell in the peripheral blood of chronic obstructive pulmonary disease patients at different stages
     Objective:This study aim to observe the expression of transcription factor Foxp3of regulatory T cell (Treg cell) in the peripheral blood of somkers with normal lung function and patients with chronic obstructive pulmonary disease (COPD) at differernt stages.
     Methods:Subjects received treatment or physical examination in our hospital were selected and devided into non-somking group with normal lung function (N group,20cases), smoking group with normal lung function (S group,20cases), smoking with COPD in the Global initiative for Chronic Obstructive Lung Disease (GOLD)1and2(COPD1-2group,20cases) and smoking with COPD in GOLD3and4(COPD3-4group,20cases). The Foxp3mRNA expression in peripheral blood was analysed by quantitative real-time polymerase chain reaction (PCR).
     Results:The Foxp3mRNA levels in peripheral blood were decreased in COPD3-4group (0.498±0.235)and COPD1-2group (0.931±0.237) followed by that in S group (1.215±0.258), compared with that in N group (1.452±0.254)(P values were all<0.05). The expression of Foxp3mRNA was positively correlated with FEV1%pred (R=0.758, P<0.001).
     Conclusion:The expressions of Foxp3mRNA in smokers with normal lung function and COPD patients were decreased, especially in COPD patients at3-4stages, suggesting the decrease of Foxp3+Treg cell is invovled in the severity of COPD and the activation of acquired immune response in COPD patients.
     CHAPTER III
     Single nucleotide polymorphisms of Transcription Factor Foxp3in regulatory T cell and chronic obstructive pulmonatory disease
     Obsjective:To investigate the single nucleotide polymorphisms (SNPs) of transcription factor Foxp3of regulatory T cell (Treg cell) in patients with chronic obstructive pulmonatory disease (COPD) at different stages, and discusse the risk factors of the SNPs.
     Methods:Subjects received treatment or physical examination in our hospital were selected and devided into non-somking group with normal lung function (N group,61cases), smoking group with normal lung function (S group,81cases), smoking with COPD in the Global initiative for chronic Obstructive Lung Disease (GOLD)1and2(COPD1-2group,65cases) and smoking with COPD in GOLD3and4(COPD3-4group,117cases). Samples of peripheral blood were collected. The Foxp3SNPs rs2280883, rs3761548, rs3761549and rs5902434were analyzed by Tanman quantitative real-time polymerase chain reaction (PCR). The susceptibility of COPD in people with differernt genotypes, and the risk factors for genetic mutations were both analyzed by logistic regression model.
     Results:All four SNPs comply with Hardy-Weinberg genetic equilibrium. The genotypes and haplotypes of Foxp3SNP rs5902434were differently expressed in COPD3-4group, COPD1-2group, S group and N group (P<0.05). The-/-genotype was protective for COPD patients both at stage1-2and at stage3-4(COPD1-2group:OR=0.278,95%CI=0.079-0.974,; COPD3-4group:OR=0.235,95%CI=0.074-0.747). The genotype-/-of rs5902434was protective for patients with FEV1%pred=30-50(OR=0.222, 95%CI=0.094-0.525), as well as patients with FEV1/FVC<50and FEV1/FVC=50-70(FEV1/FVC<50:OR=0.295,95%CI=0.130-0.666; FEV1/FVC=50-70:OR=0.337,95%CI=0.131-0.866). The genotype-/ATT of rs5902434also could be protective for patients with FEV1%pred=30-50(OR=0.359,95%CI=0.150-0.863). The analysis of rs5902434haplotypes showed that-haplotype was susceptible to smokers with normal lung function (OR=1.746,95%CI=1.048-2.914). Furthermore,-haplotype was found to be protective for patients with FEV1%pred=30-50and FEV1/FVC<50, respectively (FEV1%pred=30-50:OR=0.582,95%CI=0.358-0.946; FEV1/FVC<50:OR=0.622,95%CI=0.403-0.961). The comprehensive analysis with smoking history, age, BMI and nation showed that non-Han people are more likely to have-/ATT genotype than Han people (OR=2.277,95%CI=1.022-5.072).
