15d-PGJ_2对TRPA1离子通道的作用以及对TRPA1介导的疼痛行为的抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞬时受体电位离子通道(Transient receptor potential ion channels, TRPs)是近年来发现存在于细胞膜或胞内细胞器膜上的非选择性阳离子通道。其中TRPA1亚型被认为介导生物对外界低温、刺激性化学物质和机械刺激的感受,TRPA1还参与炎症性和神经病理性疼痛的发病机制。
     15-去氧-△-(12,14)前列腺素J2 (15d-PGJ2),是近年来发现的在组织损伤、炎症反应和氧化应激中释放的一种内源性物质。我们与其他研究小组以前的研究发现15d-PGJ2能够与TRPA1蛋白N-末端半胱氨酸共价结合而激动TRPA1离子通道,并引起TRPA1依赖性的急性疼痛行为。然而,最近的研究表明,在急性痛、炎症性疼痛和神经病理性疼痛模型中,15d-PGJ2还具有显著的镇痛作用。
     本研究假设15d-PGJ2的镇痛作用是由于其对外周感觉神经元的激动以及随后的脱敏作用。为了证实该假设,本研究使用Fura-2AM钙离子成像技术首先比较了15d-PGJ2和AITC对TRPA1离子通道的激动作用,以及诱发的小鼠急性疼痛行为。随后,我们测试了不同浓度的15d-PGJ2和AITC预处理对TRPA1表达阳性的背根神经节神经元细胞的脱敏作用,以及足底预先注射15d-PGJ2或AITC对小鼠急性疼痛反应的作用。最后观察了15d-PGJ2对炎症性疼痛模型的镇痛作用,并使用TRPA1基因敲除小鼠,探讨了TRPA1离子通道在15d-PGJ2镇痛机制中的作用。主要实验结果如下:
     1.15d-PGJ2和AITC剂量依赖性的激动TRPA1离子通道,引起小鼠的急性疼痛反应。
     2.与同浓度AITC相比,25和50μM低浓度15d-PGJ2预处理能显著降低AITC反应阳性的DRG神经元数目和反应强度。100和200μM高浓度15d-PGJ2和AITC都能显著降低DRG神经元对AITC的反应性,但15d-PGJ2对辣椒素引起的神经元激动没有抑制作用。行为学实验也发现,足底预先注射15mM15d-PGJ2能显著降低随后15d-PGJ2或AITC注射引起的急性疼痛,但15d-PGJ2对辣椒素引起的急性疼痛没有抑制作用。任何浓度的AITC对小鼠急性疼痛行为都没有抑制作用。
     3.足底注射15d-PGJ2能减轻CFA注射造成的炎症性机械痛敏感,这种镇痛作用在TRPA1基因敲除的小鼠中完全消失。
     综上所述,本研究证实TRPA1激动剂15d-PGJ2能激动周围感觉神经元上的TRPA1离子通道,随后长时间脱敏离子通道,并产生由此介导的镇痛作用。这种作用是否是由于15d-PGJ2对TRPA1离子通道的特殊修饰作用仍有待进一步研究。
Transient receptor potential ion channels (TRPs) are recently founded non-selective cation channels which exist in plasmic membrane. The subtype TRPA1 was found mediating the sensation of cold, irritant chemicals and mechanical stimulus, it is also underlying the mechanism of inflammatory and neuropathic pain.
     Newly found prostaglandin 15-deoxy-A 12,14-prostaglandin J2 (15d-PGJ2) is expressed when tissue is undergoing injury, inflammation or oxidative stress. We and others have shown that 15d-PGJ2can activate ion channel TRPA1 via covalent modification of N-terminal cysteines and causes channel-dependent nocifensive behavior. Paradoxically, recent studies indicate that 15d-PGJ2 is anti-nociceptive in several pain models.
