华南二叠纪与三叠纪之交的疑源类及其生态环境意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二叠纪与三叠纪之交的生物大灭绝是自显生宙以来地球上发生的最大一次集群灭绝事件,距今约252Ma。这次事件造成当时海洋生态系统中大约90%以上的物种灭绝。许多学者将这次灾难事件归因于环境的突变,如海洋的大范围缺氧、西伯利亚火山喷发以及海平面骤降等。而在统计生物多样性变化的时候,多数学者只关注海洋动物物种多样性的变化,对于遍布海洋的浮游植物却是知之甚少。甚至于一些研究浮游植物的学者也只是参与争论二叠纪与三叠纪之交的“真菌高峰”事件。而近年来,一系列关于二叠纪末期蓝细菌爆发的报道则引发了大家对海洋初级生产者的注意。因此,本文主要研究了华南地区二叠纪与三叠纪之交的疑源类,同时结合前人有关蓝细菌以及其它动物化石的数据,综合分析了二叠纪末生物大灭绝期间浮游植物群落的演替及其对生态环境的影响。
     首先,笔者总结了二叠纪的疑源类化石。结果表明:相对于孢粉化石,二叠纪疑源类的研究程度较低,但是其物种多样性远远超出前人的预计。尽管具大型膜壳的疑源类化石在古生代中期以后就很少出现,但是具小型膜壳的类型在二叠纪的地层中仍然相当丰富。二叠纪的各个阶都可以发现20-30个疑源类化石属。而某些常见的属(如Micrhystridium和Veryhachium)则被报道超过40余次。然而,我们还需要更多的数据才能找到二叠纪疑源类物种多样性的变化规律,而且需要对具小型膜壳的种类倍加留意。
     本文选取的七个剖面均位于华南地区二叠纪与三叠纪之交的地层中,包括中寨剖面、凉风垭剖面、煤山剖面、上寺剖面、甘溪剖面、峡口剖面以及东攀剖面。在这些剖面里找到了丰富且保存完好的疑源类化石。大部分化石的膜壳较小,其直径在20微米左右,如:Micrhystridium、Veryhachium以及Leiosphaeridia。同时也在上寺等剖面发现了一些具大型膜壳的疑源类化石,如Dictyotidium (膜壳直径达80微米)。而这些化石基本都在其它晚二叠世的地层中报道过。
     由于出现了十余种归属于Micrhystridium和Veryhachium的化石,且发现将其划归到物种级别较为困难。因此,本文从化石膜壳形态学的角度将Micrhystridium/Veryhachium complex类群划分为五类。其中,Veryhachium cylindricum亚属代表具椭圆形膜壳的类型;Veryhachium trispinosum亚属囊括具三角形膜壳的类群;而Veryhachium lairdii亚属则包含所有四边形膜壳的种类;Micrhystridium pentagonale亚属涵盖五边形或者六边形膜壳的类群;而Micrhystridium breve亚属则包括具球形膜壳的物种。
     为了研究华南地区二叠纪末期疑源类在海洋中的空间分布特征,文中选定六个剖面来分析。这些剖面囊括从近岸浅海到远岸深水的沉积环境。根据疑源类属种的生物多样性和物种的丰度,并结合前人的相关资料分析表明:(1)近岸地区的疑源类物种多样性较低,一般只有2-4种(如中寨和东攀剖面);而相对远岸的大陆架地区物种多样性较高,可以达到10种左右(如煤山、上寺以及凉风垭剖面);但是随着离岸距离的增加,大陆坡地区的疑源类物种多样性同样是较低的(如甘溪和峡口剖面)。(2)在疑源类化石属一级上,Leiosphaeridia、Reduviasporonites以及Micrhystridium从近岸浅水环境到远岸深水地区均有分布;Dictyotidium和Veryhachium更多地出现于开阔的海域。(3)Schizosporis则只在上寺和煤山剖面的二叠纪与三叠纪之交的地层附近出现(海平面较低时),可能指示一种相对近岸浅水的环境。(4)在物种级别上,具短突起的Micrhystridium breve在近岸环境中占据绝对优势,且对营养盐的浓度较为敏感,其生物量的变化与Fe和Al元素的含量变化较为一致。而膜壳较大(直径约80微米)的球形疑源类如Dictyotidium reticulatum一般出现在浅水区域,膜壳较小(直径约30微米)的Leiosphaeridia则更多地分布在水体较深的环境中。同时,膜壳光滑的Leiosphaeridia minutissima在近岸占据优势,而膜壳具颗粒纹饰的Leiosphaeridia microgranifera则在远岸较为丰富。(5)虽然链状疑源类Reduviasporonites出现在多个剖面,但是众多学者认为的二叠纪末期的“真菌高峰”在扬子板块的海相地层中并没有出现。需要指出的是,个体较大的Reduviasporonites chalastus(单胞直径约40微米)常分布于近岸环境;而个体较小的Reduviasporonites catenulatus(单胞直径约15微米)则更多地出现在远岸深水的区域。
     基于疑源类化石与动物化石的生物多样性变化规律,文中将华南二叠纪与三叠纪之交的地层划分为较为明显的三个阶段。阶段1对应的牙形石生物带为Clarkina yini-Clarkina Zhangi带,此阶段的疑源类化石生物多样性是三个阶段中最高的,发现疑源类达10属28种。与第一阶段相比,阶段2的疑源类化石生物多样性出现大幅降低,只出现7属11种。其对应的牙形石生物带为Clarkina meishanensis带、Hindeodus changxingensis带、Clarkina taylorae带以及Hindeodus parvus带。而阶段3对应Isarcicella staeschei带和Isarcicella isarcica带,只有一种疑源类化石Leiosphaeridia minutissima零星地出现在凉风垭剖面和甘溪剖面。
     二叠纪末期的生物大灭绝之前(阶段1),海洋生态系统总体保持动态平衡,动物以及浮游植物都具有较高的生物多样性。但是,由于环境的突变(如大规模的火山喷发、海平面的骤降以及温度升高等),海洋生态系统的平衡被打破。大多数的动植物由于对环境的不适应而惨遭灭绝,而生命力极强的蓝细菌却在这适宜的环境中大面积爆发,成为最主要的初级生产者。然而,蓝细菌的爆发却给环境带来了持续性的恶化,首先是加大了海洋透光带中光衰减的程度;其次是加速了海水中的氧气消耗;同时也为海洋动物提供了有毒的且贫营养的食物。这三点影响对其它浮游植物以及大多数的海洋动物来说都是致命的。但是,不同物种对于这些影响的反应却是不一样的。总体来讲,疑源类等其它类型的浮游植物基本从近岸海域中消失,只分布在远岸的水域。而个体较大的动物则基本消失,体型较小的动物凭借其对蓝细菌以及恶劣环境较强的适应性而得以残存(阶段2)。然而此次生物危机并未结束,随着温度的进一步升高以及无机营养盐的持续性输入,蓝细菌的爆发向远岸以及深水环境中扩张(阶段3;上寺剖面28层以及煤山剖面29层),致使大多数在前一阶段残存的种类也不能在这更为恶劣的环境中幸免而遭到灭绝,只剩下个别适应力极强的灾难种得以存活并繁盛(如双壳类的Claraia)。
     大规模的火山喷发可能是二叠纪末期生物大灭绝的导火索,其导致了生态环境的巨大变化,如温度升高等。本文认为:高温以及陆地风化的加强直接促使蓝细菌的持续性爆发。而蓝细菌的不断增殖则加深了海水的缺氧程度以及造成了其它浮游植物的大量减少。经过以上的变化,海洋的缺氧、高温以及食物的缺乏则是海洋动物灭绝的直接原因。
The end-Permian extinction event (252Ma ago) is considered the greatest mass extinction in the history of the Earth, with over90%of all marine species becoming extinct. Many authors try to explain the causes of this extinction, linking it to environmental catastrophes, such as ocean anoxia, Siberian trap volcanism, sea-level changes, etc., but the causal factors of the extinction still remain controversial. Most studies documented the extinction of marine metazoan groups, and usually ignore the fluctuations of the diversity of primary producers in the marine environments at the Permian-Triassic boundary (PTB), although the presence of a possible "fungal spike" in the Late Permian let to much debate. Recently, a series of papers analyzed the cyanobacterial changes during the PTB interval in South China. On the other hand, a few papers documented in the PTB strata the biodiversity changes of the acritarchs, which are considered to represent the major part of the organic-walled microphytoplankton in the Palaeozoic. The objective of the present study is to document the different phytoplankton communities (including acritarchs and cyanobacteria) in the Chinese PTB strata and to try to analyze the relationships between the mass extinction and the phytoplankton community changes at the PTB, South China.
     Firstly, we present a synthesis of the Permian fossil record of acritarchs at a global scale. The revision shows that Permian acritarch descriptions have largely been neglected, compared to other palynomorph groups, such as spores and pollen grains. While larger organic-walled cysts, as known from the Lower and Middle Palaeozoic, are usually absent, many smaller acritarchs are commonly found in Permian palynological assemblages. During most of the Permian stages, acritarch show a genus richness of about20to30genera. Some genera, such as Micrhystridium and Veryhachium, have been reported in over40publications. Nevertheless, many Permian acritarchs still need to be documented in detail, and additional systematical studies, in particular of the very small taxa, are needed to fully understand the diversity and significance of Permian acritarch.