     Conclusions:The Foxp3SNP rs5902434was risk for COPD in males, and-/-genotype was protective for COPD and the decline of lung function. But smoking history and age didn't influence this SNP. These foundings suggested that SNPs may be a up-stream factor of COPD. But risk factors of COPD including smoking and age maynot be associated with this SNP of Foxp3.
引文
1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med.2006;3(11):e442.
    2. Chorostowska-Wynimko J. The role of inflammation in the pathogenesis of chronic obstructive pulmonary disease. Pol Merkur Lekarski 2004,17(99):203-207.
    3. L(?)kke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD:a 25 year follow up study of the general population. Thorax.2006;61:935-939.
    4. Willemse BW, ten Hacken NH, Rutgers B, Lesman-Leegte IQ Postma DS, Timens W. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J.2005;26(5):835-45.
    5. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645-53.
    6. Cosio MG, Majo J, Cosio MG. Inflammation of the airways and lung parenchyma in COPD:role of T cells. Chest 2002,121(5 Suppl):160S-165S.
    7. Barnes PJ. Small airways in COPD. N Engl J Med 2004,350(26):2635-2637.
    8. Bluestone JA, Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 2005; 17:638-42.
    9. Jiang H, Chess L. Regulation of immune responses by T cells. N Engl J Med 2006;354:1166-76.
    10. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345-52.
    11. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O. CD4+CD25+T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 2005; 140:360-7.
    12. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178-80.
    13. Smyth LJ, Starkey C, Vestbo J, Singh D. CD4-regulatory cells in COPD patients. Chest 2007;132(1):156-63.
    14. Barcelo B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agusti AGN. Phenotypic characterisation of T-lymphocytes in COPD:abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur Respir J 2008;31(3):555-62.
    15. Isajevs S, Taivans I, Strazda G, Kopeika U, Bukouskis M, Gordjusina V, et al. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J 2009;33(1):61-7.
    16. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, Elferink BG, van der Zanden L, de Vries RR, Huizinga TW, et al. Hum Immunol.2005;66:13-20.
    17. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445(7130):931-5.
    18. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature.2007;445(7130):936-40.
    1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med.2006;3(11):e442.
    2. Chorostowska-Wynimko J. The role of inflammation in the pathogenesis of chronic obstructive pulmonary disease. Pol Merkur Lekarski 2004,17(99):203-207.
    3. Global initiative for chronic obstructive lung disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO workshop report. NIH Publication no.2701:1-100. Bethesda, MD:National Heart, Lung and Blood Institute; April 2001.
    4. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000;343:269-80.
    5. Di Stefano A, Caramori G, Ricciardolo FLM, Capelli A, Adcock IM, Donner CF. Cellular and molecular mechanisms in chronic obstructive pulmonary disease:an overview. Clin Exp Allergy 2004;34:1156-67.
    6. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med.2007;176:532-555.
    7. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet.2004;364:709-721.
    8. L(?)kke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD:a 25 year follow up study of the general population. Thorax.2006;61:935-939.
    9. Willemse BW, ten Hacken NH, Rutgers B, Lesman-Leegte IG, Postma DS, Timens W. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J.2005;26(5):835-45.
    10. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645-53.
    11. Cosio MG, Majo J, Cosio MG Inflammation of the airways and lung parenchyma in COPD:role of T cells. Chest 2002,121(5 Suppl):160S-165S.
    12. Barnes PJ. Small airways in COPD. N Engl J Med 2004,350(26):2635-2637.
    13. Zhang JQ, Lao QF, Chu SY, Bai J, Zhong XN. Interleukin-17 expression and significance in normal lung ventilation function smokers and chronic obstructive pulmonary disease patients. Zhonghua Yi Xue Za Zhi 2010;90(20):1431-5.
