高脂膳食性氧化应激对钙代谢的影响及其分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,城乡居民的膳食结构发生了巨大变化,膳食中油脂的比例不断增多。能量摄入的增加,体内能量代谢旺盛,其副产物ROS也随之增加,可诱发机体氧化应激。氧化应激又是许多疾病发病过程中共同的作用机制,如:骨质疏松症等。血脂代谢紊乱人群中骨质疏松的发病率高于正常人群,特别在老年人中骨质疏松症的发病率超过60%。现已发现雌激素缺乏引发氧化应激在骨质疏松发生过程中发挥了重要的作用,但目前未见营养性氧化应激对钙代谢异常作用的研究,也鲜有其分子机制的报道。本文旨在探讨高脂膳食性氧化应激及抗氧化剂硫辛酸干预对钙吸收和骨代谢的影响及其分子机制。
     1.氧化还原状态对钙吸收机制的影响
     C57BL/6雄性小鼠随机分为四组(每组8只):对照组(2%猪油、0.65% Ca);高脂组(HFD、19.5%猪油、0.7% Ca);硫辛酸干预组(HFD+0.1% LA、0.7% Ca);钙补充组(HFD+CS, 1.6% Ca),饲养9wk。结果显示高脂膳食导致肠钙吸收和骨钙含量减少,且引起十二指肠氧化应激、使氧化还原状态失衡。硫辛酸干预和膳食钙补充对钙吸收和抗氧化能力等可部分或完全恢复至对照组水平。相关性分析表明钙净吸收率与十二指肠ROS水平呈现显著负相关(r = -0.729, P < 0.01),与GSH/GSSG比值呈现显著正相关(r = 0.805, P < 0.01),但与膳食脂肪含量无显著相关(P > 0.05)。此外,HFD组小鼠十二指肠中calbindin-D9K、PMCA (plasma membrance calcium ATPase)、NCX (sodium-calcium exchanger)基因表达分别下调1.9、2.7、1.5倍。而HFD组血浆中钙三醇水平和十二指肠中VDR基因表达水平均显著高于对照水平。以上结果表明高脂膳食引发十二指肠氧化还原状态失衡,抑制钙吸收相关基因的表达,从而抑制肠道钙吸收。
     2.高脂膳食性氧化应激对骨代谢的影响
     C57BL/6雄性小鼠随机分为三组(每组9只):对照组;高脂组;硫辛酸干预组,饲养13wk,探究高脂膳食是否会引起骨组织氧化应激,以及高脂膳食性氧化应激与异常骨代谢之间的关系。结果显示高脂膳食引发骨组织抗氧化能力受损,氧化损伤指标MDA显著增加,氧化还原状态呈现向氧化态的转变。高脂膳食导致骨代谢异常——抑制骨形成且刺激骨再吸收。此外,HFD组小鼠血浆中IGF-1水平显著低于对照组,而TNF-α水平显著高于对照组。硫辛酸的干预可完全或部分恢复上述指标至对照水平。骨组织中GSH/ GSSG比值与骨形成指标P1CP呈现显著正相关(r = 0.565, P < 0.003),与骨再吸收指标NTx呈现显著负相关(r = -0.786, P < 0.001)。相反,脂质过氧化物指标MDA与P1CP呈现显著负相关(r = -0.687, P < 0.001),与NTx呈现显著正相关(r = 0.516, P < 0.007)。以上结果提示高脂膳食可造成骨组织抗氧化能力减弱、氧化还原状态失衡。骨组织的氧化还原状态失衡可能是发生高脂膳食性骨质疏松重要的作用机制。
     3.高脂膳食性骨代谢异常的分子机制
     通过分析小鼠股骨(近端)基因表达谱的变化,更全面地阐述髙脂膳食性骨质流失以及抗氧化剂硫辛酸干预作用可能的分子机制。Affymetrix mouse 430A表达芯片数据显示骨形成相关的多数基因表达下调(如:COL1a1、ALP1、FOS),而骨再吸收相关的多数基因表达上调(如:NOX2、RANKL、CTSK等)。另外,参与抗氧化防御的基因表达也呈现下调趋势(除NQO1上调),脂肪合成与脂肪酸氧化相关基因的表达也呈现下调趋势(如:PPARg和APOE等)。而硫辛酸干预可部分恢复骨形成相关基因的表达,而骨再吸收、抗氧化和脂代谢相关多数基因的表达水平与对照组无显著变化。
     此外,本研究也分析了涉及信号转导相关基因表达的变化。IGF能刺激成骨细胞增殖和增强骨形成作用,而芯片数据中IGF信号通路中多数基因表达下调(如IGF1、IGF1R、IGFBP4等)。P53负调控成骨细胞分化和骨形成作用,本研究中高脂膳食显著上调P53凋亡通路中多数基因的表达。另外,芯片数据中HFD组的TGFbR1和IL-17等基因表达强烈上调,IL-4表达下调,这些细胞因子可通过改变RANK/RANKL/OPG系统来调控破骨细胞的形成和骨再吸收的过程。上述信号转导的基因表达在硫辛酸干预下呈现恢复至对照水平的趋势。
     以上结果表明HFD导致骨组织氧化应激,促进P53表达,可能由此导致成骨细胞凋亡,抑制成骨细胞的骨基质形成作用。而高脂膳食性氧化应激又可促进炎症因子或其受体的表达,RANKL/OPG表达比值增加,促进破骨细胞增殖,增强了骨再吸收的作用。
     4.氧化还原状态对成骨细胞基质矿化的影响
     通过400μM过氧化氢诱导MC3T3-E1细胞(小鼠成骨样细胞)氧化损伤和硫辛酸的干预,来探讨氧化还原状态对MC3T3-E1细胞基质矿化的作用,并且进一步阐述硫辛酸干预作用的机制。结果表明硫辛酸可有效防止过氧化氢导致MC3T3-E1细胞的氧化损伤,并且干预由氧化应激导致NQO1基因的高表达。NQO1的高表达可增加P53表达的稳定性,可能由此增强P53对成骨细胞凋亡作用,硫辛酸通过维持成骨细胞内氧化还原状态的平衡可防止氧化损伤导致P53凋亡。适宜剂量的硫辛酸(0.1-0.5mM)能显著改善因氧化损伤导致受损的MC3T3-E1细胞基质矿化功能。
     综上所述,髙脂膳食性氧化应激导致氧化还原状态失衡是肠道钙吸收减少和骨代谢异常的重要原因。抗氧化剂硫辛酸能有效地干预高脂膳食性氧化应激的发生,改善钙代谢异常。
With growth in the living standard, the great changes in dietary patterns occur in urban and rural residents. Fat intakes are increasing in China, bringing about many health problems, such as osteoporosis. The increased energy intake can cause strong energy metabolic rate, which produces numerous ROS and consequently induces oxidative stress. Further, oxidative stress is one cause for pathogensis of many diseases. Although increasing evidences in postmenopausal models have demonstrated that oxidative stress plays a key role in abnormal calcium metabolism, previous studies have not addressed role of oxidative stress in high-fat diet (HFD)-induced bone mass loss. In contrast, antioxidant lipoic acid (LA), which not only scavenges ROS directly but also provides the reducing medium for the regeneration of the antioxidant from oxidized form, can prevent or at least attenuate oxidative injure. Therefore, the prevent study investigated the roles of HFD-induced oxidative stress in intestinal calcium absorption and bone metabolism and preventive effects of LA on them. Furthermore, their molecular mechamisms were also addressed.
