金属/有机涂层电解质溶液中腐蚀的半导体行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属腐蚀是金属材料使用过程中在腐蚀性介质的作用下发生不可逆转消耗的现象。多种防护方法中,涂覆有机涂层是金属防腐最好的方法之一。前人对有机涂层失效中的导电机理做了大量研究,研究方法主要基于电化学交流阻抗谱(EIS),亦建立了较为完善的理论体系。但是,电化学交流阻抗谱存在不易解析的问题,集中表现为:等效电路不唯一、某些元件物理意义不明确。本文作者通过电容-电位测试、光电化学测试、傅立叶变换红外光谱测试(FT-IR)、Mott-Schottky分析、相角分析,结合EIS,研究了不锈钢、碳钢、黄铜裸电极和有机涂层(酚醛、醇酸、环氧涂层)覆盖的电极在电解质(硫酸、氢氧化钠、硫酸钠、氯化钠)溶液中不同腐蚀时间的电化学行为。研究发现,有机涂层在电解质溶液中失效的过程,存在类似于金属表面氧化膜层的半导体电化学行为。
     不锈钢、碳钢、黄铜裸电极在电解质溶液中氧化膜的载流子密度均随浸泡时间的延长而逐渐增大。由1000Hz数据计算得三种金属在浸泡10分钟时载流子密度数量级分别约为不锈钢10~(20)-10~(21)cm~(-3),碳钢10~(21)-10~(24)cm~(-3),黄铜10~(21)-10~(23)cm~(-3),故仅考虑载流子密度因素,三种金属的防腐蚀能力从大到小依次为不锈钢、黄铜、碳钢。不锈钢钝化膜腐蚀的主要原因,在氢氧化钠溶液中为富铬层导电能力增强;而在硫酸、硫酸钠溶液中,为富铁层导电能力的增强;在氯化钠溶液中由于氯离子的侵蚀,不锈钢钝化膜表现出深能级供体离子化行为。四种溶液比较而言,硫酸溶液对黄铜的腐蚀最严重,表面氧化膜层的载流子密度在浸泡10分钟便增加到1023cm-3;黄铜在硫酸钠溶液中为溶解-再沉积的脱锌机制,而在氯化钠溶液中为锌优先溶解机制。
     根据金属/有机涂层在电解质溶液中腐蚀过程的不同电化学行为,可将有机涂层失效过程分为4个阶段:(1)绝缘体阶段。表现为Mott-Schottky曲线平行于电位轴,电容在扫描电位区间保持恒定,相角接近-90o。( 2 ) MIS(metal-insulator-semiconductor)结构阶段。涂层表面表现为半导体态,涂层内部仍旧为绝缘态。涂层表面半导体层、涂层内部绝缘层以及金属基体构成了一个MIS结构。此阶段Mott-Schottky曲线出现倾斜,载流子密度数量级一般在1015cm-3以下,载流子密度和空间电荷层厚度呈不规律变化,甚至其后续阶段涂层半导体类型也出现转变。(3)偶极极化阶段。由于外界腐蚀性介质的渗透,涂层内部出现可转动的偶极子,涂层总平均偶极距变得不为零,在外加电场下出现偶极极化现象,由于偶极弛豫作用,电容在负电位区随电位升高而增加,正电位区随电位升高而减小,较高频率下(3000Hz、5000Hz)电容的此种变化规律不明显。(4)空间电荷极化阶段。由于腐蚀的深入,涂层整体表现为半导体态,涂层与金属基体构成金属/半导体接触结构,涂层的载流子密度逐渐增加,相角向0o方向趋进。涂层快速失去对金属的保护能力,其自身功函数下降,金属/有机涂层的载流子输运受涂层孔隙率,空间电荷层容抗,金属基底反应动力学的三重控制。
     涂层载流子密度数量级在10~(15)cm~(-3)以下,涂层具有较好的防护能力,基底金属腐蚀未发生;在10~(15)cm~(-3)数量级以上,涂层的防护能力急剧下降,金属腐蚀开始发生;数量级在10~(15)cm~(-3)时涂层处于防护性能临界状态。由此证明,载流子密度可以作为定性、定量判断涂层防护性能和基底金属腐蚀程度的参量。
     利用能带模型可以对金属/有机涂层在电解质溶液中发生的半导体电化学现象机理进行描述。根据傅立叶变换红外光谱数据推断,有机涂层发生半导体转变原因之一,为腐蚀使涂层内部发生降解产生自由基,从而使涂层发生一系列半导体导电行为。
Corrosion of metals is a kind of irreversible phenomena of consumption under action of aggressive medium in use of metals. Covering surface of metals with organic coating was one of the most excellent anti-corrosion methods. Lots of researches about conduction mechanism of coatings during their degradation were carried out by predecessors. The leading research technology was electrochemical impedance spectroscopy (EIS) and relatively perfect theory system had been established. But the complex analysis baffled the development of it. The most important problems were non-unique equivalent circuits and indefinite physical meanings of certain circuit components. Capacitance-potential testing, photo-electrochemistry testing, Fourier transform infrared spectroscopy (FT-IR) and Mott-Schottky analysis, phase angle analysis combined with EIS were utilized to study respective semiconductor behaviors of naked stainless steel (SS), carbon steel (CS), yellow brass (YB) electrodes and coated electrodes (phenolic coating, alkyd coating and epoxy coating were involved in this paper) immersed in electrolytes (sulfuric acid solution, sodium hydroxide solution, sodium sulfate solution, sodium chloride solution) in this paper. It is discovered that the electrochemical behaviors of coated electrodes during its degradation in electrolytes is similar to the electrochemical behaviors of semiconductor oxide film generated on surface of above mentioned metals in electrolytes.