    14. Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, Hacken J, Espada R, Bag R, Lewis DE, Kheradmand F. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004,1(1):e8.
    15. Chen Z, Lin F, Gao Y, Li Z, Zhang J, Xing Y, Deng Z, Yao Z, Tsun A, Li B. FOXP3 and RORyt:transcriptional regulation of Treg and Th17. Int Immunopharmacol 2011;11(5):536-42.
    16. Bluestone JA, Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 2005; 17:638-42.
    17. Jiang H, Chess L. Regulation of immune responses by T cells. N Engl J Med 2006;354:1166-76.
    18. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345-52.
    19. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 2005;140:360-7.
    20. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178-80.
    21. Smyth LJ, Starkey C, Vestbo J, Singh D. CD4-regulatory cells in COPD patients. Chest 2007;132(1):156-63.
    22. Barcelo B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agusti AGN. Phenotypic characterisation of T-lymphocytes in COPD:abnormal CD4+CD25+regulatory T-lymphocyte response to tobacco smoking. Eur Respir J 2008;31(3):555-62.
    23. Isajevs S, Taivans I, Strazda G, Kopeika U, Bukouskis M, Gordjusina V, et al. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J 2009;33(1):61-7.
    24. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO workshop report Bethesda, National Heart, Lung and Blood Institute,April 2001,NIH Publication No 2701:1-100.Last update 2005. http://www.goldcopd.com (accessibility verified March 2,2013).
    25. Zhang J, Chu S, Zhong X, Lao Q, He Z, Liang Y. Increased expression of CD4+IL-17+ cells in the lung tissue of patients with stable chronic obstructive pulmonary disease (COPD) and smokers. Int Immunopharmacol. 2013;15(1):58-66.
    26. Saetta M, Baraldo S, Corbino L, Turato G, Braccioni F, Rea F, Cavallesco G, Tropeano G,Mapp CE, Maestrelli P, Ciaccia A, Fabbri LM. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999;160:711-7.
    27. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004,350(26):2645-2653
    28. Barnes PJ. Small airways in COPD. N Engl J Med 2004,350(26):2635-2637
    29. Cosio Manuel G, Marina Saetta, Alvar Agusti. Immunologic Aspects of Chronic Obstructive Pulmonary Disease. N Engl J Med.2009;360:2445-2454.
    30. Tang Q, Bluestone JA. The Foxp3+ regulatory T cell:a jack of all trades, master of regulation. Nat Immunol.2008;9:239-44.
    31. Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest.2004; 114:1198-1208.
    32. Qiu SL, Bai J, Zhong XN, Huang QP, Chen H, Liu GN. CD4+Foxp3+ regulatory T cells in inflammation and emphysema after smoking cessation in rats. Chin J Tuberc Respir Dis 2010;33(9):688-92.
    33. Chu S, Zhong X, Zhang J, Lao Q, He Z, Bai J. The expression of Foxp3 and ROR gamma t in lung tissues from normal smokers and chronic obstructive pulmonary disease patients. Int Immunopharmacol.2011;11(11):1780-8.
    1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med.2006;3(11):e442.
    2. Rytila P, Plataki M, Bucchieri F, Uddin M, Nong G, Kinnula VL, Djukanovic R. Airway neutrophilia in COPD is not associated with increased neutrophil survival. Eur Respir J.2006;28:1163-1169.
    3. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932-46.
    4. Gadgil A, Duncan SR. Role of T-lymphocytes and pro-inflammatory mediators in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis.2008;3:531-541.
    5. Global initiative for chronic obstructive lung disease. Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease. NHLBI/WHO workshop report. NIH Publication no.2701:1-100. Bethesda, MD:National Heart, Lung and Blood Institute; April 2001.
    6. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000;343:269-80.
    7. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004;350:2645-53.
    8. Di Stefano A, Capelli A, Lusuardi M, Balbo P, Vecchio C, Maestrelli P, Mapp CE, Fabbri LM, Donner CF, Saetta M. Severity of airflow limitation is associated with severity of airway inflammation in smokers. Am J Respir Crit Care Med 1998;158:1277-85.