     1. HFD-indcued oxidative stress inhibits intestinal calcium absorption
     Male C57BL/6 mice were randomly assigned to one of four groups with eight mice in each group. The control group consumed an ordinary diet (4.9% fat, w/w). The other three groups were fed an HFD (21.2% fat), the HFD plus 0.1% lipoic acid (LA), or the HFD plus additional 0.9% calcium supplement (CS). After 9 wk, plasma and duodenal oxidative stress biomarkers including malondialdehyde, superoxide dismutase, catalase, total antioxidant capacity, reduced glutathione/oxidized glutathione ratio, and reactive oxygen species (ROS) were examined. The intestinal calcium absorption state was evaluated through examining the calcium balance, bone mineral density (BMD), and calcium metabolism biomarkers. Furthermore, quantitative RT-PCR was carried out to analyze the changes in expression of transcellular calcium absorption-related genes.
     The HFD induced marked decreases in intestinal calcium absorption and BMD of whole body, accompanied by redox imbalance and increased oxidative damage in duodenum; duodenal expression of calbindin-D9K, PMCA1b, and NCX was significantly down-regulated by 1.9-, 2.7-, and 1.5-fold, respectively. Furthermore, duodenal GSH/GSSG ratios were strongly positively correlated with the apparent calcium absorption rate a, ROS levels were negatively correlated with it, but dietary fat levels were not significantly correlated with it. Our results demonstrated that HFD-induced duodenal oxidation state could significantly down-regulate expression of calbindin-D9K, PMCA1b, and NCX, thus causing an inhibitory effect on intestinal calcium absorption.
     2. HFD-induced abnormal bone metabolism associated with bone oxidative stess
     Male C57BL/6 mice (4 wk old) were fed with normal diet, high-fat diet (HFD), or HFD supplemented with 0.1% antioxidant LA. After 13-wk feeding, the markers of bone metabolism in plasma and in urine, and femora oxidative stress were measured. Moreover, IGF-1 and TNF-a in plasma were measured. The feeding dyslipidemic HFD induced both inhibitory bone formation reactions and enhancive bone resorption reactions, accompanied by impaired bone antioxidant system, low levels of IGF-1 in plasma, and high levels of TNF-a in plasma. In contrast, these alternatives were prevented completely or partially in mice fed LA supplement. Further, plasma propeptide of ? collagen C-propeptide as a marker of bone formation was positively correlated with both MDA (r=-0.687, P<0.001) and reduced glutathione/ oxidized glutathione (GSH/GSSG) ratio (r=0.565, P<0.003) of bone. Cross-linked N-telopeptides of bone type ? collagen as a marker of bone resorption was negatively correlated with both MDA (r=0.516, P<0.007) and GSH/GSSG ratio (r=-0.786, P<0.001). Dyslipidemia induces impaired bone antioxidant system. Oxidative stress could be an important mediator of hyperlipidemia-induced bone loss.
     3. Molecular mechanism for HFD-induced low bone mass
     High-fat diet (HFD) leads to an increased risk of osteoporosis-related fracture, but the molecular mechanisms for its effects on bone metabolism have rarely been addressed. The present study investigated the possible molecular mechanisms for the dyslipidemic HFD-induced bone loss through comparing femoral gene expression profiles in the HFD-fed mice vs. the normal diet-fed mice during growth stage. We used Affymetrix 430A Gene Chips to identify the significant changes in genes expression involved in bone metabolism, lipids metabolism, and the related signal transduction pathways. Quantitative RT-PCR was carried out on some significant genes for corroboration of the microarray results. At the conclusion of the 13-wk feeding, the down-regulation of most of the genes related to bone formation and the up-regulation of most of the genes related to bone resorption were observed in the HFD-fed mice, according with the changes in plasma bone metabolic biomarkers. Together, the HFD induced a decrease in the majority of the adipogenesis-, lipid biosynthesis-, and fatty acid oxidation-related genes expression, such as PPARg and APOE. Furthermore, some genes engaged in the related signal transduction pathway were strongly regulated at transcript level, including IGFBP4, TGFbR1, IL17a, IL-4, and P53. These results indicate that the HFD may induce inhibitory bone formation and enhanced bone resorption, thus causing adverse bone status.
     Supplemental LA can attenuate HFD-induced negative effects on bone formation and prevent its enhancement effects on bone resorption associated with decreased oxidative stress. Furthermore, antioxidant LA can up-regulate genes involved in IGF-1 signaling pathway and down-regulate genes involved in P53 apoptotic pathway, thus contributing to attenuating inhibitory bone formation caused by HFD. Moreover, LA-induced the strong up-regulation of IL12a and down-regulation of PTHR1, TGFbR1, and IL17a may lead to depressing bone resorption.
     4. Effect of redox status onmatrix mineralizetion of osteoblast-like cell (MC3T3-E1)
     The role of redox status in matrix mineralization of MC3T3-E1 cells and preventive effect of antioxidant LA was studied. Our results suggested that LA prevented oxidative injure of MC3T3-E1 cells induced by hydrogen peroxide and down-regulated high NQO1 expression, which is involved in response to oxidative stress. The high NQO1 expression can increase stabilization of P53 expreesion, thus maybe induced osteoblastic apoptosis. This study demonstrated that LA can prevent P53-dependent MC3T3-E1 cells apoptosis induced by oxidative stress, associated with maintaing redox status. Moderate levels of LA (0.1-0.5mM) attenuate the impaired MC3T3-E1 cell proliferation and mineralization levels induced by hydrogen peroxide, but high levels of LA (2.5mM) can not prevent significantly its functions.
引文
1. Datta K, Sinha S, Chattopadhyay P. Reactive oxygen species in health and disease [J]. Natl Med J India, 2000,13(6):304–310
    2. Yang RL, Li W, Shi YH, et al. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis [J]. Nutrition, 2008, 24:582–588
    3. Parhami F, Garfinkel A, Demer LL. Role of lipids in osteoporosis [J]. Arterioscler Thromb Vasc Biol, 2000, 20(11):2346–2348
    4. Bone HG, Kiel DP, Lindsay RS, et al. Effects of atorvastatin on bone in postmenopausal women with dyslipidemia: a double-blind, placebo-controlled, dose-ranging trial [J]. J Clin Endocrinol Metab, 2007, 92:4671–4677
    5. Wu LY, Yang TC, Kuo SW, Hsiao CF, et al. Correlation between bone mineral density and plasma lipids in Taiwan [J]. Endocr Res 2003, 29:317–325
    6. Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice [J]. J Bone Miner Res, 2001, 16:182–188
    7. von Muhlen D, Safii S, Jassal SK, et al. Associations between the metabolic syndrome and bone health inolder men and women: the Rancho Bernardo Study [J]. Osteoporos Int, 2007, 18(10):1337–1344
    8. Hou JC-H, Zernicke RF, Barnard RJ. High-fat sucrose diet effects on femoral neck geometry and biomechanics [J]. Clin Biomech, 1990, 5:162–168
    9. Rizek RL, Welsh SO, Marston RM, et al. Dietary fats and health [M]. Champaign, Illinois : American Oil Chemists’Society, 1983, 13–43