     Carrier density of oxide films on surface of naked SS, CS and YB electrodes in electrolytes rises with growing immersion time. The carrier density of oxide films on surface of SS, CS and YB immersed for 10 minutes calculated from the data at 1000Hz respectively is 10~(20)cm~(-3)-10~(21)cm~(-3), 10~(21)cm~(-3)-10~(24)cm~(-3), 10~(21)cm~(-3)-10~(23)cm~(-3), so just as far as carrier density is concerned, descending sort about anti-corrosion property of the 3 kinds of metal in electrolytes is SS, YB, CS. The main cause of SS’s corrosion in sodium hydroxide solution is the rising conductibility of chromium-rich layer, while it is due to the ascending conductance of iron-rich layer in sulfuric acid and sodium sulfate solutions. Owing to aggression of chloride ions, deep level donors in passive film of SS are ionized. The corrosion action of sulfuric acid solution to YB is more intensive than the other 3 solutions. The dezincification mechanism of YB is resolution-redeposition theory in sodium sulfate solution and is preferential solution of zinc theory in sodium chloride solution.
     According to the different electrochemical behaviors of metal/organic coating in electrolytes during its degradation, the corrosion process of coatings can be divided into 4 stages. (1) Insulator stage. In this stage, the Mott-Schottky curves parallel to the potential axis, also the capacitance values keep constant in the scanning potential region and the phase angles closes to -90o. (2) MIS structure (metal-insulator-semiconductor) stage. Surface of organic coating is under semiconductor state but inner layer of coating is still under insulating state, so the semiconductor layer, insulating layer and the metal substrate form a MIS structure. In this stage, Mott-Schottky curves of electrodes start to incline and the carrier density’s order of magnitude is generally lower than 1015cm-3. Carrier concentration and thickness of space charge layer irregularly vary with growing immersion time, even, the semiconductor type also transform sometimes in its subsequent stage. (3) Dipole polarization stage. Owing to permeation of outer corrosive medium, rotatable dipoles appear in the coating what make the overall mean of dipole moment being nonzero. Under the action of applied electric field, dipole polarization occurs in the inner of coating. Because of dipole relaxation, the capacitance increases in the negative potential region and the capacitance decreases in the positive region with rising applied potential. Under relative higher frequency (3000Hz, 5000Hz), these phenomenon are obscure. (4) Space charge polarization stage. In this stage, overall coating changes into semiconductor. The semiconductor and metal substrate make up of a metal/semiconductor contact structure. Carrier density of coating gradually increases with rising immersion time and the phase angle tends towards zero degree. Protective performance of organic coating to substrates is weakened quickly and work function of coating is reduced by corrosion in the stage. The carrier’s transportation of the electrode was controlled by pore resistance of the coating, space charge layer and kinetics of corrosion reaction of metal substrate.