    9. Stefanska AM, Walsh PT. Chronic obstructive pulmonary disease:evidence for an autoimmune component. Cell Mol Immunol.2009;6(2):81-6.
    10. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, Green L, Hacken-Bitar J, Huh J, Bakaeen F, Coxson HO, Cogswell S, Storness-Bliss C, Corry DB, Kheradmand F. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 2007; 13:567-9.
    11. Feghali-Bostwick CA, Gadgil AS, Otterbein LE, Pilewski JM, Stoner MW, Csizmadia E, Zhang Y, Sciurba FC, Duncan SR. Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:156-63.
    12. Leidinger P, Keller A, Heisel S, Ludwig N, Rheinheimer S, Klein V, Andres C, Hamacher J, Huwer H, Stephan B, Stehle I, Lenhof HP, Meese E. Novel autoantigens immunogenic in COPD Patients. Respir Res 2009; 12:10-20.
    13. Orentas RJ, Kohler ME, Johnson BD. Suppression of anti-cancer immunity by regulatory T cells:back to the future. Semin Cancer Biol 2006; 16:137-49.
    14. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell.2008;133(5):775-87.
    15. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol.2008;8(3):183-92.
    16. Chen Z, Lin F, Gao Y, Li Z, Zhang J, Xing Y, Deng Z, Yao Z, Tsun A, Li B. FOXP3 and RORyt:transcriptional regulation of Treg and Th17. Int Immunopharmacol 2011;11(5):536-42.
    17. Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Current opinion in rheumatology.2003;15(4):430-435.
    18. Smyth LJ, Starkey C, Vestbo J, Singh D. CD4-regulatory cells in COPD patients. Chest 2007;132(1):156-63.
    19. Barcelo B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agusti AGN. Phenotypic characterisation of T-lymphocytes in COPD:abnormal CD4+CD25+regulatory T-lymphocyte response to tobacco smoking. Eur Respir J 2008;31(3):555-62.
    20. Isajevs S, Taivans I, Strazda G, Kopeika U, Bukovskis M, Gordjusina V, Kratovska A. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J 2009;33(1):61-7.
    21. Xiong XZ, Jin Y, Zhou Q, Zhang XJ, Du W, Liu W, Huang SA. Correlation between FoxP3(+) regulatory T cells and chronic obstructive pulmonary disease. Zhonghua Yi Xue Za Zhi.2008 Feb 19;88(7):471-4.
    22. Lanzilli G, Traggiai E, Braido F, Garelli V, Folli C, Chiappori A, Riccio AM, Bazurro G, Agazzi A, Magnani A, Canonica GW, Melioli G Administration of a polyvalent mechanical bacterial lysate to elderly patients with COPD:Effects on circulating T, B and NK cells. Immunol Lett.2013;149(1-2):62-7.
    23. Rabe KF, Hurd S, Anzueto A. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary. Am J Respir Crit Care Med 2007;176(6):532-55.
    24. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001;27(1):68-73. 203.25. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, Maclsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445(7130):931-5.
    26. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature.2007;445(7130):936-40.
    27. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med.2007;176:532-555.
    28. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet.2004;364:709-721.
    29. Ginns LC, Goldenheim PD, Miller LQ Burton RC, Gillick L, Colvin RB, Goldstein G, Kung PC, Hurwitz C, Kazemi H. T-lymphocyte subsets in smoking and lung cancer:analysis by monoclonal antibodies and flow cytometry. Am Rev Respir Dis 1982; 126:265-269.
    30. Miller LG, Goldstein G, Murphy M, Ginns LC. Reversible alterations in immunoregulatory T cells in smoking:analysis by monoclonal antibodies and flow cytometry. Chest 1982;5:526-529.