     The description of new material includes the analyses of diverse and well-preserved latest Permian phytoplankton assemblages from seven sections of the Yangtze Block (South China) from the localities Zhongzhai (Guizhou Province), Liangfengya (Chongqing City), Meishan (Zhejiang Province), Shangsi (Sichuan Province), Xiakou and Ganxi (Hubei Province) and Dongpan (Guangxi Province). Most of the species have been reported previously from other Late Permian sections elsewhere in the world. The South Chinese phytoplankton taxa are generally very small in size, usually displaying diameters of about20μm, and commonly include the genera Micrhystridium, Veryhachium and Leiosphaeridia. However, larger taxa with vesicles often exceeding80μm in diameter, such as Dictyotidium, are also abundant in the Shangsi section.
     The taxonomical descriptions of the acritarch assemblages include a reevaluation of the classification of two of the most common taxa. Due to the presence of large populations of Micrhystridium and Veryhachium, a simple classification scheme for the Micrhystridium/Veryhachium complex is proposed, based on the geometrical shape of the vesicle. We propose dividing the complex into five groups:the Veryhachium cylindricum group, representing all ellipsoidal specimens; the Veryhachium trispinosum group, with triangular shape vesicles; the Veryhachium lairdii group, with rectangular central bodies; the Micrhystridium pentagonale group, including all pentagonal specimens; and the Micrhystridium breve group, representing all spherical forms.
     Subsequently, in order to analyze the spatial (palaeoecological) distribution of the organic-walled microphytoplankton in the Late Permian, the palynological material from six of the investigated sections from the Yangtze Block, South China, displaying different sediment facies types (from neritic to offshore palaeoenvironments, including basinal facies) has been investigated. Based on the diversity and relative abundance of acritarch species and genera, the new data from the Chinese Late Permian sections provide similar patterns as those described from other geological periods:(1) low diversities with2to4acritarch species occur in nearshore environments, whereas the higher diversities (more than ten acritarch species) appear in the offshore environments;(2) at the generic level, the genera Leiosphaeridia, Reduviasporonites and Micrhystridium are distributed widely, from nearshore facies corresponding to shallow water environments to offshore facies corresponding to deeper water settings, whereas some genera, such as Dictyotidium and Veryhachium, have a narrower distribution, occurring on the continental shelf and towards the basin, indicating open marine environments;(3) the genus Schizosporis only occurs around the PTB, when the sea level declined, probably indicating nearshore environments with shallow water settings;(4) at the specific level, the species Micrhystridium breve, displaying short spines, and Leiosphaeridia minutissima are indicative of neritic facies, whereas the other species of Micrhystridium and Veryhachium with longer spines (e.g., Micrhystridium stellatum and Veryhachium hyalodermum) and Leiosphaeridia microgranifera indicate more open marine environments. Big spherical acritarch species (over80μm in diameter), such as Dictyotidium reticulatum, indicate shallow water environments;(5) in the PTB strata, the relative abundance of the enigmatic Reduviasporonites, interpreted by some authors as a fungal spore, is never higher than14%, indicating that a'spike'of Reduviasporonites did not occur in the Yangtze area. Reduviasporonites chalastus (40μm in length) obviously dominates in shelf environments of shallow water, whereas the smaller Reduviasporonites catenulatus (15μm in length) is more common in deeper water.
     Another part of the present study concerns the interpretation of the phytoplankton changes in the investigated interval. Based on the analysis of the organic-walled microphytoplankton in the PTB strata of South China three different stages of acritarch communities around the PTB can be identified. Diverse (28species attributed to10genera) and abundant acritarch assemblages occur in Stage1, corresponding to the Clarkina changxingensis and Clarkina yini conodont biozones. Subsequently, moderately diverse acritarch assemblages (11species in7genera) are present in Stage2at the Permian to Triassic transition, corresponding to the Clarkina meishanensis, Hindeodus changxingensis, Clarkina taylorae and Hindeodus parvus conodont biozones. Only one species (Leiosphaeridia minutissima) has been recorded in the Stage3possibly related to low biomass production, corresponding to the Isarcicella staeschei and Isarcicella isarcica conodont biozones.
     During the end Permian, the marine ecosystem was balanced before the mass extinction (Stage1; diverse and abundant metazoan and phytoplankton communities). However, this balance was perturbated by dramatic environmental changes (e.g., large-scale volcanic eruptions, drastic sea-level changes and higher sea-water temperatures), which most probably promoted cyanobacterial blooms at a worldwide scale, as recorded by the presence of lipid biomarkers and microbialites. The cyanobacterial proliferation possibly had very negative effects on the metazoan diversities, aggravated ocean anoxia, and reduced the abundance and diversity of other primary producers (increased light attenuation). Many species of different metazoan groups became extinct during the Stage2when the marine environments were perturbated (anoxic conditions and food-limitation), when only few primary consumers developed, in particular those with small sizes or/and those that were insensitive to the cyanobacterial toxin. Along with the rising temperature and intense inorganic nutrients (Fe and P), the cyanobacterial blooms proliferated in offshore and deep waters (bed28in Shangsi and bed29in Meishan), when the acritarchs (high quality food for metazoan) became rare. Many species of the primary consumers that survived the end Permian mass extinction disappeared during the earliest Triassic, probably due a degradation of the environmental conditions (high temperature, ocean anoxia and food deficiency). Only a few disaster taxa dominated in the ocean (e.g. the bivalve Claraia).
     If the end Permian mass extinction was triggered by large-scale volcanic eruptions, important ocean anoxia, large food deficiency and high temperatures, we consider that the cyanobacterial blooms enhanced the ocean anoxia and food deficiency during the PTB. Nevertheless, the relationship between the mass extinction and cyanobacterial blooms are more complex than that we previously thought.
引文
[1]Erwin D. The great Paleozoic crisis:Life and death in the Permian. Critical Moments in Paleobiology and earth History Series. Columbia University Press, New York,1993. p. 1-327.
    [2]Erwin D H, Bowring S A, Jin Y G. End-Permian mass extinctions:a review. Catastrophic events and mass extinctions:impacts and beyond,2002,356:363-383.
    [3]Raup D M, Sepkoski Jr J J. Mass extinctions in the marine fossil record, science, 1982,215(4539):1501-1503.
    [4]Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction, science, 2011,334(6061):1367-1372.
    [5]吴顺宝,李庆,王薇薇.四川华蓥山二叠纪与三叠纪之交沉积特征及动物群变化.现代地质,1988,2(3):375-385.
    [6]杨遵仪,吴顺宝,殷鸿福,et a1.华南二叠-三叠纪过渡期地质事件:地质出版社:北京,1991.
    [7]Yin H F, Feng Q L, Lai X L, et al. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change, 2007,55(1-3):1-20.
    [8]Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China, science,2000,289(5478):432-436.
    [9]方宗杰.从华南二叠纪-三叠纪礁生态系的演变探讨与灭绝-残存-复苏相关的几个问题.in:戎嘉余,方宗杰,(Eds),生物大灭绝与复苏:来自华南古生代和三叠纪的证据合肥:中国科学技术大学出版社,2004:475-572.
    [10]Feng Q L, He W H, Gu S Z, et al. Radiolarian evolution during the latest Permian in South China. Global and Planetary Change,2007,55(1-3):177-192.
    [11]Song H J, Tong J N, Chen Z Q. Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China. Australian Journal of Earth Sciences,2009,56(6):765-773.
    [12]Chen Z. Extinction-survival-recovery of brachiopod faunas during the Permian-Triassic transition. Albertiana,2005,33:23-26.
    [13]Chen Z, McNamara K. End-Permian extinction and subsequent recovery of the Ophiuroidea (Echinodermata). Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,236(3):321-344.
    [14]Song H J, Wignall P B, Tong J N, et al. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience,2012,6:52-56.
    [15]Xu D Y, Ma S L, Chai Z F, et al. Abundance variation of indium and trace elements at the Permian/Triassic boundary at Shangsi in China. Nature,1985,314(6007):154-156.
    [16]Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology,2001,29(9):815.
    [17]Basu A R, Petaev M I, Poreda R J, et al. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica, science,2003,302(5649):1388-1392.
    [18]Becker L, Poreda R, Basu A, et al. Bedout:a possible end-Permian impact crater offshore of northwestern Australia, science,2004,304(5676):1469-1476.
    [19]Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean; records from lost deep sea. science,1997,276(5310):235-238.
    [20]Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event, science,2005,307(5710):706-709.
    [21]Wignall P B. Large igneous provinces and mass extinctions. Earth-Science Reviews, 2001,53(l-2):1-33.
    [22]Newell N D. Revolutions in the history of life. Geological Society of America Special Paper, 1967,89:63-91.
    [23]Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science,1980,208(4448):1095-1108.
    [24]Becker L, Poreda R, Hunt A, et al. Impact event at the Permian-Triassic boundary:evidence from extraterrestrial noble gases in fullerenes. science,2001,291(5508):1530.
