全息光子晶体禁带展宽方法和波导传输特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体自从被提出后,在光学物理、凝聚态物理、电磁波、信息技术等领域引起了人们广泛的关注。在这短短的二十年里,光子晶体在理论研究和实验研究方面均取得了显著的成果,并且在某些领域也有了一定的应用。由于光子晶体的巨大潜在应用价值,设计和制作可见光和近红外波段的完全带隙光子晶体,成为近十年来科学研究的热点之一。
     在制备复杂结构光子晶体的多种方法中,相对于其它制作方法,例如逐层叠加方法、半导体微加工和自组织生长,激光全息制作方法具有成本低,耗时短,方便制作和有效等优点。本论文运用激光全息干涉技术并结合平面波展开法和有限时域差分方法,在理论上比较系统地研究了如何使用伞形配置的多激光束形成具有较宽的完全禁带的光子晶体,提出多种实现全禁带展宽的设计方案,并通过晶体结构及其能带传输特性的模拟来验证能带计算结果的正确性,其中的创新性工作主要包括以下几个方面:
     一、全息干涉法优化二维正方结构光子晶体的光束设计及其能带性质的研究
     由于全息干涉法中格点柱的形状和大小实际是由干涉场的等强度面决定的,所以所得结构的能带性质与制备过程有着密切的联系。作为实例,我们在第三章中提出了两种利用全息干涉技术制备的新型二维正方结构光子晶体的方案。第一种是由绕z轴旋转45°的针垫形柱组成的正方晶格点阵,这种结构与过去报道过的由正方柱组成的同类结构相比在很宽的介电常数比的范围内有更大的相对光子带隙。因为理论分析发现通过长条柱做脉络连接圆柱组成的正方点阵结构的圆柱半径和长条宽度在适当配比情况下,可以产生很大的完全带隙,所以我们利用全息干涉法设计了另一种由不规则介质柱组成的相似晶体结构。这两种优化晶体结构不但能够产生更大的相对带隙,而且在有全带隙的光子晶体制备过程中对系统各种参数的要求更加宽松。文中系统分析了各种参数与光子带隙的关系,推导出具有最佳能带性质的全息光子晶体的一般规律,为制备正方结构光子晶体设计提供了理论依据。
     二、全息干涉法制备的二维三角混合光子晶体的结构设计及其能带性质的研究
     在第四章我们首次开展了光子晶体周期结构旋转轴与能带性质关系的系统研究,提出了一种利用全息干涉二次曝光技术改变光子晶体对称性的方法,发现通过降低光子晶体的对称性和适当改变介质柱大小和形状,能够有效提高光子能带性质。计算表明经过适当优化的结构在很宽的系统参数范围内有全光子带隙存在,并且发现能够打开大于1%全带隙所要求的最小介电常数仅为3.8,这个值是所有报道过二维周期光子晶体结果中的最小值。此研究为在低折射率比的情况下实现光波的高效率传输技术提供了一种有价值的指导方案。
     三、利用伞状对称多光束干涉制备新型三维光子晶体及其能带性质的研究
     三维光子晶体比二维光子晶体更具有多样性,利用全息法制备三维光子晶体的一个重要的途径就是用伞状对称四束光干涉法,即周围三束侧光两两成相同角度,分别与中间光束成相同夹角θ。第五章中,我们通过理论分析和模拟计算推导出利用伞状对称四束光全息干涉可能制备的三维光子晶体结构,系统研究了光束夹角从10°到180°变化所得晶体结构的相应布里渊区的特征与光子能带性质,这些工作将有助于该方法在实验中的有效应用。另外,我们首次提出一种伞状对称五束光全息干涉制备光子晶体的方法,系统分析了随光束夹角不断增大时可以得到的光子晶体结构及其能带性质,发现利用该方法不但能够制备出存在最大相对带隙的类金刚石结构光子晶体,而且可以保证所有干涉光束从样品同侧入射,为简化实验条件,改善光子能带性质提供了可行性方案。
     四、全息光子晶体波导传输性质的研究
     为了研究光波在二维全息光子晶体中的传播性质,我们在第六章中研究了光波在引入两个60°转角线缺陷的全息三角结构光子晶体波导中的传播性质。通过模拟计算发现在很宽频率范围内,光波能够以大于90%的透过率高效率传输,这也是同类报道中最宽的频率范围,并且揭示了光波在两个60°转弯之间产生的谐振与光子晶体的结构有着密切的联系。此项工作使全息光子晶体在光子整合回路中的应用充满希望,并且为优化光子晶体波导的传输性质提供了理论依据。
     五、全息干涉法制备光子晶体的实验研究
     最后,在第七章我们对利用全息干涉法制备光子晶体模板以及利用单双光子聚合技术在光子晶体模板中引入线缺陷进行了实验研究。在实验中,我们设计出了几种实用的光路,制备出了几种光子晶体模板,并成功从中引入了带有直角转弯的线缺陷。虽然这一领域的工作受到实验条件的限制,但是我们的实验结果证明了全息干涉法在大面积、低成本制备光子晶体方面具有独特的优势,并验证了通过单双光子聚合相结合技术在光子晶体中引入线缺陷的可行性。
     以上工作围绕光子晶体全带隙展宽和优化传输性质展开,自成体系,提出了一系列具有更好的能带特性和传输特性的二维、三维晶体结构,并进行了模拟验证,具有一定的深度和广度,相关成果已在Optics Express等多种国际著名期刊上发表。
Since the concept of photonic crystal(PhC) was proposed in 1987,photonic crystal has attracted great attention in the fields of optical physics,condensed matter physics, electromagnetic waves and information technology.Lots of achievements related to theoretical and experimental studies have been reported and applied in some regions.For the effective application of photonic crystals,designing and fabricating photonic crystals with complete band gap in near infrared and visible region become a focus for science research in the last decade.
     Compared with other techniques of PhC fabrication,such as Layer-by-Layer method, semiconductor microfabrication,self-assembling approach,etc.,the process of holographic lithography(HL) is more economical,rapid,convenient and effective.In this thesis,holographic lithography,plane wave extension method(PWE) and finite difference time domain(FDTD) are used to systematically investigate the photonic crystals with large complete band gap formed by symmetrical umbrellalike beams configuration in theories.We have proposed several desiging methods to produce holograpgic PhCs and widen their complete band gaps effectively,and carried out a series of simulation study of PhC structures and their transmission properties to verify our calculation results of band gap characters.The main initiative contributions in this dissertation include following aspects:
     1、Beams design and PBG properties study for optimized 2D square lattice formed by HL
     In holographic fabrication of photonic crystal the shape and size of the dielectric columns or particles("atoms") are determined by the isointensity surfaces of the interference field.Therefore,their photonic band gap(PBG) properties closely relate to their fabrication design.As an example,in Chapter 3 we propose two kinds of holographically formed novel two-dimensional(2D) square lattice.One is composed of pincushion columns rotated by 45°,and it is shown that this structure has complete PBGs in a wide range of dielectric contrast comparable to or even larger than those of the same lattice with square columns reported before.Theoretical analysis has revealed that a 2D lattice with circular columns connected by veins can produce large complete band gap when the radius of columns and the width of veins are properly choosen.Here we have proposed a holographic method to fabricate another similar 2D structure of irregular columns.These two kinds of PhCs can yield greater 2D complete band gaps.Moreover, the requirement for various system parameters is more relaxable in the fabrication process of PhCs with complete band gaps.We have systematically analysed the relations between these system parameters and PBGs,and derived a conclusion from these research results to give a guideline for practical fabrication.