    31. de Jong JW, van der Belt-Gritter B, Koeter GH, Postma DS. Peripheral blood lymphocyte cell subsets in subjects with chronic obstructive pulmonary disease:association with smoking, IgE and lung function. Respir Med 1997; 91:67-76.
    32. Agusti AG, Noguera A, Sauleda J, Sala E, Pons J, Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur Respir J 2003; 21: 347-360.
    33. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation:a systematic review and a metaanalysis. Thorax 2004; 59:574-580.
    34. Wouters EF, Groenewegen KH, Dentener MA, Vernooy JH. Systemic inflammation in chronic obstructive pulmonary disease:the role of exacerbations. Proc Am Thorac Soc 2007; 4:626-634.
    35. Yang L, Ma QL, Yao W, Zhang Q, Chen HP, Wang GS, Wang CZ. Relationship between the anti-inflammatory properties of salmeterol/fluticasone and the expression of CD4+CD25+Foxp3+ regulatory T cells in COPD. Respir Res.2011;12:142.
    1. Rytila P, Plataki M, Bucchieri F, Uddin M, Nong G, Kinnula VL, Djukanovic R. Airway neutrophilia in COPD is not associated with increased neutrophil survival. Eur Respir J.2006;28:1163-1169.
    2. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD:a summary of the ATS/ERS position paper. Eur Respir J 2004;23:932-46.
    3. Cosio Manuel G, Marina Saetta, Alvar Agusti. Immunologic Aspects of Chronic Obstructive Pulmonary Disease. N Engl J Med.2009;360:2445-2454.
    4. Turato G, Di Stefano A, Maestrelli P, Turato G, Di Stefano A, Maestrelli P, Mapp CE, Ruggieri MP, Roggeri A, Fabbri LM, Saetta M. Effect of smoking cessation on airway inflammation in chronic bronchitis. Am J Respir Crit Care Med.1995;152:1262-1267.
    5. Rutgers SR, Postma DS, ten Hacken NH, Kauffman HF, van Der Mark TW, Koeter GH, Timens W. Ongoing airway inflammation in patients with COPD who do not currently smoke. Thorax.2000;55:12-18.
    6. L(?)kke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD:a 25 year follow up study of the general population. Thorax.2006;61:935-939.
    7. Silverman EK, Chapman HA, Drazen JM, et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med. 1998;157:1770-1778.
    8. Foreman MG, DeMeo DL, Hersh CP, Reilly JJ, Silverman EK. Clinical determinants of exacerbations in severe, early-onset COPD. Eur Respir J. 2007;30:1124-1130.
    9. Gadgil A, Duncan SR. Role of T-lymphocytes and pro-inflammatory mediators in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis.2008;3:531-541.
    10. Zhang JQ, Lao QF, Chu SY, Bai J, Zhong XN. Interleukin-17 expression and significance in normal lung function smokers and chronic obstructive pulmonary disease patients. Zhonghua Yi Xue Za Zhi.2010;90(20):1431-5.
    11.邱诗林,白晶,钟小宁,黄秋嫔,陈慧,柳广南.CD+4 Foxp3+调节性T细胞对断烟大鼠肺部炎症及肺气肿的作用.2010;33(9):688-692.
    12. Smyth LJ, Starkey C, Vestbo J, Singh D. CD4-regulatory cells in COPD patients. Chest 2007;132(1):156-63.
    13. Isajevs S, Taivans I, Strazda G, Kopeika U, Bukouskis M, Gordjusina V, et al. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J 2009;33(1):61-7.
    14. Chen Z, Lin F, Gao Y, Li Z, Zhang J, Xing Y, Deng Z, Yao Z, Tsun A, Li B. FOXP3 and RORyt:transcriptional regulation of Treg and Th17. Int Immunopharmacol 2011;11(5):536-42.
    15. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001;27(1):68-73.
    16. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol.2008;9(2):194-202.
    17. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445(7130):931-5.
    18. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature.2007;445(7130):936-40.