    [25]Xu L, Lin Y T, Shen W J, et al. Platinum-group elements of the Meishan Permian-Triassic boundary section:evidence for flood basaltic volcanism. Chemical Geology, 2007,246(1):55-64.
    [26]Farley K A, Mukhopadhyay S, Isozaki Y, et al. An extraterrestrial impact at the Permian-Triassic boundary? science,2001,293(5539):2343.
    [27]Farley K, Ward P, Garrison G, et al. Absence of extraterrestrial 3He in Permian-Triassic age sedimentary rocks. Earth and Planetary Science Letters,2005,240(2):265-275.
    [28]罗根明.二叠纪—三叠纪之交的微生物地质过程和CNS生物地球化学循环:中国地质大学,2012.
    [29]殷鸿福,黄思骥,张克信,et a1.华南二叠纪—三叠纪之交的火山活动及其对生物绝灭的影响.地质学报,1989,63(2):169-181.
    [30]Svensen H, Planke S, Polozov A G, et al. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters,2009,277(3):490-500.
    [31]Renne P R, Black M T, Zichao Z, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. science, 1995,269(5229):1413.
    [32]Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth and Planetary Science Letters,2003,214(1):75-91.
    [33]Reichow M K, Pringle M S, Al'Mukhamedov A I, et al. The timing and extent of the eruption of the Siberian Traps large igneous province:Implications for the end-Permian environmental crisis. Earth and Planetary Science Letters,2009,277(1-2):9-20.
    [34]Saunders A, Reichow M. The Siberian Traps and the End-Permian mass extinction:a critical review. Chinese Science Bulletin,2009,54(1):20-37.
    [35]Renne P R, Basu A R. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science,1991,253(5016):176.
    [36]Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth and Planetary Science Letters, 2002,198(3):449-458.
    [37]Wignall P B, Sun Y D, Bond D P G,et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China, science,2009,324(5931):1179-1182.
    [38]Xie S C, Pancost R D, Wang Y B, et al. Cyanobacterial blooms tied to volcanism during the 5 my Permo-Triassic biotic crisis. Geology,2010,38(5):447-450.
    [39]Shen J, Algeo T J, Hu Q, et al. Negative C-isotope excursions at the Permian-Triassic boundary linked to volcanism. Geology,2012,40:963-966.
    [40]Shen J, Algeo T J, Zhou L, et al. Volcanic perturbations of the marine environment in South China preceding the latest Permian mass extinction and their biotic effects. Geobiology, 2012,10(l):82-103.
    [41]Hays L E, Beatty T W, Henderson C M, et al. Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld,2007,16(1):39-50.
    [42]Nabbefeld B, Grice K, Twitchett R J, et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters,2010,29 1(1):84-96.
    [43]Luo G M, Huang J H, Xie S C, et al. Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassic transition at Meishan Section, South China. International Journal of Earth Sciences,2010,99(4):775-784.
    [44]Luo G M, Wang Y b, Grice K, et al. Microbial-algal community changes during the latest Permian ecological crisis:Evidence from lipid biomarkers at Cili, South China. Global and Planetary Change,2013:http://dx.doi.org/10.1016/j.gloplacha.2012.1011.1015.
    [45]张克信,童金南,殷鸿福,,et al.浙江长兴二叠系—三叠系界线剖面层序地层研究.地质学报,1996,70(3):270-281.
    [46]Gruszczynski M, Hoffman A, Malkowski K, et al. Seawater strontium isotopic perturbation at the Permian-Triassic boundary, West Spitsbergen, and its implications for the interpretation of strontium isotopic data. Geology,1992,20(9):779-782.
    [47]Berner R A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proceedings of the National Academy of Sciences, 2002,99(7):4172.
    [48]Sepkoski Jr J J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology,1984:246-267.
    [49]Ronov A B. Phanerozoic transgressions and regressions on the continents:a quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. American Journal of Science,1994,294(7):777-801.
    [50]Falkowski P G, Katz M E, Knoll A H, et al. The Evolution of Modern Eukaryotic Phytoplankton. science,2004,305(5682):354-360.
    [51]Servais T, Lehnert O, LI J, et al. The Ordovician Biodiversification:revolution in the oceanic trophic chain. Lethaia,2008,41(2):99-109.
    [52]Katz M E, Finkel Z V, Grzebyk D, et al. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual review of ecology, evolution, and systematics,2004:523-556.
    [53]Moldowan J M, Dahl J, Jacobson S R, et al. Chemostratigraphic reconstruction of biofacies: molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology,1996,24(2):159.
    [54]Servais T, Stricanne L, Montenari M, et al. Population dynamics of galeate acritarchs at the Cambrian-Ordovician transition in the Algerian Sahara. Palaeontology,2004,47(2):395-414.
    [55]Servais T, Owen A W, Harper D A T, et al. The Great Ordovician biodiversification event (GOBE):the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology,2010,294(3):99-119.
    [56]Le H6riss6 A, Servais T, Wicander R. Devonian acritarchs and related forms. COURIER-FORSCHUNGSINSTITUT SENCKENBERG,2000:195-205.
    [57]Klug C, KrOGer B, Kiessling W, et al. The Devonian nekton revolution. Lethaia, 2010,43(4):465-477.
    [58]Riegel W. The Late Palaeozoic phytoplankton blackout-Artefact or evidence of global change. Review of Palaeobotany and Palynology,2008,148(2-4):73-90.
    [59]Strother P K, Servais T, Vecoli M. The effects of terrestrialization on marine ecosystems:the fall of CO2. Geological Society, London, Special Publications,2010,339(1):37-48.
    [60]Servais T, Nutzel A, Mullins G L. Was there a phytoplankton blackout in the late Paleozoic? Palynology,2006,30:228.
    [61]Head M J. Modern dinoflagellate cysts and their biological affinities. Palynology:principles and applications,1996,3:1197-1248.
    [62]Mullins G L, Servais T. The diversity of the Carboniferous phytoplankton. Review of Palaeobotany and Palynology,2008,149(1-2):29-49.
    [63]Colbath G K, Grenfell H R. Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including "acritarchs"). Review of Palaeobotany and Palynology,1995,86(3-4):287-314.
    [64]Eshet Y, Rampino M R, Visscher H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology,1995,23(11):967-970.
    [65]Steiner M B, Eshet Y, Rampino M R, et al. Fungal abundance spike and the Permian-Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology,2003,194(4):405-414.
    [66]Visscher H, Brinkhuis H, Dilcher D L, et al. The terminal Paleozoic fungal event:evidence of terrestrial ecosystem destabilization and collapse. Proceedings of the National Academy of Sciences of the United States of America,1996,93(5):2155-2158.
    [67]Visscher H, Sephton M A, Looy C V. Fungal virulence at the time of the end-Permian biosphere crisis? Geology,2011,39(9):883-886.
    [68]Looy C V, Twitchett R J, Dilcher D L, et al. Life in the end-Permian dead zone. Proceedings of the National Academy of Sciences of the United States of America,2001,98(14):7879.
    [69]Li J, Cao C Q, Servais T, et al. Later Permian acritarchs from Meishan (SE China) in the context of Permian palaeobiogeography and palaeoecology. Neues Jahrbuch fur Geologie und Palaontologie, Monatshefte,2004:427-448.
    [70]Traverse A. Permo-Triassic Palynofloras. Paleopalynology,2007:275-287.
    [71]Fensome R A, Palynologists A A o S. Acritarchs and fossil prasinophytes:an index to genera, species and infraspecific taxa:American Association of Stratigraphic Palynologists Foundation,1990.
    [72]Gradstein F M, Ogg J G, Smith A G, et al. A new geologic time scale, with special reference to Precambrian and Neogene. Episodes,2004,27(2):83-100.
    [73]Gutierrez P R, Cisterna G A, Balarino L, et al. Formaci6n Tupe (Carbonifero Superior-P6rmico inferior) en la mina La Delfina (Cuesta de Huaco, San Juan):contenido paleontol6gico. Ameghiniana,2005,42(4):32-33.
    [74]Gorter J D, Poynter S E, Bayford S W, et al. Glacially influenced petroleum plays in the Kulshill Group (Late Carboniferous Early Permian) of the southeastern Bonaparte Basin, Western Australia. The APPEA Journal,2008,48(1):69-113.
    [75]cKent L, Lindstrom S, Guy-Ohlson D. An Early Permian palynoflora from Milorgfjella, Dronning Maud Land, Antarctica. Antarctic Science,1990,2(4):331-344.
    [76]Lindstrfim S. Early Permian palynostratigraphy of the northern Heimefrontfjella mountain-range, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology, 1995,89(3-4):359-415.
    [77]Di Pasquo M, Vergel M M, Azcuy C L. Pennsylvanian and Cisuralian palynofloras from the Los Sauces area, La Rioja Province, Argentina:Chronological and paleoecological significance. International Journal of Coal Geology,2010,83(2-3):276-291.