     2、Structure design and PBG properties study of 2D triangular hybrid holographic lattice
     In Chapter 4,we firstly carry out the study of relation between symmetry and band gap of periodic PhCs,and propose a kind of technique to change the symmetry property of photonic crystal with second exposure in holographic lithography.The theoretical analysis indicates that complete relative PBGs can be enhanced by properly lowering the symmetry property of photonic crystal lattice and choosing the size and pattern of the columns.Computations show that the optimazed normal structure has complete band gaps over wide ranges of system parameters,and the minimum dielectric constant required to open a complete band gap withΔω/ω>1%is as low as 3.8,which is the lowest compared with the results of 2D periodic photonic crystals ever reported.These results provide a valuable guideline for realization of light transmissing efficiently in waveguide with low dielectric constant contrast.
     3、Holographic fabrication of 3D PhCs by interference of umbrellalike symmetrical beams and the study of their PBG properties
     Generally,3D PhCs are more versatile than 2D PhCs.An important way to make 3D PhCs by HL is the interference of four umbrellalike symmetrical beams(IFUB) where three ambient beams(A-beams) form the same apex angleθwith a central beam (C-beam) and any two of the three A-beams also form the same angle.In Chapter 5 a theoretical investigation of the possible three-dimensional photonic crystal structures that can be created by holographic interference using the symmetric umbrellalike configuration of four plane waves is made.The irreducible Brillouin zones and the photonic band gap properties of the possible resulting crystal lattices when the apex angle is varied from 10°to nearly 180°are investigated,which will be helpful to the efficient use of this method in experiments.Moreover,we propose a holographic design of five-beam symmetric umbrella configuration and systematically analyze the band gap properties of resultant photonic crystals when the apex angle is continuously increased. The diamondlike structure with a largest relative band gap can be obtained with this recording geometry conveniently where all the beams are incident from the same half-space.This five-beam symmetric umbrella configuration provides a feasibility to relax the experiment requirements in HL and optimize PBG property of photonic crystals.
     4、Study of transmission properties in holographic photonic crystal waveguide
     In order to study the waveguide characters of 2D holographic PhCs,we have investigated the transmission properties of the photonic crystal waveguide(PCW) which is a line defect with two 60°bends in a 2D triangular holographic PhCs in Chapter 6. Calculations have shown that for this PCW high transmission(>90%) through sharp comers can be obtained in a wide frequency range.As far as we know,this result should be the widest frequency range with high transmission(>90%) in the waveguide of similar 2D triangular PhCs ever reported.We have also found that the specific holographic designs of PhC have strong influence on the resonance between the two bends.This work makes holographic PhCs promising for application in the range of photonic integrated circuits and provides a guideline for optimizing the transmission property of holographic PCW.
     5、Experimental demonstration of holographic fabrication of 2- and 3-D PhCs
     Finally,fabrication of PhC templates by HL and the PhCs with controlled defects by combination of single-photon and two-photon photopolymerization have been studied experimentally.In our experiment,we have designed several practical recording equipments and fabricated several PhCs templates.Moreover,we have introduced the line defect with an orthogonal bend in PhCs templates successfully.The work in this field may be limited by our experimental conditions,but these experimental results have proved that HL has unique advantage in fabrication of PhCs with large area and low cost, and verify that combination of holographic lithography and two-photon polymerization can be used to fabricate PhCs with defects.
     Arranging from photonic band gap broadening,optimization of transmission properties to the defect behavior,and from theoretical analysis to experimental demonstrations,these research works provide a systematic study in the field of holographic PhCs with fruitful achievements which have been published in a series of famous international journals,such as Optics Express.
引文
[1] E .M.Purcell, N. Bloembergen and R. V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Single Crystalof CaF_2? Physical Review, 1946. 70(11-12): 988-988.
    