    19. Rabe KF, Hurd S, Anzueto A. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:GOLD executive summary. Am J Respir Crit Care Med 2007;176(6):532-55. 20. Bosse Y. Updates on the COPD gene list. Int J Chron Obstruct Pulmon Dis. 2012;7:607-31.
    21. Bosse Y. Genetics of chronic obstructive pulmonary disease:a succinct review, future avenues and prospective clinical applications. Pharmacogenomics. 2009;10(4):655-67.
    22. Seifart C, Plagens A. Genetics of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis.2007;2(4):541-50.
    23. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet.2001;27(1):68-73.
    24. Isajevs S, Taivans I, Strazda G, Kopeika U, Bukovskis M, Gordjusina V, Kratovska A. Decreased FOXP3 expression in small airways of smokers with COPD. Eur Respir J 2009;33(1):61-7.
    25.Yoshikawa M, Hiyama K, Ishioka S, Maeda H, Maeda A, Yamakido M. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int J Mol Med.2000;5(1):49-53.
    26. van Deventer SJ. Cytokine and cytokine receptor polymorphisms in infectious disease. Intensive Care Med 2001:27(1):98-102.
    27. Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J, Matthews LH, Pavitt R, Plumb RW, Sims SK, Ainscough RM, Attwood J, Bailey JM, Barlow K, Bruskiewich RM, Butcher PN, Carter NP, Chen Y, Clee CM, Coggill PC, Davies J, Davies RM, Dawson E, Francis MD, Joy AA, Lamble RG, Langford CF, Macarthy J, Mall V, Moreland A, Overton-Larty EK, Ross MT, Smith LC, Steward CA, Sulston JE, Tinsley EJ, Turney KJ, Willey DL, Wilson GD, McMurray AA, Dunham I, Rogers J, Bentley DR. An SNP map of human chromosome 22. Nature.2000 Sep 28;407(6803):516-20.
    1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med.2006;3(11):e442.
    2. Chorostowska-Wynimko J. The role of inflammation in the pathogenesis of chronic obstructive pulmonary disease. Pol Merkur Lekarski 2004,17(99):203-207.
    3. L(?)kke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD:a 25 year follow up study of the general population. Thorax.2006;61:935-939.
    4. Willemse BW, ten Hacken NH, Rutgers B, Lesman-Leegte IG, Postma DS, Timens W. Effect of 1-year smoking cessation on airway inflammation in COPD and asymptomatic smokers. Eur Respir J.2005;26(5):835-45.
    5. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645-53.
    6. Cosio MH, Majo J, Cosio MG Inflammation of the airways and lung parenchyma in COPD:role of T cells. Chest 2002,121(5 Suppl):160S-165S.
    7. Barnes PJ. Small airways in COPD. N Engl J Med 2004,350(26):2635-2637.
    8. Zhang JQ, Lao QF, Chu SY, Bai J, Zhong XN. Interleukin-17 expression and significance in normal lung ventilation function smokers and chronic obstructive pulmonary disease patients. Zhonghua Yi Xue Za Zhi 2010;90(20):1431-5.
    9. Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, Haesken J, Espada R, Bag R, Lewis DE, Kheradmand F. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med 2004,1(1):e8.
    10. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345-52.
    11. Bluestone JA, Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 2005; 17:638-42.
    12. Jiang H, Chess L. Regulation of immune responses by T cells. N Engl J Med 2006;354:1166-76.
    13. Mottonen M, Heikkinen J, Mustonen L, Isomaki P, Luukkainen R, Lassila O. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 2005;140:360-7.
    14. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med.2006;12(2):178-80.
    15. Smyth LJ, Starkey C, Vestbo J, Singh D. CD4-regulatory cells in COPD patients. Chest 2007;132(1):156-63.
    16. Barcelo B, Pons J, Ferrer JM, Sauleda J, Fuster A, Agusti AGN. Phenotypic characterisation of T-lymphocytes in COPD:abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur Respir J 2008;31(3):555-62.
