利用偶对近似和矩方法对空间性生态学中性比率和有性生殖维持的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间生态学和性生态学都是当前理论生态学和数学生态学研究的重要领域。性生态学和空间生态的结合乃是当今研究的前沿和热点。因为大多研究空间生态学忽略了有性生殖,而有性生殖的研究又没考虑空间因素。偶对近似和矩方法是近几年发展起来了的先进空间分析方法。它们是通过空间相关性来反映种群空间分布的两种近似随机空间模型。其优点是可以系统地进行数学分析处理,克服了空间模拟耗时和随机性带来的缺陷。本论文选题正是利用偶对近似和矩方法来研究具有空间结构的有性生殖种群中两个重要的具体问题:性比率和有性生殖的维持。文章主体将分为五部分:第一章介绍了空间生态学和性生态学的概念、理论、模型和应用;第二、三章介绍了偶对近似和矩模型的构造方法;第四章利用偶对近似研究了空间局部作用和生境退化对有性生殖种群和性比率的影响;最后建立了有性生殖和无性生殖种群的空间矩方程,给出了有性种群维持和续存的空间生态条件。研究结果表明:(1)对于均匀混合的有性种群有平凡稳定点。这是由于有性生殖导致的Allee效应使得当种群数量很小时增长率降低而导致灭绝:(2)由于空间空斑块的存在使得对于简单的单双倍性别决定机制有性种群在均匀场条件下的性比率偏雄,而空间的局部相互作用使其偏雄性降低乃至偏雌;(3)有性种群数量在空间相互作用范围适中时达到最大。这说明了适中的空间作用范围有种群水平上的进化意义;(4)生境的退化加大了性比率的偏雄性;(5)由于空间分布的聚集,利用偶对近似模型的条件概率提出了局部性比率概念。真正对种群动态起作用的是局部性比率,发现种群的全局性比率和局部性比率的偏向性并不一致。并且雌性周围的局部性比率大于雄性周围的局部性比率,这可能是种群力求交配机会最大化以使种群最大的适应机制;(6)有性生殖方式和无性生殖方式在非空间的情况下能够共存,这依赖于无性种群对有性种群有较小的作用系数;(7)无性种群的空间聚集能够导致有性和无性种群共存,因为空间聚集能够加剧无性种群的内部竞争;(8)由于假设无性个体与有性个体生殖率的两倍关系,在导致无性种群空间聚集的条件上要求比较严格,适当的增长容纳量和适当的相互作用系数;(9)无性种群的空间局部作用范围对有性种群的维持和续存有很大促进作用。当局部作用范围较小时能够弥补在非空间条件下有性种群被替代的不利;(10)有性种群的扩散能力是补偿其性的双重代价的一个空间机制。综上,本文一方面扩展了偶对近似和矩方法的应用范围,建立了不同背景下的具体模型。另一面实际地研究了性比率和有性生殖维持的生态机制,从机理和方法上发展和丰富了空间性生态学的理论。
Both spatial ecology and sex ecology are the important fields in the international research of theoretical and mathematical ecology. Especially the combination of these is one of the frontiers and hotstops of ecological research. Because almost all papers that focus on spatial ecology have ignored the sexual reproduction of considered population, and the researches on sex ecology often do not take the spatial factors into account. Pair approximation and moment methods are the advanced methods of spatial analysis developed in recent years. They are able to explore the spatial distribution of population by the statistics of spatial correlation and predict the behavior of lattice models when mean-approximation fails. Pair approximation and moment methods have the advantages of overcoming analytical intractability of computer simulation and building a spatially stochastic model. The subject of this dissertation is the sex ratio and maintenance of sexual reproduction on spatially structured population utilized the pair approximation and moment methods.This dissertation consists of six chapters. Chapter one summarizes the essential framework and the frontiers and development of spatial ecology and sex ecology. Chapter two and three respectively provides the ways how to build the pair approximation and moment methods to analytically investigate the spatially structured population. Chapter four focus on the dynamics, spatial distribution and sex ratio of spatially structured sexual reproduction population, exploring the effects of habitat decay and habitat connectivity used by pair approximation. In chapter five we construct the moment model for population including sexual reproduction and asexual reproduction, and study the condition of coexistence for these two reproduction patterns. Finally, In the last chapter, I make the main conclusions and the perspectives about the development of the application of pair approximation and moment method in the sex ecology. We have obtained the following main results: (1) In the mean-field sexual reproduction population there exists stable steady trivial equilibrium, which means the population would be extinct. This results from the Allee effect caused by few probability of mating. (2) The sexual population that sex is determined by haploid-diploid has the male-biased sex rations due to the influence of empty patch in the mean-field approximation. Spatially local interaction will reduce the degree of this bias and even to cause female-biased sex ratios.(3)The abundance of the population will be maximized at intermediate spatial interaction scale, which indicates that certain spatial scale has the implication of evolutionary adaptation to the sexual reproduction population at the level of population. (4) Habitat decay can lead to higher degree of male-biased sex ratios. (5)Based on conditional probability in the pair approximation we provide the concept of local sex ratio, which is not always consistent with traditional sex ratio because of spatial structure and really affects the dynamics of population. It is found that local sex ratio at female is always larger than at male, which maybe maximize the probability of mating. (6) Sexual and asexual reproduction can coexist in non-spatial condition. However, it must depend on that the asexual individual has less impact on the growth of the sexual population. (7) The coexistence of sexual and asexual reproduction can result from spatial clustering of asexual population, which increase the degree of intraspecific competition of asexual population. (8) Because asexual individual has double birth rate to sexual individual, there are strict condition about growth capacity and interaction coefficient to lead to spatial clustering of asexual population. (9) Local dispersal of asexual population can improve the maintenance of sexual population, and compensate the disadvantage of sexual population at expense of sex. (10) The stronger ability of dispersal of sexual individual is the spatial mechanism to recoup the twofold cost of sex. In this dissertation we extend the application of pair approximation and moment method and build the particular model in background of sex ecology. And at the same time we investigate the sex ratio and the ecological mechanism of maintenance of sexual population, which develop theoretically and enrich methodologically the theory of spatial sex ecology.
引文
[1] Abramowitz, M., I. A. Stegun. 1965. Handbook of mathematical functions. Hover, New York.
    