    [78]Beri A, Gutierrez P R, Cernuschi F, et al. Palinologia del Permico Inferior en la perforacion DCLS-24 (Formaci6n San Gregorio), departamento de Cerro Largo, Uruguay. Parte I: esporas, algas, prasinofitas y acritarcas Ameghiniana,2006,43(1):227-244.
    [79]Beri A, Martinez Blanco X, Mourelle D. A synthesis of palynological data from the Lower Permian Cerro Pelado Formation (Parana Basin, Uruguay):A record of warmer climate stages during Gondwana glaciations. Geologica Acta,2010,8(4):419-429.
    [80]Besems R E, Schuurman W M L. Palynostratigraphy of Late Paleozoic glacial deposits of the Arabian Peninsula with special reference to Oman. Palynology,1987(11):37-53.
    [81]Stephenson M, Osterloff P, Filatoff J. Integrated palynological biozonation of the Permian of Saudi Arabia and Oman:progress and problems. GeoArabia,2003,8:467-496.
    [82]Stephenson M H, Angiolini L, Leng M J, et al. Abrupt environmental and climatic change during the deposition of the Early Permian Haushi limestone, Oman. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,270(1-2):1-18.
    [83]Quadras L P. Acritarcos e tasmanites do Permo-Carbonffero da bacia do Parana. Revista do Instituto Geol6gico,2002,23(1):39-50.
    [84]Souza P, Callegari L. An Early Permian Palynoflora from the Itarare Subgroup, Parana Basin, Brazil. Revista espafiola de micropaleontologfa,2010,36(3):439-450.
    [85]Guerra-Sommer M, Cazzulo-Klepzig M, Menegat R, et al. Geochronological data from the Faxinal coal succession, southern Parand Basin, Brazil:A preliminary approach combining radiometric U-Pb dating and palynostratigraphy. Journal of South American Earth Sciences, 2008,25(2):246-256.
    [86]Foster C. Stratigraphy and palynology of the Permian at Waterloo Bay, Yorke Peninsula, South Australia. Transactions of the Royal Society of South Australia, Incorporated, 1974,98:29-42.
    [87]Foster C B, Waterhouse J B. the Granulatisporites confluens Oppel-zone and early Permian marine faunas from the Grant Formation on the Barbwire terrace, Canning Basin, Western Australia. Journal of the Geological Society of Australia,1988,35(2):135-157.
    [88]Mautino L R, Vergel M D M, Anz6tegui L M. Palinologia de la Formacion Melo (Permico inferior) en Arroyo Seco, Departamento Rivera, Uruguay, Parte V:Granos de polen, acritarcas E Incertae sedis. Ameghiniana,1998,35(3):299-314.
    [89]Jardine S. Microflores des formations du Gabon attribuees au Karroo. Review of Palaeobotany and Palynology,1974,17(1-2):75-112.
    [90]Lele K M, Kulkarni S. Two miospore assemblages from the Argada sector, south Karanpura coalfield, Bihar, with remarks on their probable age. The Palaeobotanist, 1969,17(3):288-293.
    [91]Maithy P. Fossil flora from Barakar stage in Auranga Coalfield. The Palaeobotanist, 1971,19(1):70-76.
    [92]Doubinger J, Marocco R. Contenu palynologique du groupe Copacabana (Permien InfSrieur et Moyen) sur la bordure sud de la cordillere de Vilcabamba, Region de Cuzco (Perou). Geologische Rundschau,1981,70(3):1086-1099.
    [93]Mori A L O, de Souza P A, Marques J C, et al. A new U-Pb zircon age dating and palynological data from a Lower Permian section of the southernmost Parana Basin, Brazil: Biochronostratigraphical and geochronological implications for Gondwanan correlations. Gondwana Research,2012,21(2-3):654-669.
    [94]Mangerud G, Konieczny R. Palynology of the Permian succession of Spitsbergen, Svalbard. Polar research,1993,12(1):65-93.
    [95]Jansonius J. Palynology of Permian and Triassic sediments, Peace River area, western Canada. PalaeontographicaAbteilung B,1962,110(1-4)35-98.
    [96]Tasch P. Hystrichosphaerids and dinoflagellates from the Permian of Kansas. Micropaleontology,1963,9(3):332-336.
    [97]Mangerud G. Palynostratigraphy of the Permian and lowermost Triassic succession, Finnmark Platform, Barents Sea. Review of Palaeobotany and Palynology, 1994,82(3-4):317-349.
    [98]Cazzulo-klepzlg M, Guerra-Sommer M, Formoso N, et al. Geochemical and palynological evidence for the age determination of Permian coals, southern Brazil. Journal of South American Earth Sciences,2002,15(3):375-380.
    [99]Perez Loinaze V S, Cesari S N, Lopez Gamundi O, et al. Palynology of the Permian San Miguel Formation (Western Parana Basin, Paraguay):Gondwanan biostratigraphic correlations. Geologica Acta,2010,8(4):483-493.
    [100]Playford G, Rigby J F. Permian palynoflora of the Ainim and Aiduna formations, West Papua. Revista espaflola de micropaleontologia,2011,40(1-2):1-57.
    [101]Beri A, Gutierrez P, Balarino L. Palynostratigraphy of the late Palaeozoic of Uruguay, Parana Basin. Review of Palaeobotany and Palynology,2011,167(1-2):16-29.
    [102]Cesari S N, Gutierrez P R. Palynostratigraphy of Upper Paleozoic sequences in central-western Argentina. Palynology,2000,24(1):113.
    [103]Balarino M L, Gutierrez P R. Palinologia de la Formaci6n Tasa Cuna (PeYmico Inferior), C6rdoba, Argentina:sistematica y consideraciones bioestratigraficas Ameghiniana, 2006,43(2):437-460.
    [104]Pieroni E M, Georgieff S M. Reconsideraci6n estratigrafica del Neopaleozoico de los alrededores del dique Los Sauces, La Rioja. Revista de la Asociaci6n Geol6gica Argentina, 2007,62(1):105-115.
    [105]Gutierrez P R, Correa G A, Carrevedo M L. Primer registro de palinomorfos de edad pdrmica en la Formaci6n Rio Francia (Paleozoico Superior, San Juan, Argentina). Revista del Museo Argentino de Ciencias Naturales,2010,12(2):203-216.
    [106]Tiwari R S, Navale G K B. Pollen and spore assemblage in some coals of Brazil. Pollen et Spores,1967,9(3):583-605.
    [107]Holz M, Dias M E. Taphonomy of palynological records in a sequence stratigraphic framework:an example from the Early Permian Parana Basin of southern Brazil. Review of Palaeobotany and Palynology,1998,99(3-4):217-233.
    [108]Iannuzzi R, dos Santos Scherer C M, de Souza P A, et al. Afloramento Morro do Papal^o, Mariana Pimentel, RS. Registro impar da sucessao sedimentar e floristica p6s-glacial do Paleoz6ico da Bacia do Parana,2006,2.
    [109]Cazzulo-Klepzig M, Guerra-Sommer M, Menegat R, et al. Peat-forming environment of permian coal seams from the faxinal coalfield (Parana Basin) in southern Brazil, based on palynology and palaeobotany. Revista brasileira de paleontologia,2007,10(2):l 17-127.
    [110]Gutierrez P R, Beri A, Balarino M L, et al. Palinologia del Pdrmico Inferior en la perforacion CLS-24 (Cerro Largo Sur), departamento de Cerro Largo, Uruguay. Parte II: granos de polen Ameghiniana,2006,43(3):611-635.
    [111]Tiwari R S, Moiz A A. Palynological study of Lower Gondwana (Permian) coals from the Godavari Basin, India. The Palaeobotanist,1971,19():95-106.
    [112]Lele K M, Chandra A. Palynology of the marine intercalations in the lower Gondwana of Madhya Pradesh, India. The Palaeobotanist,1972,19(3):253-262.
    [113]Lele K M, Shukla M. Studies in the Talchir flora of India; 12, Palynology of the Talchir Formation of Hutar Coalfield, Bihar. Geophytology,1979,10(1-2):231-238.
    [114]Banerjee M, D'Rozario A. Palynostratigraphy and environment of deposition in the Lower Gondwana sediments of Chuparbhita coalfield, Rajmahal Hills. Jour Palaeontol Soc India, 1988,33:73-90.
    [115]Banerjee M, D'Rozario A. Palynostratigraphic correlation of lower Gondwana sediments in the Chuparbhita and Hura Basins, Rajmahal Hills, Eastern India. Review of Palaeobotany and Palynology,1990,65(1-4):239-255.
    [116]Foster C B. Permian plant microfossils from the Blair Athol Coal Measures, central Queensland, Australia. Palaeontographica Abteilung B:Palaeophytologie, 1975,154(5-6):121-171.
    [117]Backhouse J. Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology,1991,67(3-4):237-314.
    [118]Wall D, Downie C. Permian hystrichospheres from Britain. Palaeontology, 1963,5(4):770-784.
    [119]El-Nakhal H A, Stephenson M H, Owens B. New Late Carboniferous-Early Permian palynological data from glacial sediments in the Kooli Formation, Republic of Yemen. Micropaleontology,2002,48(3):222.