     We hypothesized that activation and subsequent desensitization of TRPA1 in peripheral sensory neurons might play a role in the anti-nociceptive property of 15d-PGJ2. To investigate this, we initially utilized Fura-2AM calcium imaging to test the activation of DRG neurons with different doses of 15d-PGJ2 and AITC, their nociceptive effect was observed as well. Then, compared to pre-exposure to allyl isothiocyanate (AITC, mustard oil), we tested whether pre-treatment with 15d-PGJ2 could desensitize TRPA1-expressing dorsal root ganglion (DRG) neurons and inhibit nociceptive behaviors to subsequent stimulation. Finally, we tested if intraplantar pre-injection of 15d-PGJ2 could reduce mechanical hypersensitivity in the Complete Freund's Adjuvant model, and whether TRPA1 was involved in the analgesic mechanism of 15d-PGJ2. The results were as followed:
     1.15d-PGJ2 and AITC activated DRG neurons and caused nociceptive behaviors in a dose-dependent manner.15d-PGJ2 of a concentration higher than saturated one caused decresed nociceptive response.
     2. We found that pre-exposure 15d-PGJ2 reduced the magnitude and number of subsequent responses to AITC, but not capsaicin (CAP). A series of analogous behavioral studies demonstrated that intraplantar pre-injection of 15d-PGJ2, in contrast to AITC, attenuated acute nocifensive responses to subsequent injections of 15d-PGJ2 and AITC, but not CAP.
     3. Intraplantar 15d-PGJ2-administered after the induction of inflammation-also reduced mechanical hypersensitivity in the Complete Freund's Adjuvant (CFA) model for up to 2 hours post-injection. The 15d-PGJ2-mediated reduction in mechanical hypersensitivity was dependent on TRPA1, as this effect was absent in TRPA1 knockout mice.
     In conclusion, our data supports the hypothesis that 15d-PGJ2 induces activation followed by persistent desensitization of TRPA1 channels expressed in peripheral sensory neurons both in vitro and in vivo. Whether this is a unique property of TRPA1 modulation by 15d-PGJ2 merits further investigation.
引文
[1]Cosens D J, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969,224 (5216):285-7.
    [2]Caterina M J, Schumacher M A, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway. Nature,1997,389 (6653): 816-24.
    [3]Cheng W, Yang F, Takanishi C L, et al. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol,2007,129 (3):191-207.
    [4]Gawa N R, Treanor J J, Garami A, et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain,2008, 136 (1-2):202-10.
    [5]Kwan K Y, Allchorne a J, Vollrath M A, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron,2006,50 (2):277-89.
    [6]Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem,1999,274 (11):7325-33.
    [7]Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci,2005,25 (16): 4052-61.
    [8]Story G M, Peier a M, Reeve a J, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell,2003,112 (6): 819-29.
    [9]Kobayashi K, Fukuoka T, Obata K, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol,2005,493 (4):596-606.
    [10]Jordt S E, Bautista D M, Chuang H H, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature,2004, 427 (6971):260-5.
    [11]Bautista D M, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A,2005,102 (34):12248-52.
    [12]Morin C, Bushnell M C. Temporal and qualitative properties of cold pain and heat pain:a psychophysical study. Pain,1998,74 (1):67-73.
    [13]Reeh P W, Kocher L, Jung S. Does neurogenic inflammation alter the sensitivity of unmyelinated nociceptors in the rat? Brain Res,1986,384 (1):42-50.
    [14]Macpherson L J, Xiao B, Kwan K Y, et al. An ion channel essential for sensing chemical damage. J Neurosci,2007,27 (42):11412-5.
    [15]Cruz-Orengo L, Dhaka A, Heuermann R J, et al. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol Pain,2008,4:30.
    [16]Trevisani M, Siemens J, Materazzi S, et al.4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A,2007,104 (33):13519-24.
    [17]Corey D P, Garcia-Anoveros J, Holt J R, et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature,2004, 432 (7018):723-30.
    [18]Bautista D M, Jordt S E, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell,2006,124 (6): 1269-82.
    [19]Story G M, Gereau R W T. Numbing the senses:role of TRPA1 in mechanical and cold sensation. Neuron,2006,50 (2):177-80.
    [20]Petrus M, Peier a M, Bandell M, et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain,2007,3:40.
    [21]Obata K, Katsura H, Mizushima T, et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest,2005,115 (9):2393-401.
    [22]Dunham J P, Kelly S, Donaldson L F. Inflammation reduces mechanical thresholds in a population of transient receptor potential channel A1-expressing nociceptors in the rat. Eur J Neurosci,2008,27 (12):3151-60.