    [2] Alison P. Galvani, Ronald M. Coleman and Neil M. Ferguson3. 2003. The maintenance of sex in parasites. Proc. R. Soc. Lond. B 270,19-28
    
    [3] Barton, N.H. 1995. A general model for the evolution of recombination. Genetical reseach, 65 , 123-144.
    
    [4] Begon, M., Harper, J.L., Townsend, C.R., 1986. Ecology: Individuals, Populations and Communities. Blackwell Scientific Publications, Oxford.
    
    [5] Bell, G. 1982. The masterpiece of natrue. Berkeley: University of California Press.
    [6] Bell, G., 2001. Neutral macroecology. Science 293: 2413-2418.
    
    [7] Bolker, B.M., Pacala, S.W. 1997. Using moment equations to inderstand stochastically driven spatial pattern formation in ecological systems. Theoretical Population Biology, 52,179-197.
    
    [8] Bolker, B.M., Pacala, S.W. 1999. Spatial moment equations for plant competition: under-stangding spatial strategies and the advantages of short depersal. American Naturalist, 153,575-602.
    
    [9] Briggs CJ, Hoopes MF. 2004. Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor. Popul. Biol., 65(3), 299-315
    
    [10] Broadbent,S., D.Kendall. 1953. The random walk of Trichostrongylus retortaeformis. Biometrika, 9,460-465.
    
    [11] Bull, J.J. 1983. The evolution of sex determining mechanisms. Benjamin/Cummings, Menlo Park, CA.
    
    [12] Bulmer,M. 1998. Theoretical Evolutionary Ecology. Sinauer, Sunderland, Massachusetts.
    
    [13] Carrillo C, Nicholas F. Britton, Michael Mogie. 2002. Coexistence of sexual and asexual con-specifics: A cellular automation model. J. theor.Biol. 217,275-285
    
    [14] Case.T.J., Taper,M.L. 1986. On the coexistence and coevolution of asexual and sexual competitors. Evolution, 40, 366-387.
    
    [15] Charlesworth, B. 1980. The cost of sex in relation to mating system. J. Theor. Biol. 84,655-671.
    