     When the order of magnitude of carrier density is below 10~(15)cm~(-3), the organic coating has excellent anti-corrosion performance; and above 10~(15)cm~(-3), organic coating’s anticorrosive ability falls drastically, meantime, substrate’s corrosion initiating. 10~(15)cm~(-3) is a critical value. Carrier density can be utilized as a parameter to qualitatively or quantitatively evaluate organic coating’s protection performance and substrate’s corrosion level.
     Mechanism of semiconductor electrochemical behaviors of metal/organic coating in electrolytes during its degradation can be demonstrated by energy band model. One of the reasons for above-mentioned semiconductor behaviors is organic coating’s degradation which results in generation of free radicals according to datas from Fourier transform infrared spectroscopy (FT-IR).
引文
1庞启财.防腐蚀涂料涂装和质量控制.北京:化学工业出版社, 2003: 1
    2林安;周苗银等.功能性防腐蚀涂料及应用.北京:化学工业出版社, 2004:159
    3陈均志.涂料.北京:化学工业出版社, 2005: 3
    4有机涂料科学和技术.经桴良;姜英涛译.北京:化学工业出版社, 2002: 93
    5 Mansfeld F. ; Kendig M. W. ASTM STP. 1985,866:122
    6张鉴清;曹楚南.腐蚀与防护,1998,19: 99
    7 Zhang J.T.; Hu J. M.; Zhang J. Q.; Cao C. N. Progress in Organic Coatings, 2004,49:293
    8曹楚南;张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002:156
    9 Brasher D.M.; Kingsbury A.H. Journal of Applied Chemistry, 1954, 4:62
    10 Castela A.S.L.; Sim?es A.M.; Ferreira M.G.S. Progress in Organic Coatings, 2000,38:1
    11 Deflorian F.; Fedrizzi L.; Rossi S.; Buratti F.; Bonora P.L. Progress in Organic Coatings,2000,39:9
    12张鉴清.中国腐蚀与防护学报, 1996,16:175
    13 Hirayama R.; Haruyama S. Corrosion, 1991,47: 952.
    14 Zhang X.Z.; Wang F.H.; Du YY.L. Surface & Coatings Technology, 2007,201:7241
    15 Zhang X.Z.; Wang F.H.; Zhao X.; Wang, J.; Wang Y.H.; Kong T.; Zhong L.; Zhang W. Electrochemistry Communications, 2007,9: 1394
    17 Dawson M.; Transactions of the Institute of Metal Finishing, 2002, 80: B59
    18 Mansfeld F.; Xiao H.; Han L.T.; Lee C.C. Progress in Organic Coatings, 1997,30:89
    19 Hinderliter B.R.; Croll S.G.; Tallman, D.E.; Su, Q.; Bierwagen G.P. Electrochimica Acta, 2006,51:4505
    20 Yan R.;Wu H.; Ma S.N.;Xu B.S. Transactions of Nonferrous Metals Society of China (English Edition), 2004,14(SUPPL.2): 455
    21 Deflorian F.; Fedrizzi, L.; Rossi S.; Bonora P.L. Journal of Applied Electrochemistry, 2002,32:921
    22 Deflorian, F.; Rossi, S.; Fedrizzi, L.; Bonora, P.L. Journal of Testing and Evaluation, 2003,31:91
    23 Lavaert, V.; Moors, M.; Wettinck, E. Journal of Applied Electrochemistry, 2002,32: 853
    24 Gonzalez-Garcia Y.; Gonzalez S.; Souto R.M. Corrosion Science, 2007,49: 3514