    [23]Eid S R, Crown E D, Moore E L, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory-and neuropathy-induced mechanical hypersensitivity. Mol Pain,2008,4:48.
    [24]Da Costa D S, Meotti F C, Andrade E L, et al. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation.Pain,148 (3):431-7.
    [25]Bandell M, Story G M, Hwang S W, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron,2004,41 (6):849-57.
    [26]Dai Y, Wang S, Tominaga M, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest,2007,117 (7):1979-87.
    [27]Taylor-Clark T E, Undem B J, Macglashan D W, Jr., et al. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol,2008,73 (2): 274-81.
    [28]Taylor-Clark T E, Ghatta S, Bettner W, et al. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol,2009,75 (4):820-9.
    [29]Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther,2005,107 (2):139-54.
    [30]Takahashi N, Mizuno Y, Kozai D, et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin),2008,2 (4):287-98.
    [31]Andersson D A, Gentry C, Moss S, et al. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci,2008,28 (10):2485-94.
    [32]Hinman A, Chuang H H, Bautista D M, et al. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A,2006,103 (51): 19564-8.
    [33]Fahmi H, Di Battista J A, Pelletier J P, et al. Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-1 beta-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum,2001,44 (3):595-607.
    [34]Lin T N, Cheung W M, Wu J S, et al.15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol,2006,26 (3): 481-7.
    [35]Shan Z Z, Masuko-Hongo K, Dai S M, et al. A potential role of 15-deoxy-delta(12,14)-prostaglandin J2 for induction of human articular chondrocyte apoptosis in arthritis. J Biol Chem,2004,279 (36):37939-50.
    [36]Munoz U, De Las Cuevas N, Bartolome F, et al. The cyclopentenone 15-deoxy-delta(12,14)-prostaglandin J2 inhibits G1/S transition and retinoblastoma protein phosphorylation in immortalized lymphocytes from Alzheimer's disease patients. Exp Neurol,2005,195 (2):508-17.
    [37]Huang H, Campbell S C, Bedford D F, et al. Peroxisome proliferator-activated receptor gamma ligands improve the antitumor efficacy of thrombospondin peptide ABT510. Mol Cancer Res,2004,2 (10):541-50.
    [38]Jozkowicz A, Was H, Taha H, et al.15d-PGJ2 upregulates synthesis of IL-8 in endothelial cells through induction of oxidative stress. Antioxid Redox Signal, 2008,10 (12):2035-46.
    [39]Napimoga M H, Souza G R, Cunha T M, et al.15d-prostaglandin J2 inhibits inflammatory hypernociception:involvement of peripheral opioid receptor. J Pharmacol Exp Ther,2008,324 (1):313-21.
    [40]Churi S B, Abdel-Aleem O S, Tumber K K, et al. Intrathecal rosiglitazone acts at peroxisome proliferator-activated receptor-gamma to rapidly inhibit neuropathic pain in rats. J Pain,2008,9 (7):639-49.
    [41]Pena-Dos-Santos D R, Severino F P, Pereira S A, et al. Activation of peripheral kappa/delta opioid receptors mediates 15-deoxy-(Deltal2,14)-prostaglandin J2 induced-antinociception in rat temporomandibular joint. Neuroscience,2009, 163 (4):1211-9.
    [42]Ruparel N B, Patwardhan a M, Akopian a N, et al. Homologous and heterologous desensitization of capsaicin and mustard oil responses utilize different cellular pathways in nociceptors. Pain,2008,135 (3):271-9.
    [43]Kliewer S A, Lenhard J M, Willson T M, et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell,1995,83 (5):813-9.
    [44]Forman B M, Tontonoz P, Chen J, et al.15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell,1995,83 (5):803-12.
    [45]Haslmayer P, Thalhammer T, Jager W, et al. The peroxisome proliferator-activated receptor gamma ligand 15-deoxy-Deltal2,14-prostaglandin J2 induces vascular endothelial growth factor in the hormone-independent prostate cancer cell line PC 3 and the urinary bladder carcinoma cell line 5637. Int J Oncol,2002,21 (4):915-20.