    10. Rosely Sichieri. Is fat intake important in the public health control of obesity? [J]. American Journal of Clinical Nutrition, 2000, 72: 203–204
    11. Salem GJ, Zernicke RF, Barnard RJ. Diet-related changes in mechanical properties of rat vertebrae [J]. Am J Physiol, 1992,262:R318–R321
    12. Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long-term, high-fat sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties [J]. Bone, 1995, 16:25–31
    13. Atteh JO, Leeson S. Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks [J]. Poultry Sci, 1984, 63:2252–2260
    14. Atteh JO, Leeson S, Julian RJ. Effects of dietary levels and types of fat on performance and mineral metabolism of broiler chicks [J]. Poultry Sci, 1983, 62:2403–2411
    15. Tadayyon B, Lutwak L. Interrelationship of triglycerides with calcium, magnesium and phosphorus in the rat [J]. J Nutr, 1969, 97:264–254
    16. Parra P, Bruni G, Palou A, Serra F. Dietary calcium attenuation of body fat gain during high-fat feeding in mice [J]. J Nutr Biochem, 2008, 19:109–117
    17. Papakonstantinou E, Flatt WP, Huth PJ, Harris RB. High dietary calcium reduces body fat content, digestibility of fat and serum vitamin D in rats [J]. Obes Res, 2003, 11:387–394
    18. Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells [J]. J Bone Miner Res, 1999, 14:2067-2078
    19. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007, 39 (1):44–84
    20. Sanz A,Caro P,Ayala V,et al.Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins [J]. FASEB J, 2006,20(8):1064-1073
    21. Batandier C, Fontaine E, Kériel C, Leverve XM. Determination of mitochondrial reactive oxygen species: methodological aspects [J]. J Cell Mol Med, 2002, 6(2):175–187
    22. Frisard M, Ravussin E. Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process [J]. Endocrine, 2006, 29(1):27-32
    23. Cadenas E, Boveris A, Ragan CI, Stoppani AO. Production of superoxide radicals and hydrogen peroxideby NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria [J]. Arch. Biochem. Biophys, 1977, 180(2): 248–257
    24. Arnaiz SL, Travacio M, Llesuy S, Boveris A. Hydrogen peroxide metabolism during peroxisome proliferation by fenofibrate [J]. Biochim Biophys Acta, 1995, 1272(3): 175–180
    25. Strobel, H. W. and Coon, M. J. Effect of superoxide generation and dismutation on hydroxylation reactions catalyzed by liver microsomal cytochrome P-450 [J]. J Biol Chem, 1971, 246(24): 7826–7829
    26. Ku HH, Brunk UT, Sohal RS. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species [J]. Free Radic Biol Med, 1993, 15(6):621–627
    27. Heymsfield SB, Gallagher D, Kotler DP, et al. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass [J]. Am J Physiol Endocrinol Metab, 2002, 282(1):E132–138
    28. Ravussin E, Lillioja S, Knowler WC, et al. Reduced rate of energy expenditure as a risk factor for body-weight gain [J]. N Engl J Med, 1988, 318(8), 467–472
    29. Houstis N, Rosen Ed, Lander Es. Reactive oxygen species have a causal role in multiple forms of insulin resistance [J]. Nature, 2006, 440(7086):944–948
    30. Ando K, Fujita T. Metabolic syndrome and oxidative stress [J]. Free Radic Biol Med, 2009, 47(3):213-218
    31. Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications [J]. Antioxid Redox Signal, 2007, 9(3):343–353
    32. Day CP.Pathogenesis of steatohepatitis [J]. Best Pract Res Clin Gastroenterol, 2002, 16: 663–678
    33. Van Hoek B.Non-alcoholic fatty liver disease: a brief review [J]. Scand J Gastroenterol, 2004,241 (Suppl):56–59
    34. Bronner F: Calcium absorption– a paradigm for mineral absorption [J]. J Nutr, 1998, 128: 917–920
    35. Song Y, Fleet JC. Intestinal resistance to 1,25-dihydroxyvitamin D in mice heterozygous for the vitamin D receptor knockout allele [J]. Endocrinology, 2007, 148: 1396–1402
    36. Wasserman RH, Vitamin D and the dual processes of intestinal calcium absorption [J]. J Nutr, 2004, 134: 3137–3139
    37. Wasserman RH, Vitamin D and the intestinal absorption of calcium and phosphorus [M]; in Feldman D, Glorieux FH, Pike JW (eds): Vitamin D. San Diego. Academic Press, 1997, 259–273
    38. Tolosa de Talamoni NG, Calcium and phosphorous deficiencies alter the lipid composition and fluidity of intestinal basolateral membranes [J]. Comp Biochem Physiol A Physiol, 1996, 115: 309–315
    39. McCormick CC: Passive diffusion does not play a major role in the absorption of dietary calcium in normal adults [J]. J Nutr, 2002, 132: 3428–3430
    40. Pérez AV, Picotto G, Carpentieri AR, Rivoira MA, Peralta López ME, Tolosa de Talamoni NG. Minireviewon Regulation of Intestinal Calcium Absorption. Emphasis on Molecular Mechanisms of Transcellular Pathway [J]. Digestion, 2008, 77: 22–34
    41. Van Abel M, Hoenderop JG, Bindels RJ: The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease [J]. Naunyn Schmiedebergs Arch Pharmacol, 2005, 37: 295–306
    42. den Dekker E, Hoenderop JG, Nilius B, Bindels RJ: The epithelial calcium channels, TRPV5 and TRPV6: from identification towards regulation[J]. Cell Calcium, 2003, 33: 497–507
    43. Tolosa de Talamoni N, Perez A, Alisio A. Effect of cholecalciferol on intestinal epithelial cells [J]. Trends Comp Biochem Physiol, 1998, 5:179–185
    44. Venyaminov SY, Klimtchuk ES, Bajzer Z, et al. Changes in structure and stability of calbindin-D 28K upon calcium binding [J]. Anal Biochem, 2004, 334: 97–105
    45. Ghijsen WE, De Jong MD, Van Os CH. ATPdependent calcium transport and its correlation with Ca2+ -ATPase activity in basolateral plasma membranes of rat duodenum [J]. Biochim Biophys Acta, 1982, 689: 327–336
    46. Anderson RG. Caveolae. where incoming and outgoing messengers meet [J]. Proc Natl Acad Sci USA, 1993, 90: 10909–10913
    47. Ghijsen WE, De Jong MD, Van Os CH. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine [J]. Biochim Biophys Acta, 1983, 730: 85–94
    48. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications [J]. Physiol Rev, 1999, 79: 763–854
    49. Hoenderop JG, Vennekens R, Muller D, et al. Function and expression of the epithelial Ca2+ channel family: comparison of mammalian ECaC1 and 2 [J]. J Physiol 2001, 537: 747– 761
    50. Alisio A, Ca?as F, de Bronia DH, et al. Effect of vitamin D deficiency on lipid composition and calcium transport in basolateral membrane vesicles from chick intestine [J]. Biochem Mol Biol Int, 1997, 42: 339–347
    51. Wasserman RH, Smith CA, Brindak ME, et al. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine [J]. Gastroenterology, 1992, 102: 886–894
    52. Kutuzova GD, Akhter S, Christakos S, et al. Calbindin D9k knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level [J]. Proc Natl Acad Sci USA, 2006, 103: 12377–12381
    53. Arjmandi BH, Khalil DA, Hollis BW. Ipriflavone, a synthetic phytoestrogen, enhances intestinal calcium transport in vitro [J]. Calcif Tissue Int, 2000, 67: 225–229
    54. Raschka L, Daniel H: Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats [J]. Bone, 2005, 37: 728–735
    55. Gilman J, Cashman KD. The effect of probiotic bacteria on transepithelial calcium transport and calcium uptake in human intestinal- like Caco-2 cells [J]. Curr Issues Intest Microbiol, 2006, 7: 1–5
    56. Van Abel M, Hoenderop JG, Van der Kemp AW, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection [J].Am J Physiol Gastrointest Liver Physiol, 2003, 285:G78–G85