    [120]Kaiser H. Die permische Mikroflora der Cathaysia-Schichten von Nordwest-Schansi, China. Palaeontographica Abteilung B,1976,159(4-6):83-157.
    [121]Dyupina G V. Akritarkhi terrigennykh otlozheniy nizhney permi srednego Urala, Acritarchs from lower Permian terrigenous deposits of the central Urals (in Verkhnepaleozoyskiye terrigennyye otlozheniya Urala). Akademiya Nauk SSSR, Ural'skiy Filial, Institut Geologii i Geokhimii, Trudy,1970,88:47-60.
    [122]Newton E T. On "Tasmanite" and Australian "White Coal". Geological Magazine (Decade Ⅱ),1875,12(08):337-342.
    [123]Wilson L. A Permian hystrichosphaerid from Oklahoma. Oklahoma Geology Notes, 1960,20:170.
    [124]Jacobson S R, Wardlaw B R, Saxton J D. Acritarchs from the Phosphoria and Park City Formations (Permian, Northeastern Utah). Journal of Paleontology,1982,56(2):449-458.
    [125]Grigoriev M, Utting J. Sedimentology, palynostratigraphy, palynofacies and thermal maturity of Upper Permian rocks of Kolguyev Island, Barents Sea, Russia. Bulletin of Canadian Petroleum Geology,1998,46(1):1-11.
    [126]Foster C B. Permian plant microfossils of the Blair Athol Coal Measures, Baralaba Coal Measures, and basal Rewan Formation of Queensland. Geological Survey of Queensland Publications,1979(372):1-244.
    [127]Lindstrom S. Late Permian palynology of Fossilryggen, Vestfjella, Dronning Maud Land, Antarctica. Palynology,1996:15-48.
    [128]Lindstrom S. Palynology of Permian shale, clay and sandstone clasts from the Basen till in northern Vestfjella, Dronning Maud Land. Antarctic Science,2005,17(l):87-96.
    [129]Bugge T, Ringas J, Leith D, et al. Upper Permian as a new play model on the mid-Norwegian continental shelf:Investigated by shallow stratigraphic drilling. AAPG Bulletin,2002,86(1):107.
    [130]Stolle E. Regional Permian palynological correlations:Southeast Turkey-Northern Iraq. Comunicacoes Geologicas,2007,94:125-143.
    [131]Stolle E. Recognition of southern Gondwanan palynomorphs at Gondwana's northern margin—and biostratigraphic correlation of Permian strata from SE Turkey and Australia. Geological Journal,2010,45(2-3):336-349.
    [132]Stolle E, Yalcin M N, Kavak O. The Permian Kas Formation of SE Turkey—palynological correlation with strata from Saudi Arabia and Oman. Geological Journal,2011,46:561-573.
    [133]Ouyang S. Upper Permian and Lower Triassic palynomorphs from eastern Yunnan, China. Canadian Journal of Earth Sciences,1982,19(1):68-80.
    [134]Ouyang S. Palynology of Upper Permian and Lower Triassic strata of Fuyuan district, Eastern Yunan. Palaeontologia sinica,1986,169(9):1-122.
    [135]Ouyang S, Utting J. Palynology of upper Permian and lower Triassic rocks, Meishan, Changxing County, Zhejiang Province, China. Review of Palaeobotany and Palynology, 1990,66(1-2):65-103.
    [136]Jekhowsky B. Sur quelques hystrichospheres Permo-Triassiques d'Europe et d'Afrique. Revue de Micropaleontologie,1961,3(4):207-212.
    [137]Sarjeant W A S, Kummel B, Teichert C. Acritarchs and tasmanitids from the Chhidru Formation, uppermost Permian of West Pakistan. Stratigraphical Boundary Problems: Permian and Triassic of West Pakistan University of Kansas, Department of Geology, Special Publication,1970,4:277-304.
    [138]Hankel O. Late Permian to early triassic microfloral assemblages from the Maji y a Chumvi Formation, Kenya. Review of Palaeobotany and Palynology, 1992,72(1-2):129-147.
    [139]McLoughlin S, Lindstr m S, Drinnan A N. Gondwanan floristic and sedimentological trends during the Permian-Triassic transition:new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarctic Science,1997,9(3):281-298.
    [140]Balme B E, Playford G. Late Permian plant microfossils from the Prince Charles Mountains, Antarctica. Revue de Micropaleontologie,1967,10(3):179-192.
    [141]Farabee M J, Taylor E L, Taylor T N. Late Permian palynomorphs from the Buckley Formation, central transantarctic mountains, Antarctica. Review of Palaeobotany and Palynology,1991,69(4):353-368.
    [142]Schaarschmidt F. Sporen und Hystrichosphaerideen aus dem Zechstein von Budingen in der Wetterau. PalaeontographicaAbteilungB,1963,113(1-4):38-91.
    [143]Horowitz A. Late Permian palynomorphs from southern Israel. Pollen et Spores, 1973,15(2):315-341.
    [144]Horowitz A. Esp^ces du genre Veryhachium du Permo-Trias du Sud d'Israel. Revue de Micropaleontologie,1974,17(2):75-80.
    [145]Horowitz A. Palynology and paleoenvironment of uranium deposits in the Permian Beaufort Group, South Africa. Ore Geology Reviews,1990,5(5-6):537-540.
    [146]Balme B E, Segroves K L. Peltacystia gen. nov.:a microfossil of uncertain affinities from the Permian of Western Australia. Journal of the Royal Society of Western Australia, 1966,49(1):26-31.
    [147]McMinn A. Late Permian acritarchs from the northern Sydney Basin. Journal and Proceedings of the Royal Society of New South Wales115,1982,115:79-86.
    [148]Fielding C, McLoughlin S. Sedimentology and palynostratigraphy of Permian rocks exposed at Fairbairn Dam, central Queensland. Australian Journal of Earth Sciences, 1992,39(5):631-649.
    [149]Tripathi A. Permian, Jurassic and Early Cretaceous palynofloral assemblages from subsurface sedimentary rocks in Chuperbhita Coalfield, Rajmahal Basin, India. Review of Palaeobotany and Palynology,2001,113(4):237-259.
    [150]Dypvik H, Hankel O, Nilsen O, et al. The lithostratigraphy of the Karoo supergroup in the Kilombero Rift Valley, Tanzania. Journal of African Earth Sciences,2001,32(3):451-470.
    [151]Balme B E. Palynology of Permian and Triassic strata in the Salt range and Surghar range, West Pakistan. Special Publication-University of Kansas, Department of Geology, 1970,4:305-453.
    [152]Hermann E, Hochuli P A, Bucher H, et al. Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology,2012.
    [153]Sandler A, Eshet Y, Schilman B. Evidence for a fungal event, methane-hydrate release and soil erosion at the Permian-Triassic boundary in southern Israel. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,242(1-2):68-89.
    [154]Afonin S A, Barinova S S, Krassilov V A. A bloom of Tympanicysta Balme (green algae of zygnematalean affinities) at the Permian-Triassic boundary. Geodiversitas, 2001,23(4):481-487.
    [155]Foster C B, Stephenson M H, Marshall C, et al. A revision of Reduviasporonites Wilson 1962:description, illustration, comparison and biological affinities. Palynology, 2002,26(1):35-58.
    [156]Sephton M A, Visscher H, Looy C V, et al. Chemical constitution of a Permian-Triassic disaster species. Geology,2009,37(10):875-878.
    [157]Balme B E, Hennelly J P F. Monolete, monocolpate, and alete sporomorphs from Australian Permian sediments. Australian Journal of Botany,1956,4(l):'54-67.
    [158]Stephen M. Plant fossil distributions in some Australian Permian non-marine sediments. Sedimentary Geology,1993,85(1-4):601-619.
    [159]Segroves K L. Cutinized microfossils of probable nonvascular origin from the Permian of Western Australia. Micropaleontology,1967,13(3):289-305.
    [160]Abramova S A, Martchenko O F. Opyt primeneniya palinologicheskogo metoda issledovaniya pri izuchenii solyanykh kupolov Prikaspiya (experimental applications of palynological methods of investigation to the study of salt-domes in the":Pre-Caspian region). Vsesoyuznyi Nauchno-Issledovatelskii Institut Galurgii, Moskva, Trudy,1964:49-52.
    [161]Bose M, Kar R. Palaeozoic Sporae dispersae from Congo IV. On some new miospore genera. Mus Roy Afr Cent Tervuren, Belg Ann,1967:241-263.
    [162]Kar R K, Bose M N. Palaeozoic sporae dispersae from Zaire (Congo);XII, Assise a couches de houille from Greinerville region. Musee Royal de l'Afrique CentraleSerie in 8 (super 0), Sciences Geologiques,1976(77):23-133.
    [163]Takahashi K. Plant microfossils from the Permian sandstone in the southern marginal area of the Tanba belt. Transactions and Proceedings of the Palaeontological Society of Japan New Series,1969,73:41-48.
    [164]Li J, Servais T. Ordovician acritarchs of China and their utility for global palaeobiogeography. Bulletin de la Societe Geologique de France,2002,173(5):399-406.