    [16] Charnov, E.L. 1981. Sex ratio evolution in a variable environment. Nature, 289, 27-33.
    [17] Charnov, E.L. 1982. The theory of sex allocation. Princeton Uniersity Press, Princeton.
    
    [18] Charnov, E.L. 1979. The general evolution of patterns of sexuality: Darwinian fitness. Am. Nat. 113.465-480.
    
    [19] Chaunov, E.L., Bull, JJ. 1977. When is wsx environmentally determined? Nature, 266, 828-830.
    [20] Clark, A.B. 1978. Sex ratio and local resource competition on a prosimian primate. Science, 201: 163-165.
    [21] Clark, A.G., Begun, B.J., Prout, T. 1999. Female, male interactions in Drosophila sperm competition. Science, 283,217-219.
    [22] Da-Yong Zhang, Kui Lin, Ilkka Hanski. 2004. Coexistence of cryptic species. Ecology Letters, 7(3), 165-169.
    [23] Diekmann, U., Law, R. 1996. The mathematical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathenatical Biology, 34,579-612.
    [24] Doebeli. M, Koella. J. C. 1994 Sex and population dynamics. Proc. R. Soc. Lond. B 257, 17-23.
    [25] Dunning, J.B., Stewart, D.J., Danielson, B.J., Noon, B.R., Root, T.L., Lamberson, R.H., Stevens, E.E. 1995. Spatially explicit population models: Current forms and future uses. Ecological Applications, 5, 3-11.
    [26] Durrett, R., Levin, S., 1994. The importance of being discrete (and spatial). Theoretical Population Biology 46: 363-394.
    [27] Durrett, R., Levin, S., 1994. Stochastic spatial models: A user's guide to ecological applications. Philosophical Transactions of the Royal Society of London B, 343,329-350.
    [28] Durrett, R., Levin, S., 1997. Allelopathy in spatially distributed populations. Jornal of Theoretical Biology, 185,165-171.
    [29] Elton, C.S., 1958. The Ecology of Invasion by Animals and Plants. Methuen, London.
    [30] Fisher,R.A. 1930. The genetic theory of natural selection. Dover, New York.
    [31] Fisher, R.A., 1941. Average excess and average effect of a gene substitution. Annals of Eugenics, 11,53-63.
    [32] Ghiselin,M.T. 1974. The economy of nature and the evolution of sex. University of California Press, Berkeley.
    [33] Greenwood, P.J., Adams, J. 1987. The Ecology of sex. Edward Arnorld, London.
    [34] Gustafsson, A. 1946-1947. Apomixis in higher plants. I-III. Lunds Univ. Arsskrift 42:1-67; 43: 69-179; 43: 181-371
    [35] Hanski,I. 1999. Metapopulation ecology. Oxford University Press, Oxford.
    
    [36] Hanski I., Gaggiotti, O.E. 2004. Ecology, genetics, and evolution of metapopulations.
    