    57. Hirsch PF, Baruch H. Is calcitonin an important physiological substance? [J] Endocrine, 2003, 21: 201–208
    58. Huybers S, Naber TH, Bindels RJ, et al. Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6 [J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292:G92–G97
    59. Walters JR, Balesaria S, Chavele KM, et al. Calcium channel TRPV6 expression in human duodenum: different relationships to the vitamin D system and aging in men and women [J]. J Bone Miner Res, 2006, 21: 1770–1777
    60. Wasserman RH, Smith CA, Brindak ME, et al. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine [J]. Gastroenterology, 1992, 102: 886–894
    61. Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling [J]. Biochem Soc Trans, 2003, 31:1300–1301
    62. Sun X, Zemel MB. 1,25-dihydroxyvitamin D3 modulation of adipocyte reactive oxygen species production [J]. Obesity, 2007, 15:1944–1953
    63. Van Cromphaut SJ, Rummens K, Stockmans I, et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms [J]. J Bone Miner Res 2003, 18: 1725–1736
    64. Behl C, Estrogen can protect neurons: modes of action [J]. J Steroids Biochem Mol Biol, 2003, 83:195–197
    65. Grajek W, Olejnik A, Sip A. Probiotics, prebiotics and antioxidants as functional foods [J]. Acta Biochim Pol, 2005, 52(3):665–671
    66. Uskova MA, Kravchenko LV. Antioxidant properties of lactic acid bacteria--probiotic and yogurt strains [J]. Vopr Pitan, 2009, 78(2):18–23
    67. Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: Role of antioxidants [J]. Curr Drug Metab, 2007, 8:519–525
    68. Orihuela D, Meichtry V, Pizarro M. Aluminium-induced impairment of transcellular calcium absorption in the small intestine: Calcium uptake and glutathione influence [J]. J Inorg Biochem 2005, 99:1879–1886
    69. Tolosa de Talamoni NG, Marchionatti A, Alisio A, et al. Menadione alters calcium intestinal absorption and associated variables by producing hydroxyl free radicals [J]. Bone, 2001, 29:304
    70. Rivoira M, Marchionatti A, Peralta M, et al. Oxidative stress caused by sodium deoxicholate inhibits intestinal calcium absorption [J]. Bone, 2007, 40:S5-S6
    71. Paul W. Redox active calcium ion channels and cell death [J]. Arch Biochem Biophys 2005, 434:33-42
    72. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters [J]. Cardiovasc Res, 2006, 71:310–321
    73. Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: Role of antioxidants [J]. Curr Drug Metab, 2007, 8:519–525
    74. Alam MR, Kim SM, Lee JI, et al. Effects of safflower seed oil in osteoporosis induced- ovariectomized rats [J]. Am J Chin Med, 2006, 34(4): 601–612
    75. Sakuma M, Endo N, Oinuma T, et al. Vitamin D and intact PTH status in patients with hip fracture [J] Osteoporosis Int, 2006, 17(11): 1608–1614
    76. Norrdin RW, Phemister RD, Jaenke RS. Density and composition of trabecular and cortical bone in perinatally irradiated beagles with chronic renal failure [J]. Calcif Tissue Res, 1977, 24:99–105
    77. Krook, L. and Lowe, J, E. Nutritional Secondary Hyperparathyroidism in the Horse: With a Description of the Normal Equine Parathyroid Gland [J]. Pathol Vet, 1964, l(Suppl 1): 1–11
    78.樊小力,人体机能学[M].西安:西安交通大学出版社,2006:639–640
    79. Rosen CJ. What's new with PTH in osteoporosis: where are we and where are we headed? [J]. Trends Endocrinol Metab, 2004, 15:229–233
    80. Carney SL. Calcitonin and human renal calcium and electrolyte transport [J]. Miner Electrolyte Metab, 1997, 23(1):43–47
    81. Rooney TA, Renard DC, Sass EJ, Thomas AP. Oscillatory cytosoliccalcium waves independent of stimulated inositol 1,4,5-trisphosphateformation in hepatocytes [J]. J Biol Chem, 1991, 266:12272–12282 29
    82. Xu KY, Zweier JL, Becker LC. Hydroxyl radical inhibits sarcoplasmic reticulum Ca2+-ATPase function by direct attack on the ATP binding site [J]. Circ Res, 1997, 80:76–81
    83. Reeves JP, Bailey CA, Hale CC. Redox modification of sodium–calcium exchange activity in cardiac sarcolemmal vesicles [J]. J Biol Chem, 1986, 261:4948–4955
    84. Kato M, Kako KJ. Na+/Ca2+ exchange of isolated sarcolemmal membrane: effects of insulin, oxidants and insulin deficiency [J]. Mol Cell Biochem, 1988, 83:15–25
    85.皱冲之.组织学与胚胎学[M].北京:人民卫生出版社,2002:45–49
    86. Baylink DJ, Finkelman RD, Mohan S. Growth factors to stimulate bone formation [J]. J Bone Miner Res, 1993, 8:S565–572
    87. Mundy GR. Cytokines and growth factors in the regulation of bone remodeling [J]. J Bone Miner Res,1993, 8:S505–S510
    88. Blair HC, Schlesinger PH, Ross FP, Teitelbaum SL. Recent advances toward understanding osteoclast physiology [J]. Clin Orthop, 1993, 294:7–22
    89. Mody N, Parhami F, Sarafian TA, et a1. Oxidative stress modulates osteoblastic diferentiation of vascular an d bo ne cells [J]. Free Radic Biol Med, 2001, 31:509–519
    90. Brayboy JR, Chen XW, Lee YS, et a1. The protective effects of Ginkgo biloba extract (EGb 761) against free radical damage to osteoblast-like bone cells (MC3T3-E1) and the proliferative effects of EGb 761 on these cells [J]. Nutr Res, 2001, 21:1275–1285
    91. Byun CH, Koh JM, Kim DK, et a1. A1pha-lipoic acid inhibits TNF-alpha-induced apoptosis in human bo ne marrow stromal cells [J]. J Bone Miner Res, 2005, 20:1125–1135
    92. Lee NK, Choi YG, Baik JY, et a1. A crucial rolefor reactive oxygen species in RANKL-induced osteoclast differentiation. Blood [J] 2005, 106:852–859
    93. Park BG,Yoo CI,Kim HT,et a1.Role of mitogen-activated protein kinases in hydrogen pe roxide-induced cell death in oste btastic cels [J]. Toxicology, 2005, 215:115–125
    94. Bai XC, Lu D, Bai J, et a1.Oxidative stress inhibits osteoblastic diferentiation of bo ne cells by ERK and NF-kappaB [J]. Biochem Biophys Res Commun, 2004, 314:197–207
    95. Vaaraniemi J, Haneen JM, Kaarlonen K, et a1. Intracellular machinery for matrix degradation in bone resorbing osteelasts [J]. J Bone Miner Res, 2004, 19:1432–1440
    96. Lee NK,Choi YG,Baik JY,et a1.A crucial rolefor reactive oxygen species in RANKL-induced osteoclast differentiation [J]. Blood, 2005, 106:852–859
    97. Steinbeck MJ, Appel Jr WH, Verhoeven AJ, Karnovsky MJ. NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone [J]. J Cell Biol, 1994, 126:765–772
    98. Lean JM, Jagger CJ, Kirstein B, et al. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation [J]. Endocrinology, 2005, 146:728–735
    99. Dougll WC, Glaccum M, Chattier K, et a1.RANK is essential for osteoclast and lymph node development [J]. Genes Dev, 1999, 1:2412–2424
    100. Basu S, Micha?lsson K, Olofsson H, et al. association between oxidative stress and bone mineral density [J]. Biochem Biophys Res Commun 2001, 288(1):275–279
    101. Shay KP, Moreau RF, Smith EJ, et al. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta [J]. 2009, 1790(10):1149–1160
    102. Li Y, Zhao Y, Yu W, et al. Scavenging ability on ROS of alpha-lipoic acid (ALA) [J]. Food Chemistry, 2004, 84: 563–567
    103. Harrison EH, McCormick DB, The metabolism of dl-(1, 6–14C) lipoic acid in the rat [J]. ArchBiochemBiophys, 1974, 160:514–522
    104. Panigrahi M, Sadguna Y,. Shivakumar BR, et al. Alpha-Lipoic acid protects against reperfusion injury following cerebral ischemia in rats [J]. Brain Res, 1996, 717: 184–188