    [165]Servais T, Li J, Molyneux S G, et al. Ordovician organic-walled microphytoplankton (acritarch) distribution:the global scenario. Palaeogeography, Palaeoclimatology, Palaeoecology,2003,195(1-2):149-172.
    [166]Le Herisse A, Gourvennec R. Biogeography of upper Llandovery and Wenlock acritarchs. Review of Palaeobotany and Palynology,1995,86(1-2):111-133.
    [167]Le Herisse A, Gourvennec R, Wicander R. Biogeography of Late Silurian and Devonian acritarchs and prasinophytes. Review of Palaeobotany and Palynology, 1997,98(1-2):105-124.
    [168]Jacobson S R. Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New York. Journal of Paleontology, 1979,53(5):1197-1212.
    [169]Dorning K J. Silurian acritarchs from the type Wenlock and Ludlow of Shropshire, England. Review of Palaeobotany and Palynology,1981,34(2):175-203.
    [170]Vecoli M. Palaeoenvironmental interpretation of microphytoplankton diversity trends in the Cambrian-Ordovician of the northern Sahara Platform. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,160(3-4):329-346.
    [171]Li J, Servais T, Yan K, et al. A nearshore-ofifshore trend in acritarch distribution from the Early-Middle Ordovician of the Yangtze Platform, South China. Review of Palaeobotany and Palynology,2004,130(1-4):141-161.
    [172]Stricanne L, Munnecke A, Pross J, et al. Acritarch distribution along an inshore-offshore transect in the Gorstian (lower Ludlow) of Gotland, Sweden. Review of Palaeobotany and Palynology,2004,130(1-4):195-216.
    [173]Ziegler A M, Hulver M L, Rowley D B. Permian world topography and climate. In: Martini, I P (ed) Late glacial and postglacial environmental changes-Quaternary, Carboniferous-Permian and Proterozoic,1996:111-146.
    [174]Gilby A R, Foster C B. Early Permian palynology of the Arckaringa Basin, South Australia. Palaeontographica Abteilung B:Palaeophytologie,1988,209(4-6):167-191.
    [175]Lindstrom S. Early Late Permian palynostratigraphy and palaeo-biogeography of Vestfjella, Dronning Maud Land, Antarctica. Review of Palaeobotany and Palynology, 1995,86(1-2):157-173.
    [176]Sun Y D, Joachimski M M, Wignall P B, et al. Lethally Hot Temperatures During the Early Triassic Greenhouse, science,2012,338(6105):366-370.
    [177]Metcalfe Ⅰ, Nicoll R S. Conodont biostratigraphic control on transitional marine to non-marine Permian-Triassic boundary sequences in Yunnan-Guizhou, China. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(l-2):56-65.
    [178]He W H, Shi G R, Gao Y Q, et al. A new Early Triassic microgastropod fauna from the Zhongzhai Section, Guizhou, southwestern China. Proceedings of the Royal Society of Victoria,2008,120(1):157-166.
    [179]Peng Y Q, Zhang S X, Yu T X, et al. High-resolution terrestrial permian-triassic eventostratigraphic boundary in western Guizhou and eastern Yunnan, southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2005,215(3-4):285-295.
    [180]Yin H F, Zhang K X, Tong J N, et al. The global stratotype section and point (GSSP) of the Permian-Triassic boundary. Episodes,2001,24(2):102-114.
    [181]Jiang H S, Lai X L, Luo G M, et al. Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Global and Planetary Change,2007,55(1-3):39-55.
    [182]Zhang K X, Tong J N, Shi G R, et al. Early Triassic conodont-palynological biostratigraphy of the Meishan D Section in Changxing, Zhejiang Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(1-2):4-23.
    [183]Feng Q, Gu S, Hu W, et al. Latest Permian Entactinaria (Radiolaria) from southern Guangxi, China. Journal of Micropalaeontology,2007,26(1):19-37.
    [184]Wignall P B, Hallam A, Lai X L, et al. Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). Historical Biology, 1995,10(2):175-189.
    [185]Lai X L, Yang F Q, Hallam A, et al. The Shangsi section, candidate of the Global Stratotype section and point of the Permian-Triassic boundary. In:Yin, H F (Ed), The Palaeozoic-Mesozoic Boundary Candidates of Global Stratotype Section and Point of the Permian-Triassic Boundary China University of Geosciences Press, Wuhan,1996:113-124.
    [186]李子舜,詹立培,朱秀芳,et al.古生代—中生代之交的生物绝灭和地质事件—四川广元上寺二叠系—三叠系界线和事件的初步研究.地质学报,1986(1):1-17.
    [187]Nicoll R S, Metcalfe I, Cheng-Yuan W. New species of the conodont genus Hindeodus and the conodont biostratigraphy of the Permian-Triassic boundary interval. Journal of Asian Earth Sciences,2002,20(6):609-631.
    [188]Jiang H S, Lai X L, Yan C B, et al. Revised conodont zonation and conodont evolution across the Permian-Triassic boundary at the Shangsi section, Guangyuan, Sichuan, South China. Global and Planetary Change,2011,77(3-4):103-115.
    [189]Wang G Q, Xia W C. Conodont zonation across the Permian Triassic boundary at the Xiakou section, Yichang city, Hubei Province and its correlation with the Global Stratotype Section and Point of the PTB. Canadian Journal of Earth Sciences,2004,41(3):323-330.
    [190]王正允.湖北兴山大峡口二叠系沉积相及层序地层特征.江汉石油学院学报,1998,20(3):1-7.
    [191]Mutwakil N, Xia W C, Zhang N. Late Permian (Changhsingian) conodont biozonation and the basal boundary, Ganxi section, western Hubei Province, south China. Canadian Journal of Earth Sciences,2006,43(2):121-133.
    [192]He W H, Feng Q L, Weldon E A, et al. A late Permian to early Triassic bivalve fauna from the Dongpan Section, southern Guangxi, South China. Journal of Paleontology, 2007,81(5):1009-1019.
    [193]He W H, Shen S Z, Feng Q L, et al. A late Changhsingian (Late Permian) deepwater brachiopod fauna from the Talung Formation at the Dongpan section, southern Guangxi, South China. Journal of Paleontology,2005,79(5):927-938.
    [194]He W H, Shi G R, Feng Q L, et al. Brachiopod miniaturization and its possible causes during the Permian-Triassic crisis in deep water environments, South China. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252(l):145-163.
    [195]Butterfield N J, Chandler F W. Paleoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 1992,35(4):943-957.
    [196]Colbath G K. Abundance fluctuations in Upper Ordovician organic-walled microplankton from Indiana. Micropaleontology,1980,26(1):97-102.
    [197]Xu W. Depth zonation of Arenigian acritarchs in South China. Chinese Science Bulletin, 1997,42(3):248-251.
    [198]Yan K, Li J. The palaeoenvironmental implication of Early-Middle Ordovician acritarch communities from South China. Chinese Science Bulletin,2010,55(10):957-964.
    [199]Smith N, Saunders R. Paleoenvironments and their control of acritarch distribution; Silurian of east-central Pennsylvania. Journal of Sedimentary Research,1970,40(1):324.
    [200]Doming K. The organic palaeontology of Palaeozoic carbonate environments. Micropalaeontology of Carbonate Environments Ellis Horwood, Chichester, England, 1987:256-265.
    [201]Doming K, Bell D. The Silurian carbonate shelf microfiora:acritarch distribution in the Much Wenlock Limestone Formation. In:Hart, M.B. (Ed.),. Micropalaeontology of Carbonate Environments Ellis Horwood, Chichester, England,1987:266-287.
    [202]Richardson J, Rasul S. Palynofades in a Late Silurian regressive sequence in the Welsh Borderland and Wales. Journal of the Geological Society,1990,147(4):675-686.
    [203]Al-Ameri T K. Acid-resistant microfossils used in the determination of Palaeozoic palaeoenvironments in Libya. Palaeogeography, Palaeoclimatology, Palaeoecology, 1983,44(1-2):103-116.
    [204]Staplin F L. Reef-controlled distribution of Devonian microplankton in Alberta. Palaeontology,1961,4(3):392-424.
    [205]Riegel W. Phytoplankton from the upper Emsian and Eifelian of the Rhineland, Germany--A preliminary report. Review of Palaeobotany and Palynology, 1974,18(1-2):29-39.
    [206]Wicander R, Wood G D. The use of microphytoplankton and chitinozoans for interpreting transgressive/regressive cycles in the Rapid Member of the Cedar Valley Formation (Middle Devonian), Iowa. Review of Palaeobotany and Palynology,1997,98(1-2):125-152.
    [207]Wall D. Microplankton, pollen, and spores from the Lower Jurassic in Britain. Micropaleontology,1965,11 (2):151-190.
    [208]Devillers R, De Vernal A. Distribution of dinoflagellate cysts in surface sediments of the northern North Atlantic in relation to nutrient content and productivity in surface waters. Marine Geology,2000,166(1):103-124.
    [209]Pospelova V, Chmura G L, Walker H A. Environmental factors influencing the spatial distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England (USA). Review of Palaeobotany and Palynology,2004,128(1-2):7-34.