    25 Jianguo L.; Gaoping G.; Chuanwei Y. Electrochimica Acta, 2005,50:3320
    26 Lobnig R.E.; Bonitz V.; Goll K.; Villalba W.; Schmidt R.; Zanger P.; Vogelsang J.; Winkels I. Progress in Organic Coatings, 2007, 60: 77
    27 Zin I.M.; Lyon S.B.; Hussain A. Progress in Organic Coatings, 2005,52:126
    28 Roche V.; Vacandio F.; Bertin D.; Massiani Y. Journal of Electroceramics, 2006,16:41
    29 Bierwagen G.; Tallman D.; Li J.; He L.; Jeffcoate C. Progress in Organic Coatings, 2003,46(2): 148
    30 Touzain S.; Thu Q. L.; Bonnet G. Progress in Organic Coatings, 2005,52: 311
    31 Miszczyk A.; Darowicki K.; Schauer T. Journal of Solid State Electrochemistry, 2005,9: 909
    32 Yin K.M.; Wu H.Z. Surface & Coatings Technology, 1998, 106:167
    33 Shao Y.; Li Y.; Du Y.; Wang F. Corrosion, 2006,62: 483
    34 Liu J.G.; Yan C.W. Surface and Coatings Technology, 2006, 200:4976
    35 Lopez D. A.; Rosero-Navarro N.C.; Ballarre J.; Duran A.; Aparicio M.; Cere S. Surface and Coatings Technology, 2008,202:2194
    36 Lillard R.S.; Moran P.J.; Isaacs H.S. Journal of Electrochemical Society, 1992, 139:1007
    37章妮;孙志华;张琦;蔡建平.装备环境工程, 2007, 4: 75
    38 Jorcin J.B.; Aragon E.; Merlatti C. Corrosion Science, 2006, 48: 1779
    39 Zou F.; Thierry D. Electrochimica Acta, 1997, 42: 20
    40 ToThi Xuan Hang; Trinh Anh Truc; Truong Hoai Nam; Vu Ke Oanh; Jean-Baptiste Jorcin; Nadine Pébère. Surface and Coatings Technology, 2007, 201:7408
    41 Mierisch A.M.; Taylor S.R. Journal of the Electrochemical Society, 2003,150:303
    42 Leng A.; Streckel H.; Stratmann M. Corrosion Science, 1999, 41: 579
    43 Stratmann M.; Leng A.; Furbeth W. Progress in Organic Coatings, 1996, 27: 261
    44 Furbeth W.; Stratmann M. Corrosion Science, 2001, 43: 207
    45 Nazarov A.P.; Thierry D. Protection of Metals, 2003, 39: 55
    46孙志华,刘明辉,邹礼明.腐蚀科学与防护技术,2006,18 : 87
    47 Stratmann M.; Streckel H. Werkstoffe und Korrosion, 1992, 43: 316
    48 Doherty M.; Sykes J.M. Corrosion Science, 2004,46:1265
    49 Grundmeier G.; Schmidt W.; Stratmann M. Electrochimica Acta, 2000,45:2515
    50张鉴清;张昭;王建明.中国腐蚀与防护学报,2001,21:310
    51张鉴清;张昭;王建明.中国腐蚀与防护学报,2002, 22 :241
    52 Milld J.; Mabbutt S. Progress of Organic Coatings, 2000,39: 41
    53 Mojica J.; Garce E.; Rodrguez F. Progress of Organic Coatings, 2001,39:41
    54 Derosa R. L.; Earl D.A.; Bierwagen G.P. Corrosion Science,2002,44:1607
    55 Bierwagen G.P.; Jeffcoate C.S.; Li J. Progress in Organic Coatings,1996,29:21
    56 Woodcock C.P.; Mills D.J.; Singh H.T. Progress in Organic Coatings, 2005,52:257
    57周立新;程江;杨卓如.腐蚀科学与防护技术,2004,16:375