    105. Arivazhagan P, Shila S, Kumaran S, et al. Effect of DL-alpha-lipoic acid on the status of lipid peroxidation and antioxidant enzymes in various brain regions of aged rats [J]. Exp Gerontol, 2002, 37:803–811
    106. Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants [J]. A critical evaluation, Free Radic Res, 1994, 20: 119–133
    107. Devasagayam TP, Subramanian M, Pradhan DS, Sies H. Prevention of singlet oxygen-induced DNA damage by lipoate [J]. Chem Biol Interact, 1993, 86:79–92
    108. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol, 2007, 39:44–84
    109. Lodge JK, Traber MG, Packer L, Thiol chelation of Cu2+ by dihydrolipoic acid prevents human low density lipoprotein peroxidation [J]. Free Radic Biol Med, 1998, 25:287–297
    110. Suh JH, Moreau R, Heath SH, Hagen TM, Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex [J]. Redox Rep, 2005, 10:1052–1060
    111.海春旭.自由基医学[M].西安:第四军医大学出版社,2006,261–266
    112. Suh JH, Wang H, Liu RM, et al. (R)-alpha-lipoic acid reverses the age-related loss in GSH redox status in post-mitotic tissues: evidence for increased cysteine requirement for GSH synthesis [J], Arch Biochem Biophys, 2004, 423:126–135
    113. Suh JH, Shenvi SV, Dixon BM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid [J]. Proc Natl Acad Sci USA, 2004, 101:3381–3386
    114. Bast A, Haenen GR. Lipoic acid: a multifunctional antioxidant, Biofactors 2003, 17: 207–213
    115. Suzuki YJ, Mizuno M, Tritschler HJ, Packer L. Redox regulation of NF-kappa B DNA binding activity by dihydrolipoate [J]. Biochem Mol Biol Int, 1995, 36:241–246
    116. Kim HJ, Chang EJ, Kim HM, et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha [J]. Free Radical Biology & Medicine, 2006, 40: 1483-1493
    1. Laroche M, Moulinier L, Bon E, et al. Renal tubular disorder and arteriopathy of the lower limbs: Risk factors for osteoporosis in men? [J]. Osteoporosis Int, 1994, 4(6):309–313
    2. Hou JC-H, Zernicke RF, Barnard RJ. High-fat sucrose diet effects on femoral neck geometry and biomechanics [J]. Clin Biomech, 1990, 5:162–168
    3. Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long-term, high-fat sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties [J]. Bone, 1995, 16(1):25–31
    4. Salem GJ, Zernicke RF, Barnard RJ. Diet-related changes in mechanical properties of rat vertebrae [J]. Am J Physiol, 1992, 262:R318–321
    5. Parra P, Bruni G, Palou A, Serra F. Dietary calcium attenuation of body fat gain during high-fat feeding in mice [J]. J Nutr Biochem, 2008, 19(2): 109–117
    6. Papakonstantinou E, Flatt WP, Huth PJ, Harris RB. High dietary calcium reduces body fat content, digestibility of fat and serum vitamin D in rats [J]. Obes Res, 2003, 11(3):387–394
    7. Orihuela D, Meichtry V, Pizarro M. Aluminium-induced impairment of transcellular calcium absorption in the small intestine: Calcium uptake and glutathione influence [J]. J Inorg Biochem, 2005, 99(9):1879–1886
    8. Tolosa de Talamoni NG, Marchionatti A, Alisio A, et al. Menadione alters calcium intestinal absorption and associated variables by producing hydroxyl free radicals [J]. Bone, 2001, 29:304
    9. Rivoira M, Marchionatti A, Peralta M, et al. Oxidative stress caused by sodium deoxicholate inhibits intestinal calcium absorption [J]. Bone, 2007, 40:S5–S6
    10. Allen RG, Tresini M. Oxidative stress and gene regulation [J]. Free Radic Biol Med, 2000, 28(3):463–499
    11. Hensley K, Robinson KA, Gabbita SP, et al. Reactive oxygen species, cell signaling, and cell injury [J]. Free Radic Biol Med, 2000, 28:1456–1462
    12. Bagchi D, Carryl OR, Tran1 MX, et al. Stress, diet and alcohol-induced oxidative gastrointestinal mucosal injury in rats and protection by bismuth subsalicylate [J]. J Appl Toxicol, 1998, 8:3–13
    13. Feillet-Coudray C. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems [J]. Free Radic Biol Med, 2009, 46(5):624–632
    14. Song Y, Peng X, Porta A, et al. Calcium Transporter 1 and Epithelial Calcium Channel Messenger Ribonucleic Acid Are Differentially Regulated by 1,25 Dihydroxyvitamin D3 in the Intestine and Kidney of Mice [J]. Endocrinology, 2003, 144(9):3885–3894
    15. Ghijsen WE, De Jong MD, Van Os CH. ATPdependent calcium transport and its correlation with Ca2+ -ATPase activity in basolateral plasma membranes of rat duodenum [J]. Biochim Biophys Acta, 1982, 689: 327–336
    16. Van Cromphaut SJ, Dewerchin M, Hoenderop GJ, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects [J]. Proc Natl Acad Sci USA, 2001, 98(23):13324–13329
    17. Paul W. Redox active calcium ion channels and cell death [J]. Arch Biochem Biophys, 2005, 434: 33–42
    18. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters [J]. Cardiovasc Res, 2006, 71:310–321
    19. Marchionatti AM, Díaz de Barboza GE, Centeno VA, et al. Effects of a single dose of menadione on the intestinal calcium absorption and associated variables [J]. J Nutr Biochem, 2003, 14(8):466–472
    20. Dandona P, Karne R, Ghanim H, et al. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids [J]. Circulation, 2000, 101:122–124
    21. Kobayashi H, Gil-Guzman E, Mahran AM, et al. Quality control of reactive oxygen speciesmeasurement by luminol-dependent chemiluminescence assay [J]. J Androl, 2001, 22:568–574
    22. Lowry OH, Rosebrough NJ, Farr AL. Protein measurement with Folin Phenol reagent [J]. J Biol Chem, 1951, 193:265–275
    23. Kim MS, Park JY, Namkoong C, et al. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase [J]. Nat Med, 2004, 10:727–733
    24. Zemel MB, Richards J, Milstead A, Campbell P. Effects of calcium and dairy on body composition and weight loss in African-American adults [J]. Obes Res, 2005, 13:1218–1225
    25. Turrens JF. Mitochondrial formation of reactive oxygen species [J]. J Physiol, 2003, 552:335–344
    26. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol, 2007, 39:44–84
    27. Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidant. A critical evaluation [J]. Free Radic Res, 1994, 20(2):119–133
    28. Yang R, Le G, Li A, et al. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet [J]. Nutrition, 2006, 22(11-12):1185–1191
    29. Yang RL, Li W, Shi YH, Le GW. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis [J]. Nutrition, 2008, 24:582–588
    30. Sun X, Zemel MB. Dietary calcium regulates ROS production in aP2-agouti transgenic mice on high-fat/high-sucrose diets [J]. Int J Obesity, 2006, 30(9):1341–1346
    31. Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling [J]. Biochem Soc Trans, 2003, 31:1300–1301
    32. Sun X, Zemel MB. 1,25-dihydroxyvitamin D3 modulation of adipocyte reactive oxygen species production [J]. Obesity, 2007, 15(8):1944–1953
    33. Kourie JI. Interaction of reactive oxygen species with ion transport mechanisms [J]. Am J Physiol, 1998, 275:C1–24
    34. Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel [J]. Nature, 1989, 340:230–233
    35. Temsah RM, Netticadan T, Chapman D, et al. Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart [J]. Am J Physiol, 1999, 277:H584–594
    36. Eigel BN, Gursahani H, Hadley RW. ROS are required for rapid reactivation of Na+/Ca2+ exchanger in hypoxic reoxygenated guinea pig ventricular myocytes [J]. Am J Physiol, 2004, 286:H955–963