    [210]Pospelova V, de Vernal A, Pedersen T F. Distribution of dinoflagellate cysts in surface sediments from the northeastern Pacific Ocean (43-25°N) in relation to sea-surface temperature, salinity, productivity and coastal upwelling. Marine Micropaleontology, 2008,68(1-2):21-48.
    [211]Bouimetarhan I, Marret F, Dupont L, et al. Dinoflagellate cyst distribution in marine surface sediments off West Africa (17-6 N) in relation to sea-surface conditions, freshwater input and seasonal coastal upwelling. Marine Micropaleontology,2009,71 (3-4):113-130.
    [212]Stricanne L, Servais T. A statistical approach to classification of the Cambro-Ordovician galeate acritarch plexus. Review of Palaeobotany and Palynology,2002,118(1-4):239-259.
    [213]Mertens K N, Ribeiro S, Bouimetarhan I, et al. Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments:Investigating its potential as salinity proxy. Marine Micropaleontology,2009,70(1):54-69.
    [214]Sheldon N D. Abrupt chemical weathering increase across the Permian-Triassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology,2006,231 (3):315-321.
    [215]Algeo T J, Twitchett R J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology,2010,38(11):1023-1026.
    [216]Schopf J W. Microfossils of the Early Archean Apex chert:new evidence of the antiquity of life. science,1993,260(5108):640-646.
    [217]Capone D G, Zehr J P, Paerl H W, et al. Trichodesmium, a globally significant marine cyanobacterium. science,1997,276(5316):1221-1229.
    [218]Wiegand C, Pflugmacher S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology,2005,203(3):201-218.
    [219]Briand J F, Jacquet S, Bernard C, et al. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary research,2003,34(4):361-377.
    [220]方凤满,金高洁,高超.巢湖蓝藻爆发多要素预测模型研究.地理科学,2010,30(5):760-765.
    [221]Kahru M, Savchuk O, Elmgren R. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea:interannual and spatial variability. Marine Ecology Progress Series,2007,343:15-23.
    [222]Walsby A, Dubinsky Z, Kromkamp J, et al. The effects of diel changes in photosynthetic coefficients and depth of Planktothrix rubescens on the daily integral of photosynthesis in Lake Zurich. Aquatic Sciences-Research Across Boundaries,2001,63(3):326-349.
    [223]Phlips E J, Badylak S. Spatial variability in phytoplankton standing crop and composition in a shallow inner-shelf lagoon, Florida Bay, Florida. Bulletin of Marine Science, 1996,58(1):203-216.
    [224]Phlips E J, Badylak S, Lynch T C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnology and Oceanography,1999:1166-1175.
    [225]Hall M O, Durako M J, Fourqurean J W, et al. Decadal changes in seagrass distribution and abundance in Florida Bay. Estuaries and Coasts,1999,22(2):445-459.
    [226]O'Neil J M, Davis T W, Burford M A, et al. The rise of harmful cyanobacteria blooms:The potential roles of eutrophication and climate change. Harmful algae,2012,14:313-334.
    [227]DeMott W R, Zhang Q X, Carmichael W W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology and Oceanography,1991:1346-1357.
    [228]Engstrom-Ost J, Lehtiniemi M, Green S, et al. Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? Journal of Experimental Marine Biology and Ecology, 2002,276(1-2):95-107.
    [229]Golubic S, Abed R M M, Palinska K, et al. Marine toxic cyanobacteria:Diversity, environmental responses and hazards. Toxicon,2010,56(5):836-841.
    [230]Karlson A M L, Mozuraitis R. Deposit-feeders accumulate the cyanobacterial toxin nodularin. Harmful algae,2011,12(0):77-81.
    [231]Heiskanen A S, Kononen K. Sedimentation of vernal and late summer phytoplankton communities in the coastal Baltic Sea. Archiv fur Hydrobiologie Stuttgart, 1994,131(2):175-198.
    [232]Sellner K, Olson M, Kononen K. Copepod grazing in a summer cyanobacteria bloom in the Gulf of Finland. Hydrobiologia,1994,292(1):249-254.
    [233]Vahtera E, Conley D J, Gustafsson B G, et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. AMBIO:A journal of the Human Environment,2007,36(2):186-194.
    [234]FerrAo-Filho A S, Azevedo S M F O, DeMott W R. Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshwater Biology, 2001,45(1):1-19.
    [235]Bianchi T S, Engelhaupt E, Westman P, et al. Cyanobacterial blooms in the Baltic Sea: Natural or human-induced? Limnology and Oceanography,2000:716-726.
    [236]Boyd P W, Law C S, Wong C, et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature,2004,428(6982):549-553.
    [237]Kanoshina I, Lips U, Leppanen J M. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful algae,2003,2(1):29-41.
    [238]Posch T, Koster O, Salcher M M, et al. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Clim Change,2012,advance online publication.
    [239]Zwirglmaier K, Jardillier L, Ostrowski M, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environmental microbiology,2008,10(1):147-161.
    [240]Moore L R, Post A F, Rocap G, et al. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnology and Oceanography, 2002:989-996.
    [241]Lehrmann D J. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang basin, South China. Geology,1999,27(4):359-362.
    [242]Wang Y B, Tong J N, Wang J S, et al. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chinese Science Bulletin, 2005,50(7):665-671.
    [243]Jiang H X, Wu Y S, Cai C F. Filamentous cyanobacteria fossils and their significance in the Permian-Triassic boundary section at Laolongdong, Chongqing. Chinese Science Bulletin, 2008,53(12):1871-1879.
    [244]Kershaw S, Li Y, Crasquin-Soleau S, et al. Earliest Triassic microbialites in the South China block and other areas:Controls on their growth and distribution. Facies, 2007,53(3):409-425.
    [245]Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature,2005,434(7032):494-497.
    [246]Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology,2012,40(3):195-198.
    [247]Yin H, Xie S, Luo G, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Science Reviews,2012,115(3):163-172.
    [248]Ayris P, Delmelle P. Volcanic and atmospheric controls on ash iron solubility:A review. Physics and Chemistry of the Earth, Parts A/B/C,2012,45-46:103-112.
    [249]Lindenthal A, Langmann B, Paetsch J, et al. The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano:a regional scale biogeochemical ocean model study. Biogeosciences Discuss,2012,9:9233-9257.
    [250]Abraham E R, Law C S, Boyd P W, et al. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature,2000,407(6805):727-730.
    [251]Duggen S, Olgun N, Croot P, et al. The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle:a review. Biogeosciences,2010,7(3):827-844.
    [252]Olgun N, Duggen S, Croot P L, et al. Surface ocean iron fertilization:The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Global Biogeochemical Cycles,2011,25(4):GB4001.
    [253]Wignall P, Twitchett R. Oceanic anoxia and the end Permian mass extinction, science, 1996,272(5265):1155-1158.
    [254]Hairston N, Holtmeier C, Lampert W, et al. Natural selection for grazer resistance to toxic cyanobacteria:evolution of phenotypic plasticity? Evolution,2007,55(11):2203-2214.
    [255]Nascimento F J A, Karlson A M L, Naslund J, et al. Settling cyanobacterial blooms do not improve growth conditions for soft bottom meiofauna. Journal of Experimental Marine Biology and Ecology,2009,368(2):138-146.
    [256]Lance E, Brient L, Carpentier A, et al. Impact of toxic cyanobacteria on gastropods and microcystin accumulation in a eutrophic lake (Grand-Lieu, France) with special reference to Physa (=Physella) acuta. Science of the total environment,2010,408(17):3560-3568.
    [257]Limen H,Olafsson E. Ostracod species-specific utilisation of sediment detritus and newly settled cyanobacteria, Aphanizomenon sp., in the Baltic Sea:evidence from stable carbon isotopes. Marine Biology,2002,140(4):733-738.
    [258]He W H, Twitchett R J, Zhang Y, et al. Controls on body size during the Late Permian mass extinction event. Geobiology,2010,8(5):391-402.
    [259]Algeo T J, Chen Z Q, Fraiser M L, et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308(1):1-11.
    [260]Song H J, Tong J N, Chen Z Q. Evolutionary dynamics of the Permian-Triassic foraminifer size:Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,308(1):98-110.
    [261]Chen Z Q, Benton M J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience,2012,5(6):375-383.
    [262]Luo G, Lai X, Shi G R, et al. Size variation of conodont elements of the Hindeodus-Isarcicella clade during the Permian-Triassic transition in South China and its implication for mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008,264(1-2):176-187.
    [263]Servais T, Vecoli M, Li J, et al. The acritarch genus Veryhachium Deunff 1954:taxonomic evaluation and first appearance. Palynology,2007,31 (1):191-203.
    [264]Sarjeant W A S, Stancliffe R P W. The Micrhystridium and Veryhachium complexes (Acritarcha:Acanthomorphitae and Polygonomorphitae); a taxonomic reconsideration. Micropaleontology,1994,40(1):1-77.
    [265]Visscher H, Brugman W A. Ranges of selected palynomorphs in the Alpine Triassic of Europe. Review of Palaeobotany and Palynology,1981,34(1):115-128.