    58张金涛;胡吉明;张鉴清.材料科学与工程学报, 2003,21:763
    59张锋;刘景军;郭铭;李效玉.涂料工业,2007,37:14
    60李金波;朱杰武;郑茂盛.电化学,2007,13:274
    61李党国;冯耀荣;白真权;郑茂盛.应用化学,2007,24:688
    62张云莲;史美伦;陈志源.机械工程材料.2006, 30:7
    63李金波;郑茂盛.西安交通大学学报,2006,40:1325
    64张云莲;张震雷;史美伦.材料保护, 2005,38:73
    65吴斌;王建信;李义久;倪亚明.同济大学学报,2001,29:602
    66 Li D.G.; Feng Y.R.; Bai Z.Q.;Zhu J.W. Zheng M.S. Applied Surface Science,2008, 254:2837
    67 Guedes I.C.;Aoki I.V.; Carmezim M.J.; Montemor M.F.; Ferreira M.G.S.;Da Cunha Belo M. Thin Solid Films, 2006,515:2167
    68 Díez-Pérez I.; Sanz F.; Gorostiza P. Electrochemistry Communications, 2006,8:1595
    69 Hamadou L.; Kadri A.; Benbrahim N. Applied Surface Science, 2005,252:1510
    70 Tang Y.et al.,The electrochemical characteristics of pitting for two steels in phosphate buffer solution with chloride, Mater. Chem. Phys.(2009),doi:10.1016/j.matchemphys. 2009.04.019
    71 Li D.G.; Feng Y.R.; Bai Z.Q.; Zhu J.W.; Zheng M.S. Electrochimica Acta, 2007,52:7877
    72 Guo H.X.; Lu B.T.; Luo J.L. Electrochimica Acta,2006,52:1108
    73 Cheng Y.F.; Yang C.; Luo J.L. Thin Solid Films, 2002,416:169
    74 Valéria A. Alves; Christopher M.A. Brett Electrochimica Acta, 2002,47:2081
    75 Cheng Y.F.; Luo J.L. Applied Surface Science, 2000,167 :113
    76 Cheng Y.F.; Luo J.L. Electrochimica Acta, 1999,44:2947
    77程学群;李晓刚;杜翠薇;杨丽霞.北京科技大学学报,2007,29:911
    78李楠;李瑛;王胜刚;王福会.中国腐蚀与防护学报,2007,27:142
    79李楠;李瑛;王胜刚;王福会.中国腐蚀与防护学报, 2007,27:80
    80李金波;郑茂盛;朱杰武.腐蚀科学与防护技术,2006,18:348
    81颜立成;张俊喜;魏增福;张鉴清.中国腐蚀与防护学报,2005,25:209
    82林玉华;杜荣归;胡融刚;林昌健.物理化学学报,2005,21:740
    83葛红花;周国定;吴文权.腐蚀科学与防护技术,2004,16:211
    84翟祥华;包伯荣;葛红花;周国定.材料保护, 2003,36:25
    85程学群;李晓刚;杜翠薇.科学通报,2009,54:104
    86张俊喜;乔亦男;曹楚南;张鉴清;周国定.化学学报,2002,60:30
    87曾一民;乔利杰;郭献忠;李金许;褚武扬.金属学报, 2001, 37:67
    88汪轩义;吴荫顺;张琳;于正阳.腐蚀科学与防护技术,2000,12:311
    89国玉军;贺春林;才庆魁;宋贵宏;韩文安.材料保护, 1999,32:1
    90 Wang B.C.; Zhu J.H. Ultrasonics Sonochemistry, 2008,15:239
    91 Amri J.; Souier T.; Malki B.; Baroux B. Corrosion Science,2008,50:431
    92 Sudesh T.L.; Wijesinghe L.; Daniel J. B. Corrosion Science,2008,50:23
    93徐群杰;单贞华;朱律均;曹为民;周国定.化学学报,2009,67:618
    94徐群杰,万宗跃,费琳,印仁和,周小金.腐蚀科学与防护技术, 2009,21:167
    95朱律均;徐群杰;曹为民;万宗跃;印仁和;周国定;林昌健.化工学报, 2008,59: 665
    96徐群杰;周国定.太阳能学报, 2005,26:665
    97万宗跃;张利;印仁和;徐群杰;陈浩;朱律均;周国定.金属学报,2008,44:203
    98徐群杰;朱律均;曹为民;万宗跃;周国定;林昌健.物理化学学报,2008:24:1724
    99朱律均;徐群杰;曹为民;万宗跃;周国定;林昌健.物理化学学报,2008,24:805
    100徐群杰;万宗跃;印仁和;朱律均;曹为民;周国定;林昌健.物理化学学报,2008, 24:115
    101徐群杰;万宗跃;印仁和;朱律均;曹为民;周国定;林昌健.化学学报,2007,65:1981
    102周国定; Kamkin A.N.;廖强强.物理化学学报,2001,17:614
    103周国定; Kamkin A.N.;廖强强.太阳能学报,2001,22:209
    104张大全;高立新;周国定.太阳能学报,2007,28:213