    37. Pérez AV, Picotto G, Carpentieri AR, et al. Minireview on Regulation of Intestinal Calcium Absorption.Emphasis on Molecular Mechanisms of Transcellular Pathway [J]. Digestion, 2008, 77(1): 22–34
    38. Passeri G, Vescovini R, Sansoni P, et al. Calcium metabolism and vitamin D in the extreme longevity [J]. Exp Gerontol, 2008, 43(2):79–87
    1. Yang RL, Li W, Shi YH, Le GW. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis [J]. Nutrition, 2008, 24:582–588
    2. Parhami F, Garfinkel A, Demer LL. Role of lipids in osteoporosis [J]. Arterioscler Thromb Vasc Biol, 2000, 20(11):2346–2348
    3. Bone HG, Kiel DP, Lindsay RS, et al. Effects of atorvastatin on bone in postmenopausal women with dyslipidemia: a double-blind, placebo-controlled, dose-ranging trial [J]. J Clin Endocrinol Metab,2007, 92:4671–4677
    4. Wu LY, Yang TC, Kuo SW, et al. Correlation between bone mineral density and plasma lipids in Taiwan [J]. Endocr Res, 2003, 29:317–325
    5. Parhami F, Tintut Y, Beamer WG, et al. Atherogenic high-fat diet reduces bone mineralization in mice [J]. J Bone Miner Res, 2001, 16:182–188
    6. Slim RM, Toborek M, Watkins BA, et al. Susceptibility to hepatic oxidative stress in rabbits fed different animal and plant fats [J]. J Am Coll Nutr, 1996, 15:289–294
    7. Sreekumar R, Unnikrishnan J, Fu A, et al. Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle [J]. Am J Physiol Endocrinol Metab, 2002, 282:E1055–1061
    8. Basu S, Micha?lsson K, Olofsson H, et al. Association between oxidative stress and bone mineral density [J]. Biochem Biophys Res Commun, 2001, 288(1):275–279
    9. Isomura H, Fujie K, Shibata K, et al. Bone metabolism and oxidative stress in postmenopausal rats with iron overload [J]. Toxicology, 2004, 197(2):93–100
    10. Muthusami S, Ramachandran I, Muthusamy B, et al. Ovariectomy induces oxidative stress and impairs bone antioxidant [J]. Clin Chim Acta, 2005, 360:81–86
    11. D'Amelio P, Cristofaro MA, Tamone C, et al. Role of iron metabolism and oxidative damage in postmenopausal bone loss [J]. Bone, 2008, 43(6):1010–1015
    12. Hamada Y, Fujii H, Kitazawa R, et al. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications [J]. Bone, 2009, 44(5):936–941
    13. Garrett IR, Boyce BF, Oretto RO, et al. Oxygen derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo [J]. J Clin Invest, 1990, 85:632–639
    14. Lean JM, Jagger CJ, Kirstein B, et al. Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation [J]. Endocrinology, 2005, 146:728–735
    15. Kwan Tat S, Padrines M, Théoleyre S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology [J]. Cytokine Growth Factor Rev, 2004, 15:49–60
    16. Gangoiti MV, Cortizo AM, Arnol V, et al. Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells [J]. Eur J Pharmacol, 2008, 600(1-3):140–147
    17. Cooke GM. A review of the animal models used to investigate the health benefits of soy isoflavones [J]. J AOAC Int, 2006, 89(4):1215–1227
    18. Rao LG, Mackinnon ES, Josse RG, et al. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women [J]. Osteoporos Int, 2007, 18:109–115
    19. Kim HJ, Chang EJ, Kim HM, et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha [J]. Free Radic Biol Med, 2006, 40(9):1483–1493
    20. Wohl GR, Loehrke L, Watkins BA, Zernicke RF. Effects of high-fat diet on mature bone mineral content, structure, and mechanical properties [J]. Calcif Tissue Int, 1998, 63:74–79
    21. Yang R, Le G, Li A, et al. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet [J]. Nutrition, 2006, 22:1185–1191
    22. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver [J]. Biochim Biophys Acta, 1979, 582:67–78
    23.顾蓓,杨欣,商敏等.替勃龙对去势大鼠骨强度的影响研究[J].中国骨质疏松杂志, 2007, 13(1): 55–58
    24.黄纪明,白树民,朱德兵.质构仪在骨生物力学检测中的应用[J].中国骨质疏松杂志, 2003, 9(3):276–278
    25. Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidant. A critical evaluation [J]. Free Radic Res, 1994, 20:119–133
    26. Young IS, McEneny J. Lipoprotein oxidation and atherosclerosis [J]. Biochem Soc Trans, 2001, 29:358–362
    27. Vaca CE, Wilhelm J, Harms-Rihsdahl M. Interaction of lipid peroxidation product with DNA. A review [J]. Mutat Res Rev Genet Toxicol, 1988, 195:137–149
    28. Ohkawa H, Ohishi N, Yagi K. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction [J]. Anal Biochem, 1979, 95:351–358
    29. Inal M, Altinisik M, Bilgin MD. The effect of quercetin on renal ischemia and reperfusion injury in the rat [J]. Cell Biochem Funct, 2002, 20:291–296
    30. Feillet-Coudray C. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems [J]. Free Radic Biol Med, 2009, 46:624–632
    31. Parhami F, Jackson SM, Tintut Y, et al. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells [J]. JBone Miner Res, 1999, 14:2067–2078
    32. Takada I, Suzawa M, Matsumoto K, Kato S. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts [J]. Ann N Y Acad Sci, 2007, 1116:182–195
    33. Ikeda T, Utsuyama M, Hirokawa K. Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones [J]. J Bone Miner Res, 2001, 16:1416–1425
    34. Ha H, Lee JH, Kim HN, et al. alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis [J]. J Immunol, 2006, 176:111–117
    35. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol, 2007, 39(1):44–84
    36. Sims NA, Clément-Lacroix P, Da Ponte F, et al. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of State5 [J]. J Clin Invest, 2000, 106:1095–1103
    37. McCarthy TL, Centrella M. Local IGF-I expression and bone formation [J]. Growth Horm IGF Res, 2001, 11:213–219
    38. Scacchi M. Pincelli AI. Cavagnini F. Growth hormone in obesity [J]. Int J Obes Relat Metab Disord, 1999, 23:260–271
    39. Hinkal G, Donehower LA. How does suppression of IGF-1 signaling by DNA damage affect aging and longevity? [J]. Mech Ageing Dev, 2008, 129:243–253
    40. Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation and genetics [J]. Circulation, 1995, 91:2488–2496
    41. Kojda G, Harrison D. Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure [J]. Cardiovasc Res, 1999, 43:562–571
    42. Kim SO, Yun SJ, Jung B, et al. Hypolipidemic effects of crude extract of adlay seed (Coix Lachrymajobi var. mayuen) in obesity rat fed high fat diet: Relations of TNF-a and leptin mRNA expressions and serum lipid levels [J]. Life Sci, 2004, 75:1391–1404
    43. Borst SE, Conover CF. High-fat diet induces increased tissue expression of TNF-a [J]. Life Sci, 2005, 21:56–65
    44. Sheweita SA, Khoshhal KI. Calcium metabolism and oxidative stress in bone fractures: Role of antioxidants [J]. Curr Drug Metab, 2007, 8:519–525
    1. Steinberg D. Antioxidants and atherosclerosis [J]. A current assessment Circulation, 1991, 84:1420–1425
    2. Kopelman PG. Obesity as a medical problem [J]. Nature, 2000, 404:635–643
    3. Parhami F, Garfinkel A, Demer LL. Role of lipids in osteoporosis [J]. Arterioscler Thromb Vasc Biol 2000, 20(11):2346–2348
    4. Hou JC-H, Zernicke RF, Barnard RJ. High-fat sucrose diet effects on femoral neck geometry and biomechanics [J]. Clin Biomech, 1990, 5:162–168
    5. Yang RL, Li W, Shi YH, Le GW Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis [J]. Nutrition, 2008, 24:582–588