    [37] Hanski L.,Ovaskainen O. 2000. The metapopulation capacity of a fragmented landscape. Nature, 404,755-758
    [38] Hanski I. 1998. Metapopulation dynamics. Nature, 365,41-49
    [39] Hamilton, W.D., Axelrod, R., Tanese, R. 1990. Sex reproduction as an adaptation to resist parasites(a review). Proc. Natl. Acad. Sci., 87,3566-3573.
    [40] Hamilton, W.D., 1964. The genetical evolution of social behavior. Journal of Theoretical Biology, 7, 1-52.
    [41] Hamilton, W.D., 1979. Wingless and fighting males in fig wasps and other insects. Pages 167-220 in: Blum, M.S. and Blum,N.A., eds. Reproductive Competition and Sexual selection in Insects. Academic Press, New York.
    [42] Harada Y., Iwasa Y. 1994. Lattice population dynamics for plants with depersing seeds and vegetative propagation. Reseaches on population ecology, 36, 237-249
    [43] Harada Y., Ezoe, H., Iwasa Y, Matsuda, H., Sato, K. 1995. Population persistence and spa-tiallly limited social interaction. Theoretical Population Biology, 48, 65-91.
    [44] Harada Y, Iwasa Y. 1996. Analyses of spatial patterns and population processes of clonal plants. Reseaches on population ecology, 38,153-164.
    [45] Hassell, M.P., Comins, H.N., May, R.M., 1991. Spatial structure and chaos in insect population dynamics. Nature 353: 255-258.
    [46] Hassell, M.P., Comins, H.N., May, R.M., 1994. Species coexistence and self-organizing spatial dynamics. Nature 370: 290-292.
    [47] Hastings A. 1992. Complex interactions between dispersal and dynamics: lessons from coupled Logistic equations. Ecology,
    [48] Houlahan JE, Findlay CS, Meyer AH, Kuzmi SL. 2000. Quantitative evidence for global amphibian population declines. Nature, 412,499-500
    [49] Howard, R.S., Lively, C.M. 1994. Parasitism, mutation accumulation and the maintenance of sex. Nature, 367,554-557.
    [50] Howard, R.S., Lively, C.M. 1998. The maintenance of sex by parasitism and mutation accumulation under epistatic fitness functions. Evolution, 52, 604-610.
    [51] Hui, C., 2004. Theoretical Model of Metapopulation and Its Evolutionary Dynamical Simulation. Doctor Degree Thesis, Lanzhou University, Lanzhou.
    [52] Hui, C., Li, Z. 2003. Dynamical complexity and metapopulation persistence. Ecological Modelling 164: 201-209.
    [53] Hui, C., Li, Z. 2004. Distribution patterns of metapopulation determined by Allee effects. Population Ecology , 46,55-63.
    [54] Hui, C., McGeoch, M.A., Warren, A. 2006. A spatially explicit approach to estimating species occupancy and spatial correlation. Journal of Animal Ecology. 75, 140-147.
    [55] Hui, C., Zhang, F., Han, X.Z., Li Z.Z. 2005. Cooperation evolution and self-regulation dynamics in metapopulation: stage-equilibrium hypothesis. Ecological Modelling, 184, 397-412.
    [56] Hutchinson, G.E., 1961. The paradox of the plankton. American Naturalist 95: 137-147.
    [57] Iwasa, Y, Sato, K., Nakashima, S., 1991. Dynamic modeling of wave regeneration (Shima-gare) in subalpine Abies forests. Journal of Theoretical Biology 152: 143-158.
    [58] Iwasa, Y, Nakanaru, M., Levin, S.A. 1998. Allelopathy of bacteria in a lattice populatio : competition between colicin-sensitive and colicin-producing strains. Evolutionary Ecology, 12, 785-802.
    [59] Jansen VAA. 1999. The dynamics of two diffusively coupled predator-prey populations. Theor. Popul. Biol., 59(2), 119-131
    [60] Joshi, A., Moody, M. 1995. Male gamete output of asexuals and the dynamics of populations polymorphic for reproductive mode. J. Theor. Biol. 174,189-197.
    [61] Joshi, A., Moody, M. 1998. The cost of sex revisted: effects of male gamete output of hermaphrodites that are asexual in their female capacity. J. Theor. Biol. 195, 533-542.
    [62] Karlson, R.H., Buss L.W. 1984. Competition, disturbance and local diversity patterns of substratum-bound clonal organisms: a simulation. Ecol. Model. 23,243-255
    [63] Karlson, R.H., Jackson J.B.C. 1981. Competitive networks and community structure: a simulation study. Ecology, 62, 670-678.