    [46]Yassaka R T, Inagaki H, Fujino T, et al. Enhanced activation of the transient receptor potential channel TRPA1 by ajoene, an allicin derivative. Neurosci Res, 2009:
    [47]Jeske N A, Patwardhan a M, Gamper N, et al. Cannabinoid WIN 55,212-2 regulates TRPV1 phosphorylation in sensory neurons. J Biol Chem,2006,281 (43):32879-90.
    [48]Napimoga M H, Vieira S M, Dal-Secco D, et al. Peroxisome proliferator-activated receptor-gamma ligand,15-deoxy-Deltal2,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway. J Immunol,2008,180 (1):609-17.
    [49]Akopian a N, Ruparel N B, Patwardhan A, et al. Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci,2008,28 (5):1064-75.
    [50]Akopian a N, Ruparel N B, Jeske N A, et al. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol,2007,583 (Pt 1):175-93.
    [51]Salas M M, Hargreaves K M, Akopian a N. TRPA1-mediated responses in trigeminal sensory neurons:interaction between TRPA1 and TRPV1. Eur J Neurosci,2009,29 (8):1568-78.
    [52]Schmidt M, Dubin a E, Petrus M J, et al. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron,2009,64 (4):498-509.
    [53]Perez-Sala D, Cernuda-Morollon E, Canada F J. Molecular basis for the direct inhibition of AP-1 DNA binding by 15-deoxy-Delta 12,14-prostaglandin J2. J Biol Chem,2003,278 (51):51251-60.
    [54]Simons C T, Carstens M I, Carstens E. Oral irritation by mustard oil: self-desensitization and cross-desensitization with capsaicin. Chem Senses, 2003,28 (6):459-65.
    [55]Brand G, Jacquot L. Sensitization and desensitization to allyl isothiocyanate (mustard oil) in the nasal cavity. Chem Senses,2002,27 (7):593-8.
    [56]Jacquot L, Monnin J, Lucarz A, et al. Trigeminal sensitization and desensitization in the nasal cavity:a study of cross interactions. Rhinology, 2005,43 (2):93-8.
    [57]Koplas P A, Rosenberg R L, Oxford G S. The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci,1997,17 (10):3525-37.
    [58]Docherty R J, Yeats J C, Bevan S, et al. Inhibition of calcineurin inhibits the desensitization of capsaicin-evoked currents in cultured dorsal root ganglion neurones from adult rats. Pflugers Arch,1996,431 (6):828-37.
    [59]Piper a S, Docherty R J. One-way cross-desensitization between P2X purinoceptors and vanilloid receptors in adult rat dorsal root ganglion neurones. J Physiol,2000,523 Pt 3:685-96.
    [60]Mohapatra D P, Nau C. Regulation of Ca2+-dependent desensitization in the vanilloid receptor TRPV1 by calcineurin and cAMP-dependent protein kinase. J Biol Chem,2005,280 (14):13424-32.
    [61]Zhang Z, Okawa H, Wang Y, et al. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem,2005,280 (47): 39185-92.
    [62]Nilius B, Mahieu F, Prenen J, et al. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J,2006,25 (3): 467-78.
    [63]Nilius B, Prenen J, Janssens A, et al. The selectivity filter of the cation channel TRPM4. J Biol Chem,2005,280 (24):22899-906.
    [64]Rohacs T, Lopes C M, Michailidis I, et al. PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci, 2005,8 (5):626-34.
    [65]Abe J, Hosokawa H, Sawada Y, et al. Ca2+-dependent PKC activation mediates menthol-induced desensitization of transient receptor potential M8. Neurosci Lett,2006,397 (1-2):140-4.
    [66]Zhu M H, Chae M, Kim H J, et al. Desensitization of canonical transient receptor potential channel 5 by protein kinase C. Am J Physiol Cell Physiol, 2005,289(3):C591-600.
    [67]Chaplan S R, Bach F W, Pogrel J W, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods,1994,53 (1):55-63.
    [68]Kwan K Y, Corey D P. Burning cold:involvement of TRPA1 in noxious cold sensation. J Gen Physiol,2009,133 (3):251-6.
    [69]Chung M K, Lee H, Mizuno A, et al.2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci,2004,24 (22): 5177-82.