    6. Salem GJ, Zernicke RF, Barnard RJ. Diet-related changes in mechanical properties of rat vertebrae [J]. Am J Physiol, 1992, 262:R318–321
    7. Bertoli S, Striul L, Testolin G, et al. Nutritional status and bone mineral mass in children treated with ketogenic diet [J]. Recenti Prog Med, 2002, 93:671–675
    8. Zernicke RF, Salem GJ, Barnard RJ, Schramm E. Long-term, high-fat-sucrose diet alters rat femoral neck and vertebral morphology, bone mineral content, and mechanical properties [J]. Bone, 1995, 16:25–31
    9. Ward WE, Kim S, Robert Bruce W. A western-style diet reduces bone mass and biomechanical bone strength to a greater extent in male compared with female rats during development [J]. Br J Nutr, 2003, 90:589–595
    10. Li KC, Zernicke RF, Barnard RJ, Li AF. Effects of a high fat-sucrose diet on cortical bone morphology and biomechanics [J]. Calcif Tissue Int, 1990, 47:308–313
    11. Lac G, Gavalie H, Ebal E, Michaux O. Effects of a high fat diet on bone of growing rat. Correlations between visceral fat, adiponctin and bone mass density [J]. Lipids Health Dis, 2008, 7:16
    12. Parhami F, Tintut Y, Beamer WG, et al. Atherogenic high-fat diet reduces bone mineralization in mice [J]. J Bone Miner Res, 2001, 16:182–188
    13. Cao JJ, Gregoire BR, Gao H High-fat diet decrease cancellous bone mas but has no effect on cortical bone mass in the tibia in mice [J]. Bone, 2009, 44:1097–1104
    14. Meikle MC, Bord S, Hembry RM, et al. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines [J]. J Cell Sci, 1992, 103:1093–1099
    15. Delaisses JM, Engsing MT, Everts V, et al. Proteinases in bone resorption: obvious and less obious and less obvious roles [J]. Clin Chim Acta, 2000, 291:223–234
    16. Wang X, Kua HY, Hu Y, et al. P53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling [J]. J Cell Biol, 2006, 172:115–125
    17. Paigen B, Morrow A, Brandon C, et al. Variation in susceptibility to atherosclerosis among inbred strains of mice [J]. Atherosclerosis, 1985, 57:65–73
    18. Halloran BP, Ferguson VL, Simske SJ, et al. Changes in bone structure and mass with advancing age in the male C57BL/6J mouse [J]. J Bone Miner Res, 2002, 17:1044–1050
    19. Burr DB. The contribution of the organic matrix to bone’s material properties [J]. Bone, 2002, 31: 8–11
    20. Komori T. Regulation of osteoblast differentiation by transcription factors [J]. J Cell Biochem, 2006, 99(5):1233–1239
    21. Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro [J]. Calcif Tissue Int, 2006, 78:98-102
    22. Wittrant Y, Couillaud S, Theoleyre S, et al. Osteoprotegerin differentially regulates protease expression in osteoclast cultures [J]. Biochem Biophys Res Commun, 2002, 293: 38–44
    23. Hayami T, Kapila YL, Kapila S. MMP-1 (collagenase-1) and MMP-13 (collagenase-3) differentially regulate markers of osteoblastic differentiation in osteogenic cells [J]. Matrix Biol, 2008, 27:682–692
    24. Westermarck J, Kahari V. Regulation of matrix metalloproteinase expression in tumor invasion [J]. FASEB J, 1999, 13:781–792
    25. Parhami F, Jackson SM, Tintut Y, et al. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells [J]. J Bone Miner Res, 1999, 14:2067–2078
    26. Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients [J]. Arterioscler Thromb Vasc Biol, 1997, 17:680–687
    27. Takada I, Suzawa M, Matsumoto K, Kato S. Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts [J]. Ann N Y Acad Sci, 2007, 1116:182–195
    28. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications [J]. Stem Cells, 2001, 19:180–192
    29. Beresford JN, Bennett JH, Devlin C, et al. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures [J]. J Cell Sci, 1992, 102:341–351
    30. Okamoto H, Iwamoto T, Kotake S, et al. Inhibition of NF-kappaB signaling by fenofibrate, a peroxisome proliferator-activated receptor-alpha ligand, presents a therapeutic strategy for rheumatoid arthritis [J]. Clin Exp Rheumatol, 2005, 23:323–330
    31. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor [J]. Diabetes, 1998, 47:507–514
    32. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat [J].d Endocrinology, 1996, 137(1):354–366
    33. Chawla A, Boisvert WA, Lee CH, et al. A PPAR-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis [J]. Mol Cell, 2001, 7: 161–171
    34. Brun RP, Tontonoz P, Forman BM, et al. Differential activation of adipogenesis by multiple PPAR isoforms [J]. Genes Dev, 1996, 10(8):974–984
    35. Bray GA, Popkin BM. Dietary fat intake does affect obesity! [J]. Am J Clin Nutr, 1998, 68:1157–1173
    36. Fernandez ML,West KL. Mechanisms by which dietary fatty acids modulate plasma lipids [J]. J Nutr, 2005, 135:2075–2078
    37. Bassaganya-Riera J, Hontecillas R, Beitz DC. Colonic anti-inflammatory mechanisms of conjugated linoleic acid [J]. Clin Nutr, 2002, 21:451–459
    38. Zhang L, Geng Y, Yin M, et al. Lowω-6/ω-3 polyunsaturated fatty acid ratios reduce hepatic C-reactive protein expression in apolipoprotein E–null mice [J]. Nutrition, 2010, DOI 10.1016/j.nut.2009.08.018
    39. Doolittle MH, LeBoeuf RC, Warden CH, et al. A polymorphism affecting apolipoprotein A-II translational efficiency determines high density lipoprotein size, and composition [J]. J Biol Chem, 1990, 265: 16380–16388
    40. Smith D, Ahn YS, Pedro-Botet J, et al. Dietary fat saturation distinctly affects apolipoprotein gene expression and high density lipoprotein size distribution in two strains of Golden Syrian hamsters [J]. Nutr Res, 2001, 21:215–228
    41. Hirasawa H, Tanaka S, Sakai A, et al. ApoE gene deficiency enhances the reduction of bone formation induced by a high-fat diet through the stimulation of p53-mediated apoptosis in osteoblastic cells [J]. J Bone Miner Res, 2007, 22(7):1020–1030
    42. Steinbeck MJ, Appel Jr WH, Verhoeven AJ, Karnovsky MJ NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone [J]. J Cell Biol, 1994, 126:765–772
    43. Poli G, Leonarduzzi G, Biasi F, Chiarpotto EOxidative stress and cell signaling [J]. Curr Med Chem, 2004, 11:1163–1182
    44. Garrett IR, Boyce BF, Oretto RO, et al. Oxygen derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo [J]. J Clin Invest, 1990, 85:632–639
    45. Muthusami S, Ramachandran I, Muthusamy B, et al. Ovariectomy induces oxidative stress and impairs bone antioxidant [J]. Clin Chim Acta, 2005, 360:81–86
    46. D'Amelio P, Cristofaro MA, Tamone C, et al. Role of iron metabolism and oxidative damage in postmenopausal bone loss [J]. Bone, 2008, 43(6):1010–1015
    47. Hamada Y, Fujii H, Kitazawa R, et al. Thioredoxin-1 overexpression in transgenic mice attenuates streptozotocin-induced diabetic osteopenia: a novel role of oxidative stress and therapeutic implications [J]. Bone, 2009, 44(5):936–941
    48. Mochizuki H, Hakeda Y, Wakatsuki N, et al. Insulin-like growth factor-1 supports formation and activation of osteoclasts [J]. Endocrinology, 1992, 131:1075–1080
    49. Niu T, Xu X. Candidate genes for osteoporosis. Therapeutic implications [J]. Am J Pharmacogenomics, 2001, 1:11-19
    50. Bielohuby M, Matsuura M, Herbach N, et al. Short Term Exposure to Low-Carbohydrate / High Fat Diets Induces Low Bone Mineral Density and Reduces Bone Formation in Rats [J]. J Bone Miner Res, 2009, DOI 2009:10.1359/jbmr.090813.