    17. Isajevs S, Taivans I, Strazda Q Kopeika U, Bukovskis M, Gordjusina V, Kratovska A. Decreased Foxp3 expression in small airways of smokers with COPD. Eur Respir J 2009;33(1):61-7. 101.18. Shevach EM. Certified professionals:CD4(+)CD25(+) suppressor T cells. J Exp Med.2001; 193(11):F41-6.
    19. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol.2002;3(2):135-42.
    20. Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, Elferink BQ van der Zanden L, de Vries RR, Huizinga TW, et al. Hum Immunol.2005;66:13-20.
    21. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurry mouse. Nat Genet.2001;27(1):68-73.
    22. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol.2008;9(2):194-202.
    23. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007;445(7130):931-5.
    24. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature.2007;445(7130):936-40.
    25. Benacerraf B, Germain RN. A single major pathway of T-lymphocyte interactions in antigen-specific immune suppression. Scand J Immunol. 1981:13(1):1-10.
    26. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature.1997;389(6652):737-42.
    27. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4+ CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med. 2001; 193:1285-94.
    28. Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+ CD25+ T cells with regulatory properties from human blood. J Exp Med.2001;193:1303-10.
    29. Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP. CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun Rev.2010;9:560-8.
    30. Collison LW, Pillai MR, Chaturvedi V, Vignali DA. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35-and IL-10-dependent manner. J Immunol.2009;182(10):6121-8.
    31. Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB, Liew FY. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol.2007;37(11):3021-9.
    32. Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L'Hermine A, Devergne O. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL-35. J Immunol.2008;181(10):6898-905.
    33. Collison LW, Vignali DA. Interleukin-35:odd one out or part of the family? Immunol Rev.2008;226:248-62.
    34. Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+ CD25+ regulatory T cells from human CD4+ CD25- cells. Proc Natl Acad Sci USA.2005; 102:4103-8.
    35. Uss E, Rowshani AT, Hooibrink B, Lardy NM, van LierRA, ten Berge IJ. CD 103 is a marker for alloantigen-induced regulatory CD8+T cells. J Immunol. 2006;177:2775-83.
    36. Mills KH. Regulatory T cells:friend or foe in immunity to infection? Nat Rev Immunol.2004;4(11):841-55.
    37. Xiong XZ, Jin Y, Zhou Q, Zhang XJ, Du W, Liu W, Huang SA. Correlation between Foxp3(+) regulatory T cells and chronic obstructive pulmonary disease. Zhonghua Yi Xue Za Zhi.2008;88(7):471-4.
    38. Chen W, Konkel JE. TGF-beta and 'adaptive' Foxp3(+) regulatory T cells. J Mol Cell Biol.2010;2(1):30-6.
    39. Maneechotesuwan K, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Decreased indoleamine 2,3-dioxygenase activity and IL-10/IL-17A ratio in patients with COPD. Thorax.2013;68(4):330-7.
    40. Morris DQ Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, Glick A, Sheppard D. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature.2003;422(6928):169-73.
    41.吴丽媛;钟玉霞;戴钰;张学军.TGF-β1下调炎性巨噬细胞RAW264.7 TLR4受体的表达.免疫学杂志.2012;28(05):378-381.
    42. Ichimaru Y, Krimmer DI, Burgess JK, Black JL, Oliver BG. TGF-β enhances deposition of perlecan from COPD airway smooth muscle. Am J Physiol Lung Cell Mol Physiol.2012 Feb 1;302(3):L325-33.
    43. Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T Cells Limit Vascular Endothelial Injury and Prevent Pulmonary Hypertension. Circ Res.2011; 109:867-79.
    44. Shetty S, Weston CJ, Oo YH, Westerlund N, Stamataki Z, Youster J, Hubscher SG, Salmi M, Jalkanen S, Lalor PF, Adams DH. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol. 2011; 186:4147-55.