    [1]Cosens D J, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature,1969,224 (5216):285-7.
    [2]Clapham D E. SnapShot:mammalian TRP channels. Cell,2007,129 (1):220.
    [3]Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem,2007,76: 387-417.
    [4]Caterina M J, Schumacher M A, Tominaga M, et al. The capsaicin receptor:a heat-activated ion channel in the pain pathway. Nature,1997,389 (6653):816-24.
    [5]Cheng W, Yang F, Takanishi C L, et al. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol,2007,129 (3):191-207.
    [6]Gawa N R, Treanor J J, Garami A, et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain,2008, 136 (1-2):202-10.
    [7]Kwan K Y, Allchorne a J, Vollrath M A, et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron,2006,50 (2):277-89.
    [8]Howard J, Bechstedt S. Hypothesis:a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol, 2004,14 (6):R224-6.
    [9]Lee G, Abdi K, Jiang Y, et al. Nanospring behaviour of ankyrin repeats. Nature, 2006,440 (7081):246-9.
    [10]Jaquemar D, Schenker T, Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J Biol Chem,1999,274 (11):7325-33.
    [11]Nagata K, Duggan A, Kumar G, et al. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci,2005,25 (16): 4052-61.
    [12]Story G M, Peier a M, Reeve a J, et al. ANKTM1, a TRP-like channel expressed
    in nociceptive neurons, is activated by cold temperatures. Cell,2003,112 (6): 819-29.
    [13]Kobayashi K, Fukuoka T, Obata K, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol,2005,493 (4):596-606.
    [14]Jordt S E, Bautista D M, Chuang H H, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature,2004,427 (6971):260-5.
    [15]Bautista D M, Movahed P, Hinman A, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A,2005,102 (34): 12248-52.
    [16]Zurborg S, Yurgionas B, Jira J A, et al. Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci,2007,10 (3):277-9.
    [17]Bandell M, Story G M, Hwang S W, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron,2004,41 (6):849-57.
    [18]Sawada Y, Hosokawa H, Hori A, et al. Cold sensitivity of recombinant TRPA1 channels. Brain Res,2007,1160:39-46.
    [19]Bautista D M, Jordt S E, Nikai T, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell,2006,124 (6):1269-82.
    [20]Morin C, Bushnell M C. Temporal and qualitative properties of cold pain and heat pain:a psychophysical study. Pain,1998,74 (1):67-73.
    [21]Reeh P W, Kocher L,Jung S. Does neurogenic inflammation alter the sensitivity of unmyelinated nociceptors in the rat? Brain Res,1986,384 (1):42-50.
    [22]Macpherson L J, Xiao B, Kwan K Y, et al. An ion channel essential for sensing chemical damage. J Neurosci,2007,27 (42):11412-5.
    [23]Cruz-Orengo L, Dhaka A, Heuermann R J, et al. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol Pain,2008,4:30.
    [24]Trevisani M, Siemens J, Materazzi S, et al.4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A,2007,104 (33):13519-24.
    [25]Takahashi N, Mizuno Y, Kozai D, et al. Molecular characterization of TRPA1
    channel activation by cysteine-reactive inflammatory mediators. Channels (Austin),2008,2 (4):287-98.
    [26]Andersson D A, Gentry C, Moss S, et al. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci,2008,28 (10):2485-94.
    [27]Taylor-Clark T E, Undem B J, Macglashan D W, Jr., et al. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol,2008,73 (2):274-81.
    [28]Macpherson L J, Dubin a E, Evans M J, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature,2007, 445 (7127):541-5.
    [29]Hinman A, Chuang H H, Bautista D M, et al. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A,2006,103 (51): 19564-8.
    [30]Akopian a N, Ruparel N B, Jeske N A, et al. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization. J Physiol,2007,583 (Pt 1):175-93.
    [31]Corey D P, Garcia-Anoveros J, Holt J R, et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature,2004,432 (7018):723-30.
    [32]Story G M, Gereau R W T. Numbing the senses:role of TRPA1 in mechanical and cold sensation. Neuron,2006,50 (2):177-80.