    [64] Keeling, M. J., Rand, D. A. 1995 A spatial mechanism for the evolution and maintenance of sexual reproduction. Oikos 74,414-424.
    [65] Keeling, M.J., Rand, D.A., Morris, A.J. 1997 Correlation models for childhood epidemics. Proceeding of the Royal Society of London, B., 264,1149-1156.
    [66] Keeling, M.J., 2000. Metapopulation moments: coupling, stochasticity and persistence. Journal of Animal Ecology 69: 725-736.
    [67] Keeling, M., 1999. Spatial models of interacting populations. In McGlade, J.M. ed. Advanced Ecological Theory: Principles and Applications. Blackwell Science, Oxford. Pages: 64-99.
    [68] Keitt, T.H., Lewis, M.A., Holt, R.D., 2001. Allee effects, invasion pinning, and species' borders. American Naturalist 157: 203-216.
    [69] Keitt, T.H., 1997. Stability and complexity on a lattice: co-existence of species in an individual-based food web model. Ecological Modelling 102: 243-258.
    [70] kubo T., Iwasa, Y., Furumoto, N. 1996. Forest spatial dynamics with gap expansion: total gap area and gap size distribution. Journal of Theoretical Biology, 180, 229-246.
    [71] Lande, R. 1991. Isolation by distance in a quantitative trait. Genetics, 128,443-452.
    [72] Law, R., Dieckmann U. 2000. Adynamical system for nieghborhoods in plant communities. Ecology, 81, 2137-2148.
    [73] Law, R., Herben, T., Dieckmann U. 1997. Non-manipulative estimates of competition coefficients in a montane grassland community. J.Ecol. 85,505-518.
    [74] Lewi Stone. 1993. Period-doubling reversals and chaos in simple ecological models. Nature, 365, 617-620
    [75] Levins, R. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 1969, 15: 237-240.
    [76] Li, Z., Hui, C., Xu, Z.M., Liu, F.M., 2002. Mathematical model of niche construction for desert vegetation and its applications. Journal of Glaciology and Geocryology 24: 387-392.
    [77] Li, Z., Lin, H., 1997. The niche-fitness model of crop population and its application. Ecological Modelling 104: 199-203.
    [78] Li, Z.-z., Hui, C., Xu, Z.-m. 2003. Simulation model of metapopulations and its application to competing coexistence and species richness. Acta Botanica Boreali-Occidentalia Sinica 23: 195-199.
    [79] Lindstro, J and Hanna Kokko. 1998. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences. Proc. R. Soc. Lond. B 265,483-488
    [80] Lipshitz, M., Nowak, M.A. 1994. The evolution of virulence in sexually transmitted HIV/AIDS. Journal of Theoretical Biology 174: 427-440.
    [81] MacArthur, R.H., Wilson, E.O., 1967. The Tneory of Island Biogeography. Princeton University Press, Princeton.
    [82] Matsuda, H., Ogita, A., Sasaki, A., Sato, K., 1992. Statistical mechanics of population: the lattice Lotka-Volterra model. Progress in Theoretical Physics 88: 1035-1049.
    [83] May, R.M., 1974. Biological populations with nonoverlapping generations: stable points, stable cycles and chaos. Science 186: 645-647.
    [84] May, R.M., 1981. Theoretical Ecology: Principles and Applications. Blackwell, Oxford.
    [85] May, R.M., 1994. Spatial chaos and its role in ecology and evolution. In Levins, S.A. ed. Frontiers in Mathematical Biology. Springer, New York. Pages: 362-344.
    [86] May, R.M., 1976. Simple mathematical models with very complicated dynamics. Nature 261: 459-467.
    [87] May, R.M., 2001. Biological diversity: causes, consequences, and conservation. The Asahi Glass Foundation, Tokyo.
    [88] May, R.M., Hassell, M.P. 1981. The dynamics of multiparasitoid-host interactions. American Naturalist 117: 234-261.
    [89] Maynard Smith, J. 1971. The origin and maintenance of sex. In: Group selection (Williams, G, C., ed.). 199-215. Chicago, Aldine-Atherton.
    [90] Maynard Smith, J. 1977. Parental investment-A prospective analysis. Animal Behavior, 25, 1-9.
    [91] Maynard Smith, J. 1978. The evolution of sex. Cambridge University Press, Cambridge.
    [92] Maynard Smith, J. 1998. Evolutional Genetics (2nd edn). Oxford University Press, Oxford.
    