    [266]Van de Schootbrugge B, Bailey T R, Rosenthal Y, et al. Early Jurassic climate change and the radiation of organic-walled phytoplankton in the Tethys Ocean. Paleobiology, 2005,31(l):73-97.
    [267]Grice K, Twitchett R J, Alexander R, et al. A potential biomarker for the Permian-Triassic ecological crisis. Earth and Planetary Science Letters,2005,236(1-2):315-321.
    [268]Hays L E, Grice K, Foster C B, et al. Biomarker and isotopic trends in a Permian-Triassic sedimentary section at Kap Stosch, Greenland. Organic Geochemistry,2011,43:67-82.
    [269]Talyzina N M, Moldowan J M, Johannisson A, et al. Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Review of Palaeobotany and Palynology,2000,108(1-2):37-53.
    [270]Schulz E. Sporae dispersae aus der Trias von Thuringen. Abhandlungen des ZGI, 1965,1:257-287.
    [271]Besems R E. Aspects of middle and late triassic palynology.2. Preliminary palynological data from the hornos--siles formation of the prebetic zone, NE province of Jaen (Southeastern Spain). Review of Palaeobotany and Palynology,1981,32(4):389-400.
    [272]Johnson N G. Early Silurian palynomorphs from the Tuscarora Formation in central Pennsylvania and their paleobotanical and geological significance. Review of Palaeobotany and Palynology,1985,45(3-4):307-359.
    [273]Gaucher C, Germs G J B. Recent advances in South African Neoproterozoic-Early Palaeozoic biostratigraphy:correlation of the Cango Caves and Gamtoos Groups and acritarchs of the Sardinia Bay Formation, Saldania Belt. South African Journal of Geology, 2006,109(1-2):193-214.
    [274]Vavrdova M. Proterozoic acritarchs from the Precambrian-Cambrian transition in southern Moravia (Minin-1 borehole, Czech Republic). Bulletin of Geosciences,2008,83(1):85-92.
    [275]Bhat G M, Ram G, Koul S. Potential for oil and gas in the Proterozoic carbonates (Sirban Limestone) of Jammu, northern India. Geological Society, London, Special Publications, 2009,326(1):245-254.
    [276]Maslov A V. Riphean and Vendian sedimentary sequences of the Timanides and Uralides, the eastern periphery of the East European Craton. Geological Society, London, Memoirs, 2004,30(1):19-35.
    [277]Stanevich A M, Maksimova E N, Kornilova T A, et al. Microfossils of the late Proterozoic Debengdinskaya Formation of the Olenekskiy uplift. Bulletin of the Tomsk Polytechnic University,2007,311(1):9-14.
    [278]Vorob'eva N G, Sergeev V N, Knoll A H. Neoproterozoic Microfossils from the Northeastern Margin of the East European Platform. Journal of Paleontology, 2009,83(2):161-196.
    [279]Moczydlowska M. The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Research,2008,167(1-2):1-15.
    [280]Leonov M V, Ragozina A L. Upper Vendian assemblages of carbonaceous micro-and macrofossils in the White Sea Region:systematic and biostratigraphic aspects. Geological Society, London, Special Publications,2007,286(1):269-275.
    [281]Gaucher C, Blanco G, Chiglino L, et al. Acritarchs of Las Ventanas Formation (Ediacaran, Uruguay):Implications for the timing of coeval rifting and glacial events in western Gondwana. Gondwana Research,2008,13(4):488-501.
    [282]Konzalova O F M. Microfossils of the Paseky Shale (Lower Cambrian, Czech Republic). Journal of the Czech Geological Society,1995,40(4):55-66.
    [283]Steiner M, Fatka O. Lower Cambrian tubular micro-to macrofossils from the Paseky Shale of the Barrandian area (Czech Republic). Palantologische Zeitschrift,1996,70(3):275-299.
    [284]Naumova S N. Spores of the Lower Cambrian. Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya,1949,4:49-56.
    [285]Utting J. Geological Survey of Canada, Open File 593. Natural Resources Canada. Natural Resources Canada1978.
    [286]Utting J, Spina A, Jansonius J, et al. Reworked miospores in the Upper Paleozoic and Lower Triassic of the northern circum-polar area and selected localities. Palynology, 2004,28(1):75.
    [287]Utting J, Zonneveld J P, MacNaughton R B, et al. Palynostratigraphy, lithostratigraphy and thermal maturity of the Lower Triassic Toad and Grayling, and Montney formations of western Canada, and comparisons with coeval rocks of the Sverdrup Basin, Nunavut. Bulletin of Canadian Petroleum Geology,2005,53(l):5-24.
    [288]Zonneveld J P, Beatty T W, MacNaughton R B, et al. Sedimentology and ichnology of the Lower Triassic Montney Formation in the Pedigree-Ring/Border-Kahntah River area, northwestern Alberta and northeastern British Columbia. Bulletin of Canadian Petroleum Geology,2010,58(2):115-140.
    [289]Ilyina N V, Egorov A Y. The Upper Triassic of northern Middle Siberia:stratigraphy and palynology. Polar Research,2008,27(3):372-392.
    [290]Collom C J, Hills L V. Geological Survey of Canada, Open File 3833. Natural Resources Canada:Natural Resources Canada,1999.
    [291]Sarjeant W A S. Microplankton from the Ampthill Clay of Melton, South Yorkshire. Palaeontology,1962,5(3):478-497.
    [292]Van de Schootbrugge B, Tremolada F, Rosenthal Y, et al. End-Triassic calcification crisis and blooms of organic-walled'disaster species'. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,244(1-4):126-141.
    [293]Porter R. Palynological evidence for Jurassic microplankton provinces in Great Britain. Review of Palaeobotany and Palynology,1988,56(l-2):21-39.
    [294]Stancliffe R P W. Acritarchs and other non-Dinophycean marine Palynomorphs from the Oxfordian (Upper Jurassic) of Skye, Western Scotland and Dorset, Southern England. Palynology,1990,14(1):175-192.
    [295]Stockmans F, Williere Y. Les Hystrichosphdres ou mieux les Acritarches du Silurien Beige. Sondage de la Brasserie Lust a Courtrai (Kortrijk). Bulletin de la Societe belge de Geologie, de paleontologie et d' hydrologie1963.
    [296]Higgs K T, Finucane D, Tunbridge I P. Late Devonian and early Carboniferous microfloras from the HakkarI Province of southeastern Turkey. Review of Palaeobotany and Palynology, 2002,118(1-4):141-156.
    [297]Eley B E, Legault J A. Palymorphs from the Manitoulin Formation (Early Llandovery) of southern Ontario. Palynology,1988,12(l):49-63.
    [298]Deflandre G Microfossiles des calcaires siluriens de la Montagne Noire. Annales de Paleontologie1945.
    [299]Gelsthorpe D N. Microplankton changes through the early Silurian Ireviken extinction event on Gotland, Sweden. Review of Palaeobotany and Palynology,2004,130(1-4):89-103.
    [300]Stricanne L, Munnecke A, Pross J. Assessing mechanisms of environmental change: Palynological signals across the Late Ludlow (Silurian) positive isotope excursion (δ13C, δ18O) on Gotland, Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,230(1-2):1-31.
    [301]Marhoumi R, Rauscher R. Un plancton Devonien de la Mdseta orientale au Maroc. Review of Palaeobotany and Palynology,1984,43(1-3):237-253.
    [302]Filipiak P. Lower Famennian phytoplankton from the Holy Cross Mountains, Central Poland. Review of Palaeobotany and Palynology,2009,157(3-4):326-338.
    [303]Gao L D. Late Devonian and Early Carboniferous acritarchs from Nyalam county, Xizang (Tibet), China. Review of Palaeobotany and Palynology,1986,47(1-2):17-30.
    [304]Wilson L R. A Permian fungus spore type from the Flowerpot Formation of Oklahoma. Oklahoma Geology Notes,1962,22(4):91-96.
    [305]Elsik W C. Reduviasporonites Wilson 1962:Synonymy of the fungal organism involved in the late Permian crisis. Palynology,1999:37-41.
    [306]Kalgutkar R M, Braman D R. Santonian To?Earliest Campanian (Late Cretaceous) Fungi from the Milk River Formation, Southern Alberta, Canada. Palynology,2008,32(1):39.
    [307]Balme B E. Palynology of Permian-Triassic boundary beds at Kap Stosch, East Greenland. Meddelelser om Gronland1979.
    [308]Wood G D, Elsik W C. Paleoecologic and stratigraphic importance of the fungus Reduviasporonites stoschianus from the'Early-Middle'Pennsylvanian of the Copacabana Formation, Peru. Palynology,1999,23:43-53.
    [309]Cookson I C. Additional Microplankton from Australian Late Mesozoic and Tertiary Sediments. Marine and Freshwater Research,1956,7(1):183-191.
    [310]Stockmans F, Williere Y. Hystrichospheres du Devonien belge (Sondage de I'Asile d'alienes a Tournai). Senckenbergiana Lethaea,1960,41:1-11.
    [311]Moreau-Benoit A. Acritarches et chitinozoaires du Devonien moyen et superieur de Libye occidentale. Review of Palaeobotany and Palynology,1984,43(1-3):187-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700