    [33]Petrus M, Peier a M, Bandell M, et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol Pain,2007,3:40.
    [34]Obata K, Katsura H, Mizushima T, et al.TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest, 2005,115 (9):2393-401.
    [35]Dunham J P, Kelly S, Donaldson L F. Inflammation reduces mechanical thresholds in a population of transient receptor potential channel A1-expressing nociceptors in the rat. Eur J Neurosci,2008,27 (12):3151-60.
    [36]Eid S R, Crown E D, Moore E L, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory-and neuropathy-induced mechanical hypersensitivity. Mol Pain,2008,4:48.
    [37]Da Costa D S, Meotti F C, Andrade E L, et al. The involvement of the transient receptor potential Al (TRPA1) in-the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain,148 (3):431-7.
    [38]Ruparel N B, Patwardhan a M, Akopian a N, et al. Homologous and heterologous desensitization of capsaicin and mustard oil responses utilize different cellular pathways in nociceptors. Pain,2008,135 (3):271-9.
    [39]Chung M K, Lee H, Mizuno A, et al.2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci,2004,24 (22):5177-82.
    [40]Dai Y, Wang S, Tominaga M, et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest,2007,117 (7):1979-87.
    [41]Taylor-Clark T E, Ghatta S, Bettner W, et al. Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol,2009,75 (4):820-9.
    [42]Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther, 2005,107 (2):139-54.
    [43]Caspani O, Zurborg S, Labuz D, et al. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain. PLoS One,2009,4 (10):e7383.
    [44]Hammond D L, Ackerman L, Holdsworth R, et al. Effects of spinal nerve ligation on immunohistochemically identified neurons in the L4 and L5 dorsal root ganglia of the rat. J Comp Neurol,2004,475 (4):575-89.
    [45]Hogan Q H. Role of decreased sensory neuron membrane calcium currents in the genesis of neuropathic pain. Croat Med J,2007,48 (1):9-21.
    [1]Fitzpatrick F A, Wynalda M A. Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J Biol Chem,1983,258 (19): 11713-8.
    [2]Hirata Y, Hayashi H, Ito S, et al. Occurrence of 9-deoxy-delta 9,delta 12-13,14-dihydroprostaglandin D2 in human urine. J Biol Chem,1988,263 (32):16619-25.
    [3]Kudo I, Murakami M. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat,2002,68-69:3-58.
    [4]Vane J R, Bakhle Y S, Botting R M. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol,1998,38:97-120.
    [5]Helliwell R J, Adams L F, Mitchell M D. Prostaglandin synthases:recent developments and a novel hypothesis. Prostaglandins Leukot Essent Fatty Acids, 2004,70 (2):101-13.
    [6]Shan Z Z, Masuko-Hongo K, Dai S M, et al. A potential role of 15-deoxy-delta(12,14)-prostaglandin J2 for induction of human articular chondrocyte apoptosis in arthritis. J Biol Chem,2004,279 (36):37939-50.
    [7]Michimata T, Tsuda H, Sakai M, et al. Accumulation of CRTH2-positive T-helper 2 and T-cytotoxic 2 cells at implantation sites of human decidua in a prostaglandin D(2)-mediated manner. Mol Hum Reprod,2002,8 (2):181-7.
    [8]Shibata T, Kondo M, Osawa T, et al.15-deoxy-delta 12,14-prostaglandin J2. A prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem,2002,277 (12):10459-66.
    [9]Brummond K M, Sill P C, Chen H. The first total synthesis of 15-deoxy-Deltal2,14-prostaglandin J2 and the unambiguous assignment of the C14 stereochemistry. Org Lett,2004,6 (2):149-52.
    [10]Coleman R A, Smith W L, Narumiya S. International Union of Pharmacology classification of prostanoid receptors:properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev,1994,46 (2):205-29.
    [11]Halushka P V, Mais D E, Mayeux P R, et al. Thromboxane, prostaglandin and leukotriene receptors. Annu Rev Pharmacol Toxicol,1989,29:213-39.
    [12]Zhang X, Young H A. PPAR and immune system-what do we know? Int Immunopharmacol,2002,2 (8):1029-44.