    45. Garba ML, Pilcher CD, Bingham AL, Eron J, Frelinger JA. HIV antigens can induce TGF-β1-producing immunoregulatory CD8+T cells. J Immunol. 2002;168:2247-54.
    46. Billerbeck E, Blum HE, Thimme R. Parallel expansion of human virus-specific Foxp3-effector memory and de novo-generated Foxp3+ regulatory CD8+ T cells upon antigen recognition in vitro. J Immunol. 2007;179:1039-48.
    47. Joosten SA, van Meijgaarden KE, Savage ND, de Boer T, Triebel F, van der Wal A, de Heer E, Klein MR, Geluk A, Ottenhoff TH. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci USA.2007;104:8029-34.
    48. Modlin RL, Mehra V, Wong L, Fujimiya Y, Chang WC, Horwitz DA, Bloom BR, Rea TH, Pattengale PK. Suppressor T lymphocytes from lepromatous leprosy skin lesions. J Immunol.1986; 137:2831-4.
    49. Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC. TCR stimulation with modified anti-CD3 mAb expands CD8+T cell population and induces CD8+CD25+ Tregs. J Clin Invest.2005;115:2904-13.
    50. Mahic M, Henjum K, Yaqub S, Bjornbeth BA, Torgersen KM, Tasken K, Aandahl EM. Generation of highly suppressive adaptive CD8+ CD25+ Foxp3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol. 2008;38:640-6.
    51. Taylor AL, Cross EL, Llewelyn MJ. Induction of contact-dependent CD8(+) regulatory T cells through stimulation with staphylococcal and streptococcal superantigens. Immunology.2012;135(2):158-67.
    52. Sarantopoulos S, Lu L, Cantor H. Qa-1 restriction of CD8+ suppressor T cells. J Clin Invest.2004; 114(9):1218-21. 53. Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest.2004; 114(9):1198-208.
    54. Jarvis LB, Matyszak MK, Duggleby RC, Goodall JC, Hall FC, Gaston JS. Autoreactive human peripheral blood CD8+ T cells with a regulatory phenotype and function. Eur J Immunol.2005;35(10):2896-908.
    55. Mutis T, Kraakman EM, Cornelisse YE, Haanen JB, Spits H, de Vries RR, Ottenhoff TH. J Immunol.1993;150:4641-4651.
    56. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR. Science.1991;254:279-282.
    57. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med.2009;360:2445-54.
    58. Zhang J, Deng L, Xiong X, Wang P, Xin J, Ma W. Effect of tiotropium bromide on expression of CD(8) (+)CD (25) (+)FoxP (3) (+) regulatory T cells in patients with stable chronic obstructive pulmonary disease. J Huazhong Univ Sci Technolog Med Sci.2011;31(4):463-8.
    59. Bacchetta R, Gambineri E, Roncarolo MG. Role of regulatory T cells and Foxp3 in human diseases. J Allergy Clin Immunol.2007;120(2):227-35; quiz 236-7.
    60. Vieira PL, Christensen JR, Minaee S, O'Neill EJ, Barrat FJ, Boonstra A, Barthlott T, Stockinger B, Wraith DC, O'Garra A. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol.2004;172(10):5986-93.
    61. Couper KN, Blount DG, Riley EM. IL-10:the master regulator of immunity to infection. J Immunol.2008;180(9):5771-7.
    62. Stumhofer JS, Silver J, Hunter CA. Negative regulation of Th17 responses. Semin Immunol.2007; 19(6):394-9.
    63. Murugaiyan G, Mittal A, Lopez-Diego R, Maier LM, Anderson DE, Weiner HL. IL-27 is a key regulator of IL-10 and IL-17 production by human CD4+ T cells. J Immunol.2009;183(4):2435-43.
    64. Zhang J, Chu S, Zhong X, Lao Q, He Z, Liang Y. Increased expression of CD4+IL-17+ cells in the lung tissue of patients with stable chronic obstructive pulmonary disease (COPD) and smokers. Int Immunopharmacol. 2013;15(1):58-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700