    105 Zerbino J.O. Electrochimica Acta, 1999,45:819
    106邵华;周国定;杨迈之;蔡生民.化学学报,1996,54:325
    107任聚杰;杨迈之;童汝亭;蔡生民.中国腐蚀与防护学报, 1995,15:237
    108郝彦忠;余赤贞;杨迈之;蔡生民;周国定.腐蚀科学与防护技术,1998,10:327
    109 Wang Q.J.; Zheng M.S.; Zhu J.W. Thin Solid Films,2009,517:1995
    110 Djellal L.; Omeiri S.; Bouguelia A.; Trari M. Journal of Alloys and Compounds, 2009,476:584
    111 Millet B.; Fiaud C.; Hinnen C.; Sutter E.M.M. Corrosion Science,1995,37:1903
    112 Sutter E.M.M.; Millet B.; Fiaud C.; Lincot D. Journal of Electroanalytical Chemistry, 1995,386:101
    113罗芳;柳闽生;吕群;徐常龙.江西教育学院学报,2000,21:32
    114周国定.腐蚀与防护,1999,20:41
    115徐群杰;周国定.化学通报,2002,6:422
    116孟国哲;李瑛;王福会.中国腐蚀与防护学报,2007,27:35
    117孟国哲;李瑛;王福会.中国腐蚀与防护学报,2007,27:43
    118孟国哲;李瑛;王福会.中国腐蚀与防护学报,2006,26:11
    119 Lee J.B.; Kim S.W. Materials Chemistry and Physics,2007,104: 98
    120 Shinji F.; Hiroaki T. Corrosion Science,2007,49:195
    121 Ha H.Y.; Jang H.J.; Kwonc H.S.; Kim S.J. Corrosion Science, 2009,51:48
    122李党国;周根树;张娟;郑茂盛.中国科学B, 2007,37:335
    123周国定; Kamkin A.N.;廖强强.腐蚀与防护,2005,26:323
    124叶陈清,林昌健.腐蚀科学与防护技术, 2009,21:143
    125 Dong-Jin Kim; Hyuk-Chul Kwon; Hong Pyo Kim Corrosion Science,2008,50:1211
    126 Li D.G.; Zhou G.S.; Zhang J.; Zheng M.S. Electrochimica Acta,2007,52:2146
    127 Anelise M. Schmidt; Denise S. Azambuja; Emilse M.A. Martini. Corrosion Science, 2006,48:2901
    128 Kirill L. Levine; Dennis E. Tallman; Gordon P. Bierwagen, Journal of materials processing technology,2008,199:321
    129 Quarto F.D.; Mantia F. L.; Santamaria M. Electrochimica Acta,2005,50:5090
    130 Simon N.; Girard H.; Manesse M.; Ballutaud D.; Etcheberry A. Diamond & Related Materials,2008,17:1371
    131 Zhong Q.D.; Michael R; Zhang Z; Zheng J. Journal of the Electrochemical Society, 2004,151:B446
    132钟庆东;王艳珍;李红蕊; Rohwerder M.; Strattman M.高电压技术,2007,33:85
    133 Norio Sato. Electrochemistry at metal and semiconductor electrodes. Amsterdam: Elsevier science B.V., 1998: 127
    134吴辉煌.电化学.北京:化学工业出版社, 2004: 23
    135 Vignal V.; Valot C; Oltra R; Verneau M; Coudreuse L. Corrosion Science, 2002,44:1477
    136 Goodlet G.; Faty S.; Cardoso S.; Freitas P.P; Sim?es A. M. P.; Ferreira M.G.S.; Da Cunha Belo M. Corrosion Science, 2004,46:1479
    137 Montemor M.F.; Sim?es A.M.P.; Ferreira M.G.S.; Da Cunha Belo M. Corrosion Science, 1999, 41:17
    138 Leitner K.; Schltze J.W.; Stimming U. Journal of Electrochemical Society, 1986,133:1561
    139 Sánchez M.; Gregori J.; Alonso M.C.; García-Jareňo J.J.; Vicente F. Electrochimica Acta, 2006,52:47
    140 Iversen A.K. Corrosion Science, 2006, 48:1036