    51. Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and–independent mechanisms [J]. J Endocrinol, 2002, 175:19–31
    52. Miyakoshi N, Richman C, Qin X, et al. Effects of recombinant insulin-like growth factor-binding protein-4 on bone formation parameters in mice [J]. Endocrinology, 1999, 140:5719–5728
    53. S Boast, K de los Santos, I Schieren, et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation [J]. Nat Genet, 2000, 24:304–308
    54. Fuller K, Lean JM, Bayley KE, et al. A role of TGF-B in osteoclast differentiation and survival [J]. J Cell Sci, 2000, 113: 2445–2453
    55. Kwan Tat S, Padrines M, Théoleyre S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology [J]. Cytokine Growth Factor Rev, 2004, 15:49–60
    56. Jagger CJ, Lean JM, Davies JT, Chambers TJ. Tumor necrosis factor- mediates osteopenia caused by depletion of antioxidants [J]. Endocrinology, 2005, 146:113–118
    57. Miljkovic Dj, Cvetkovic I, Vuckovic O, et al. The role of interleukin-17 in inducible nitric oxide synthase-mediated nitric oxide production in endothelial cells [J]. Cell Mol Life Sci, 2003 60:518–525
    58. Das UN. Is obesity an inflammatory condition? [J]. Nutrition, 2001, 17:953–966
    59. Zhang R, Flier EM, Flier JSReduced Adiposity and High-Fat Diet-Induced Adipose Inflammation in Mice Deficient for Phosphodiesterase 4B [J]. Endocrinology, 2009, 150:3076–3082
    60. Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T cells [J]. J Immunol, 1995, 155 (12): 5483–5486
    61. Bendixen AC, Shevde NK, Dienger KM, et al. IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1 [J]. Proc NatlAcad Sci U S A, 2001, 98(5):2443–2448
    62. Mangashetti LS, Khapli SM, Wani MR. IL-4 inhibits bone-resorbing activity of mature osteoclasts by affecting NF-kappa B and Ca2+ signaling [J]. J Immunol, 2005, 175(2):917–925
    63. Binder CJ, Chang MK, Shaw PX, et al. Innate and acquired immunity in atherogenesis [J]. Nat Med, 2002, 8(11):1218-1226
    64. Hensley K, Robinson KA, Gabbita SP, et al. Reactive oxygen species, cell signaling, and cell injury [J]. Free Radic Biol Med, 2000, 28:1456–1462.
    65. Poli G, Leonarduzzi G, Biasi F, et al. Oxidative stress and cell signaling [J]. Current Medicinal Chemistry, 2004, 11:1163–1182
    66. Kitaura H, Nagata N, Fujimura Y, et al. Effect of IL-12 on TNF-alpha-mediated osteoclast formation in bone marrow cells: apoptosis mediated by Fas/Fas ligand interaction [J]. J Immunol, 2002, 169:4732–4738
    67. Kim HJ, Chang EJ, Kim HM, et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha [J]. Free Radic Biol Med, 2006, 40:1483–1493
    68. Ha H, Lee JH, Kim HN, et al. alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis [J]. J Immunol, 2006, 176:111–117
    69. Ergen HA, Gormus U, Narter F, et al. Investigation of NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in prostate cancer [J]. Anticancer Res, 2007, 27(6B):4107–4110
    70. Reddy AJ, Kleeberger SR. Knockdown of NQO1 leads to decreased production of ROS after exposure to hyperoxia [J]. Proc Am Thorac Soc, 2008, 5:368
    71. Asher G, Lotem J, Kama R, et al. NQO1 stabilizes p53 through a distinct pathway [J]. Proc Natl Acad Sci USA, 2002, 99:3099–3104.
    72. Rosen CJ. What's new with PTH in osteoporosis: where are we and where are we headed? [J]. Trends Endocrinol Metab, 2004, 15:229–233
    73. Poole KE, Reeve J. Parathyroid hormone - a bone anabolic and catabolic agent [J]. Curr Opin Pharmacol, 2005, 5:612–617
    74. Reppe S, Stilgren L, Olstad OK, et al. Gene expression profiles give insight into the molecular pathology of bone in primary hyperparathyroidism [J]. Bone, 2006, 39:189–198
    1. Kim HJ, Chang EJ, Kim HM, et al. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha [J]. Free Radic Biol Med, 2006, 40: 1483–1493
    2. Ha H, Lee JH, Kim HN, et al. alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis [J]. J Immunol, 2006, 176:111–17
    3. Mody N, Parhami F, Sarafian T, Demer L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells [J]. Free Radical Biol Med, 2001, 31:509–519
    4. Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells [J]. IUBMB Life, 2007, 59(1):27–33
    5. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning) [J]. Free Radical Res, 1999, 31:261–272
    6. Norberg J, Arnér ESJ. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system [J]. Free Radical Biol Med, 2001, 31: 1287–1312
    7. Fatokun AA, Stone TW, Smith RA. Hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells: The effects of glutamate and protection by purines [J]. Bone, 2006, 39(3):542–551
    8. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation [J]. Free Radical Biol Med, 1995, 18:775–794
    9. Scott BC, Aruoma OI, Evans PJ, et al. Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation [J]. Free Radic. Res, 1994, 20:119–133
    10. Devasagayam TP, Subramanian M, Pradhan DS, et al. Prevention of singlet oxygen-induced DNA damage by lipoate [J], Chem Biol Interact, 1993, 86:79–92
    11. . Suzuki YJ. Tsuchiya M, Packer L, Thioctic acid and dihydrolipoic acid are novel antioxidants which interact with reactive oxygen species [J]. Free Radic Res, 1991, 15:255–263
    12. Devasagayam TP, Di Mascio P, Kaiser S, et al. Singlet oxygen induced singlestrand breaks in plasmid pBR322 DNA: the enhancing effect of thiols [J]. Biochim Biophys Acta, 1991, 1088:409–412
    13. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol, 2007, 39:44–84
    14.海春旭.自由基医学[M].西安:第四军医大学出版社,2006,261–266
    15. Garganta CL, Wolf B. A colorimetric assay of lipoyl-N-epsilon-lysine hydrolysis activity using 2,6-dibromoquinone-4-chlorimide. Anal Biochem. 1996;240(2):177–184
    16. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis inducing factor [J]. Nature 1999, 397:441–446
    17. Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor programmed cell death [J]. Nature 2001, 410:549–554
    18. Anwar A, Siegel D, Kepa JK, et al. Interaction of the molecular chaperone Hsp70 with human NAD(P)H:quinine oxidoreductase 1[J]. J Biol Chem, 2002, 277:14060–14067
    19. Ross D. Functions and distribution of NQO1 in human bone marrow: potential clues to benzene toxicity [J]. Chemi Biol Interact, 2005, 30:153–154
    20. Ergen HA, Gormus U, Narter F, et al. Investigation of NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism in prostate cancer [J]. Anticancer Research, 2007, 27(6B):4107–4110
    21. Reddy AJ, Kleeberge SR. Knockdown of NQO1 leads to decreased production of ROS after exposure to hyperoxia [J]. Proc Am Thorac Soc, 2008, 5:368
    22. Wang X, Kua HY, Hu Y, Guo K, et al. P53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling [J]. J Cell Biol, 2006, 172:115–125
    23. Asher G, Lotem J, Kama R, et al. NQO1 stabilizes p53 through a distinct pathway [J]. Proc Natl Acad Sci USA, 2002, 99:3099–3104
    24. Boast S, de los Santos K, Schieren I, et al. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation [J]. Nat Genet, 2000, 24:304–308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700