    [13]Vaidya S, Somers E P, Wright S D, et al.15-Deoxy-Deltal2,1412,14-prostaglandin J2 inhibits the beta2 integrin-dependent oxidative burst: involvement of a mechanism distinct from peroxisome proliferator-activated receptor gamma ligation. J Immunol,1999,163 (11):6187-92.
    [14]Wright D H, Metters K M, Abramovitz M, et al. Characterization of the recombinant human prostanoid DP receptor and identification of L-644,698, a novel selective DP agonist. Br J Pharmacol,1998,123 (7):1317-24.
    [15]Monneret G, Li H, Vasilescu J, et al.15-Deoxy-delta 12,14-prostaglandins D2 and J2 are potent activators of human eosinophils. J Immunol,2002,168 (7):3563-9.
    [16]Powell W S.15-Deoxy-delta12,14-PGJ2:endogenous PPARgamma ligand or minor eicosanoid degradation product? J Clin Invest,2003,112 (6):828-30.
    [17]Monneret G, Cossette C, Gravel S, et al.15R-methyl-prostaglandin D2 is a potent and selective CRTH2/DP2 receptor agonist in human eosinophils. J Pharmacol Exp Ther,2003,304 (1):349-55.
    [18]Cruz-Orengo L, Dhaka A, Heuermann R J, et al. Cutaneous nociception evoked by 15-delta PGJ2 via activation of ion channel TRPA1. Mol Pain,2008,4:30.
    [19]Takahashi N, Mizuno Y, Kozai D, et al. Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin),2008,2 (4):287-98.
    [20]Andersson D A, Gentry C, Moss S, et al. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci,2008,28 (10):2485-94.
    [21]Taylor-Clark T E, Undem B J, Macglashan D W, Jr., et al. Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol,2008,73 (2):274-81.
    [22]Hinman A, Chuang H H, Bautista D M, et al. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A,2006,103 (51): 19564-8.
    [23]Narumiya S, Ohno K, Fujiwara M, et al. Site and mechanism of growth inhibition by prostaglandins. II. Temperature-dependent transfer of a cyclopentenone prostaglandin to nuclei. J Pharmacol Exp Ther,1986,239 (2):506-11.
    [24]Alarcon De La Lastra C, Sanchez-Fidalgo S, Villegas I, et al. New pharmacological perspectives and therapeutic potential of PPAR-gamma agonists. Curr Pharm Des,2004,10 (28):3505-24.
    [25]Greene M E, Blumberg B, Mcbride O W, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA:expression in hematopoietic cells and chromosomal mapping. Gene Expr,1995,4 (4-5):281-99.
    [26]Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR-alpha,-beta, and-gamma in the adult rat. Endocrinology,1996,137 (1):354-66.
    [27]Na H K, Surh Y J. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands as bifunctional regulators of cell proliferation. Biochem Pharmacol,2003,66 (8):1381-91.
    [28]Kliewer S A, Lenhard J M, Willson T M, et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell,1995,83 (5):813-9.
    [29]Forman B M, Tontonoz P, Chen J, et al.15-Deoxy-delta 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell,1995,83 (5):803-12.
    [30]Shiraki T, Kodama T S, Shiki S, et al. Spectroscopic analyses of the binding kinetics of 15d-PGJ2 to the PPARgamma ligand-binding domain by multi-wavelength global fitting. Biochem J,2006,393 (Pt 3):749-55.
    [31]Sanchez-Gomez F J, Cernuda-Morollon E, Stamatakis K, et al. Protein thiol modification by 15-deoxy-Delta12,14-prostaglandin J2 addition in mesangial cells:role in the inhibition of pro-inflammatory genes. Mol Pharmacol,2004,66 (5):1349-58.
    [32]Fahmi H, Di Battista J A, Pelletier J P, et al. Peroxisome proliferator-activated receptor gamma activators inhibit interleukin-1 beta-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum, 2001,44 (3):595-607.
    [33]Munoz U, De Las Cuevas N, Bartolome F, et al. The cyclopentenone 15-deoxy-delta(12,14)-prostaglandin J2 inhibits G1/S transition and retinoblastoma protein phosphorylation in immortalized lymphocytes from Alzheimer's disease patients. Exp Neurol,2005,195 (2):508-17.