    141 Abdullah Shahryari; Sasha Omanovic. Electrochemistry Communications, 2007,9: 76
    142 Carmezim M. J.; Sim?es A.M.; Montemor M.F.; Da Cunha Belo M. Corrosion Science, 2005,47:581
    143 Ferreira M.G.S.; Hakiki N. E.; Goodlet G.; Faty S.; Sim?es A.M.P.; Da Cunha Belo M. Electrochimica Acta, 2001,46:3767
    144 Hakiki N.E.; Boudin S.; Rondot B.; Da Cunha Belo M. Corrosion Science, 1995,37:1809
    145 Marconnet C.; Wouters Y.; Miserque F.; Dagbert C.; Petit J.P.; Galerie A.; Féron D. Electrochimica Acta, 2008,54: 123
    146张俊喜;张大全;徐群杰等.硅及其氧化物的电化学,北京:化学工业出版社, 2004, 13
    147 Yang W. Y.; Kim W. G.; Rhee S.W. Thin Solid Films, 2008,517:967
    148 Sikora J.; Sikora E.; Macdonald D.D. Electrochimica Acta, 2000, 45: 1875
    149 Dean M. H.; Stimming U. Corrosion Science, 1989, 29:199
    150 Dean M.H.; Stimming U.J. Journal of Physical Chemistry, 1989, 93: 8053
    151 Sim?es A.M.P.; Ferreira M.G.S.; Rondot B.; Da Cunha Belo M. Journal of Electrochemical Society, 1990,137:82
    152 Hakiki N. E.; Montemor M.F.; Ferreira M.G.S.; Da Cunha Belo M. Corrosion Science, 2000,42: 687
    153 Montemor M.F.; Ferreira M.G.S.; Hakiki N.E.; Da Cunha Belo M. Corrosion Science, 2000,42:1635
    154 Carmezim M.J.; Sim?es A.M.P.; Figueiredo M.O.; Da Cunha Belo M. Corrosion Science, 2002,44:451
    155 Stimming U.; Schultze J.W. Electrochimica Acta, 1979,24 :859
    156范国义;曾为民;马玉录.表面技术, 2006,35:85
    157宋诗哲;尹立辉;武杰;王守琰.化工学报, 2005,56:121
    158张俊喜;颜立成;魏增福;汪知恩.腐蚀与防护, 2006,27:126
    159郭献忠;褚武扬;高克玮;乔利杰.金属学报, 2002,38:925
    160 Sieradzki K.; Newman R.C. Journal of the Electrochemical Society, 1986,133:1979
    161 Newman R.C.; Meng F.T.; Sieradzki K. Corrosion Science,1988,28:523
    162王吉会;姜晓霞;李诗卓.材料研究学报, 1999,13: 1
    163刘增才;林乐耘;刘少峰.腐蚀科学与防护技术, 1999,11:78
    164丁杰;林海潮;曹楚南.腐蚀科学与防护技术, 2002,14:73
    165井立强;孙晓君;郑大方;徐跃;李万程;蔡伟民.哈尔滨工业大学学报, 2001,33: 344
    166刘明辉;张丽莎;贾志勇;唐一文;余颖.华中师范大学学报(自然科学版),2006,40: 75
    167 Wilhelm S.M.; Tanizawa Y.; Liu C.Y.; Hackermen N. Corrosion Science,1982,22:791
    168李学萍;林原;肖绪瑞.太阳能, 1994,4:10
    169雷惊雷;李凌杰;蔡生民;张胜涛;李荻;杨迈之.物理化学学报,2001,17:1107
    170周国定; Modestov A.D.;潘传智.物理化学学报, 1995,11:51
    171官仕龙;李世荣.材料保护,2007,40:17
    172张震宇;杭建忠;施利毅;张剑平.功能材料,2007,38:812
    173曹京宜,熊金平,李水冰,左禹.化工学报,2008,59,2851
    174翁诗甫.傅里叶变换红外光谱仪. 2005,北京:化学工业出版社:288
    175张雅军;田颂九.中国药学杂志, 2005,40:1587
    176邵琼芳;董明;谢小红;曾兰萍;冷雷雹.光谱学与光谱分析, 2004,24: 698
    177闵玉勤;张兴宏;赵晖;戚国荣.高分子学报, 2006,7: 855
    178方丙炎,韩恩厚,王俭秋,朱自勇,柯伟,胡建平,徐志刚.金属学报, 2003, 39:533
    179李长明;韩宝忠;韩志东;于威廉.高分子绝缘材料化学基础.哈尔滨:哈尔滨工业大学出版社, 2007: 218
    180刘恩科;朱秉升;罗晋生等.半导体物理学.北京:电子工业出版社, 2003: 220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700