    [93] McCarthy, M.A., 1997. The Allee effect, finding mates and theoretical models. Ecological Modelling 103: 99-102.
    [94] McGlade, J.M. 1999. Advanced ecological theory: principles and applications. Blackwell Science, Oxford.
    [95] Metz, J.A.J., Mollison, D., van den Bosch, F., 2000. The dynamics of invasion waves. In Dieckmann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, pp 482-512.
    [96] Michod.R.E., Levin, B.R. 1988. eds. The evolution of sex: An examination of Current ideas. Sinauer, Sunderland, MA.
    [97] Molles, M.C., 1999,2000. Ecology: concepts and applications. McGraw-Hill, New York.
    [98] Morris, A.J., 1997. Representing spatial interactions in simple ecological models. PhD thesis, Warwick University.
    [99] Muller, H.J. 1964. The relation of recombination to mutational advance. Am. Nat., 66, 118-138
    [100] Murray, J.D., 1989,1993,1999. Mathematical Biology. Springer-Verlag, New York.
    [101] Nakamaru,M., Natsuda, H., Iwasa, Y. 1997. The evolution of cooperation i lattice-structured population. Theoretical Population Biology, 184,65-81.
    [102] Nowak,M.A., May, R.M., 1992. Evolutionary game and spatial chaos. Nature, 359,926-829.
    [103] Nowark, M.A., Sigmund, K. 2000. Games on grid. In: Dieckmann, U., Law, R., Metz, J.A. (eds), The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, pp. 135-150.
    [104] Nee, S., May, R.M., 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. Journal of Animal Ecology 61: 37-40.
    [105] Pacala, S.W., 1986a. Neighborhood models of plant population dynamics. 2. Multispecies models of annuals. Theoretical Population Biology 29: 262-292.
    [106] Pacala, S.W., 1986b. Neighborhood models of plant population dynamics: 4. single-species and multispecies models of annuals with dormant seeds. American Naturalist 128: 859-878.
    [107] Pacala, S., Hassell, M.P., May, R.M. 1990. Host-parasitoid associations in patchy environments. Nature 344: 150-153.
    [108] Palmer, M.W., 1992. The coexistence of species in fractal landscapes. American Naturalist 139: 375-397.
    [109] Patrick Doncaster D., Graeme E. Pound, Simon J. Cox. 2000. The ecological cost of sex. Nature, 281-285 .
    [110] Pickett, S.T.A., Cadenasso, M.L., 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269: 331-334.
    [111] Pielou, E.C., 1969. An Introduction to Mathematical Ecology. Wiley-Interscience, New York.
    [112] Pimm, S.L., 1984. The complexity and stability of ecosystems. Nature 307: 321-326.
    [113] Ranta E., Veijo Kaitala and Jan Lindstrom. 1999. Sex in space: population dynamic consequences. Proc. R. Soc. Lond. B 266, 1155-1160
    [114] Reeve JD. 1990. Stability, variability and persistence in Host-Parasitoid system. Ecology, 72(2), 422-426.
    [115] Renshaw, E. 1991. Modelling biological populations in space and time. Cambridge University Press, Cambridge.
    [116] Reuter, H., Breckling, B., 1994. Self organization offish schools: an object oriented model. Ecological Modelling 75: 147-159.
    [117] Rhodes, C.J., Anderson, R.M. 1996. Power laws governing epidemics in isolated populations. Nature 381: 600-602.
    [118] Rohani P., Ruxton GD. 1999. Dispersal-induced instabilities in host-parasitoid metapopula-tions. Theor. Popul. Biol, 55(1), 23-36
    [119] Roughgarden, J. 1991. The evolution of sex. Am. Nat. 138, 934-953.
    [120] Roughgarden, J., 1997. Production functions from ecological populations: a survey with emphasis on spatially implicit models. In D. Tilman and P. Kareiva (Editors), Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, pp. 296-317.
    [121] Salathe,M. Rahel Salathe, Paul Schmid-Hempel, Sebastian Bonhorggrt. 2006. Mutation accumulation in space and the maintenance of sexual reproduction. Ecology Letters, 9,941-946
    [122] Sato, K., Matsuda, H., Sasaki, A. 1994. Pathogen invasion and host extinction in lattece structured populations. Journal of Mathenatical Biology, 32,251-268.
    [123] Sato, K., Iwasa, Y., 2000. Pair approximation for lattice-based ecological models. In: Dieck-mann U, Law R, Metz JAJ (eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, pp 341-358.