    [34]Lin T N, Cheung W M, Wu J S, et al.15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol,2006,26 (3):481-7.
    [35]Huang H, Campbell S C, Bedford D F, et al. Peroxisome proliferator-activated receptor gamma ligands improve the antitumor efficacy of thrombospondin
    peptide ABT510. Mol Cancer Res,2004,2 (10):541-50.
    [36]Haslmayer P, Thalhammer T, Jager W, et al. The peroxisome proliferator-activated receptor gamma ligand 15-deoxy-Delta12,14-prostaglandin J2 induces vascular endothelial growth factor in the hormone-independent prostate cancer cell line PC 3 and the urinary bladder carcinoma cell line 5637. Int J Oncol,2002, 21 (4):915-20.
    [37]Sakurai H, Chiba H, Miyoshi H, et al. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem,1999,274 (43):30353-6.
    [38]Bharti a C, Aggarwal B B. Nuclear factor-kappa B and cancer:its role in prevention and therapy. Biochem Pharmacol,2002,64 (5-6):883-8.
    [39]Baeuerle P A, Baichwal V R. NF-kappa B as a frequent target for immunosuppressive and anti-inflammatory molecules. Adv Immunol,1997,65: 111-37.
    [40]Pahl H L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene,1999,18 (49):6853-66.
    [41]Na H K, Surh Y J. Transcriptional regulation via cysteine thiol modification:a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog, 2006,45 (6):368-80.
    [42]Straus D S, Pascual G, Li M, et al.15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A, 2000,97 (9):4844-9.
    [43]Cernuda-Morollon E, Pineda-Molina E, Canada F J, et al.15-Deoxy-Delta 12,14-prostaglandin J2 inhibition of NF-kappaB-DNA binding through covalent modification of the p50 subunit. J Biol Chem,2001,276 (38):35530-6.
    [44]Castrillo A, Diaz-Guerra M J, Hortelano S, et al. Inhibition of IkappaB kinase and IkappaB phosphorylation by 15-deoxy-Delta(12,14)-prostaglandin J(2) in activated murine macrophages. Mol Cell Biol,2000,20 (5):1692-8.
    [45]Rossi A, Kapahi P, Natoli G, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature,2000,403 (6765): 103-8.
    [46]Castrillo A, Bodelon O G, Bosca L. Inhibitory effect of IGF-Ⅰ on type 2 nitric oxide synthase expression in Ins-1 cells and protection against activation-dependent apoptosis:involvement of phosphatidylinositel 3-kinase. Diabetes,2000,49 (2):209-17.
    [47]Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev,1999,13 (1):76-86.
    [48]Dinkova-Kostova a T, Holtzclaw W D, Cole R N, et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A, 2002,99(18):11908-13.
    [49]Itoh T, Fairall L, Amin K, et al. Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol,2008,15 (9):924-31.
    [50]Zhang H, Zhao W, Wang Y, et al. Induction of cytogenetic adaptive response in spermatogonia and spermatocytes by pre-exposure of mouse testis to low-dose (12)C(6+) ions. Mutat Res,2008,653 (1-2):109-12.
    [51]Zhang X, Lu L, Dixon C, et al. Stress protein activation by the cyclopentenone prostaglandin 15-deoxy-delta12,14-prostaglandin J2 in human mesangial cells. Kidney Int,2004,65 (3):798-810.
    [52]Napimoga M H, Souza G R, Cunha T M, et al.15d-prostaglandin J2 inhibits inflammatory hypernociception:involvement of peripheral opioid receptor. J Pharmacol Exp Ther,2008,324 (1):313-21.
    [53]Churi S B, Abdel-Aleem O S, Tumber K K, et al. Intrathecal rosiglitazone acts at peroxisome proliferator-activated receptor-gamma to rapidly inhibit neuropathic pain in rats. J Pain,2008,9 (7):639-49.
    [54]Pena-Dos-Santos D R, Severino F P, Pereira S A, et al. Activation of peripheral kappa/delta opioid receptors mediates 15-deoxy-(Delta12,14)-prostaglandin J2 induced-antinociception in rat temporomandibular joint. Neuroscience,2009,163 (4):1211-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700