    [124] Savil, N.J., Hogeweg, P. 1999. Competition and dispersal in predator-prey waves. Theoretical Population Biology, 56,243-263.
    [125] Scheffer M., Rob J. De Boer. 1995 Implications of spaial heterogeneity for the paradox of enrichment. Ecology, 76(7), 2270-2277
    [126] Scheu S. and B. Drosse. 2007. Sexual reproduction prevails in a world of structured resources in short supply. Proc. R. Soc. B 274, 1225-1231
    [127] Shields, W. 1982. Philopatry, inbreeding and the evolution of sex. State University of London Press, Albany.
    [128] Skellam, J.G. 1951. Random dispersal in theoretical populations. Biometrika, 38, 196-218.
    [129] Skelton,P.(ed.) 1993. Evolution: a Biological and Palaeomtological Approach. Addison-wesley, Wokingham, UK.
    [130] Stears, S.C. 1987. ed. The evolution of sex and its consequences. Birkhauser, Basel.
    [131] Swart, J., Lawes, M.J., 1996. The effects of habitat patch connectivity on samango monkey (Cercopithecus mitis) metapopulation persistence. Ecological Modelling 93: 57-74.
    [132] Tilman, D., Karieva, P., 1997. Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton.
    [133] Tilman, D., May, R.M., Lehman, C.L., Nowak, M.A., 1994. Habitat destruction and the extinction debt. Nature 371: 65-66.
    [134] Tilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2-16.
    [135] Tilman, D., Wedon, D., Knops, J., 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718-720.
    [136] Turing, A.M., 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B 237: 37-72.
    [137] van Baalen, M., Rand, D.A. 1998. The unit of selection in viscous populations and the eco-lution of altruism. Journal of Theoretical Biology, 193,631-648.
    [138] van den Bosch,F., J.A.J.Metz, O.Diekmann. 1990. The velocity of spatial population expansion. Journal of Mathematical Biology, 28,529-565.
    [139] van Kampen, N.G. 1992. Stochastic processes in physicics and chemistry. Amsterdam, Netherlands: North-Holland.
    [140] Weiher, E., Keddy, P., 1999. Ecological Assembly Rules: perspectives, advances, retreats. Cambridge University Press, Cambridge.
    [141] Werren, J.H., Beukenoom, L.W. 1998. Sex determination, sex ratios and genetic conflict. Annual Review of Ecology and Systematics, 29,233-261.
    [142] West, S.A., Lively, C.M., Read, A.F. 1999. A pluralist approach to sex and recombination. J. Evol. Biol., 12, 1003-1012.
    [143] Wiens, J.A., Stenseth, N.C., von Home, B., Ims, R.A. 1993. Ecological mechanisms and landscape ecology. Oiks, 66, 369-380.
    [144] Williams, G.C., 1975. Sex and Evolution. Princeton University Press, Princeton.
    [145] Williams, M., 1977. The question of adaptive sex ratio in outcrossed vertebrates. Proceeding of the Royal Society of London, B., 205,567-580.
    [146] Williams, M., 1996. A three-dimensional model of forest development and competition. Ecological Modelling 89: 73-98.
    [147] Yu, D.W., Wilson, H.B., 2001. The competition-colonization trade-off is dead; long live the competition-colonization trade-off. American Naturalist 158: 49-63.
    [148] Zhang, D.Y., 2000. Researches on Theoretical Ecology. China Higher Education Press and Springer-Verlag, Beijing.
    [149] Zhang Feng, 2006. Spatial effect of biological games: influence of habitat destruction, fragmentation and spatial scale on evolutionary dynamics. Doctor Degree Thesis, Lanzhou University, Lanzhou.
    [150] Zhang, F., Li, Z.Z., Hui, C. 2005. Evolution of cooperation in patchy habitat under patch decay and isolation. Ecological research, 20,461-496.
    [151] Zhang Fengpan, Z.Li, X.Zhang. M.Gao. 2007. Influence of consumer mutual interference on the stabilization of a three-level trophic system. Popul.Ecol. 49:155-163.
    [152] Zhang Fengpan, Zizhen Li, F.Zhang. 2008. Global stability of an SIR epidemic model with constant infectious period, Appl. Math. Comput. 199 285 - 291.
    [153] Zhang Fengpan , Li Z., Zhu G., Li F. 2008. Influence of predator pursuit and prey evasion on synchrony in the metacommunity of three trophic food chain. Journal of Lanzhou University (Natural Science) 44, 36-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700