    [2] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Physics Review Letters, 1987, 58(20): 2059-2061.
    
    [3] S. John, Strong localization of photons in certain disordered dielectric super lattices。 Physics Review Letters, 1987, 58(23): 2486-2489.
    
    [4] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 1995.
    
    [5] 钱佑华,徐至中.《半导体物理学》,高教出版社,1997
    
    [6] K. M. Ho, C. T. Chart, and C. M. Soukoulis. Existence of a photonic gap in periodic dielectric structures. Physics Review Letters, 1990, 65(25): 3152-3155.
    [7] E. Yablonovitch. T. J. Gmitter,and K. M. Leung. Photonic band structure: The face-centered-case employing nonspherical atoms. Physics Review Letters, 1991, 67(17): 2295-2298.
    [8] S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones. Highly dispersive photonic band-gap prism, Optics Letters, 1996, 21(21): 1771-1773.
    [9] H. Kosada,T. Kawashima,A. Tomita,M. Notomi, T. Tamamura, T. sato, and S. Kawakami. Photonic crystals for micro lightwave circuits using wavelength dependent angular beam steering. Applied Physics Letters, 1999, 74(10): 1370-1372.
    [10] L. Wu, M. Majilu, T. Karle, and T. F. Kranss. Superprism phenomena in planarphotonic crystals [J]. IEEE Journal of Quantum Electronics, 2002, 38(7): 915-918.
    
    [11] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physics Review B, 2000, 62(16): 10696-10705.
    
    [12] M. Qiu, L. Thylen, M. Swillo, and B. Jaskorzynska. Wave propagation through a photonic crystal in a negative phase refractive-index region. IEEE Journal Selected Topics in Quantum Electronics, 2003, 9(1): 106 - 110.
    
    [13] X. Yu. and S. H. Fan. Bends and splitters for self-collimated beams in photonic crystals. Applied Physics Letters, 2003, 83(16): 3251-3253.
    [14] E. Cubukcu, K. Aydin, E. Ozbay,S. Foteinoqoulou. and C. M. Soukoulis, Negative refraction by photonic crystals. Nature, 2003, 423(6940): 604 - 605.
    [15] P. V. Parimi, W. T. Lu, EVodo, and S. Shridar, Photonic crystals: Imaging by flat lens using negative refraction. Nature, 2003, 426(6965): 404-404.
    [16] 张道中“光子晶体” 《物理》,1994,(23):141-147.
    [17] Li Zhiyuan, Wang jian and Gu Benyuan, Creation of partial band gaps in anisotropie photonic-band-gaps structures, Physics Review B, 1998, 58(7): 3721-3729.
    [18] E. Yablonovitch and J.G miter, Photonic Band Structure: The Face-Centered-Cubic Case. Physics Review Letters, 1989, 63(18):1950-1953
    [19] S. John and J. W ang, Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Physics Review Letters, 1990, 64(20): 2418 - 2421.
    [20] T. F. Krauss, M. R. Delarue, and S. Brand, Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths [J ]. Nature, 1996, 383: 699 - 702.
    [21] A._V. Baryshev, A. B. Khanikaev, M. Inoue, P. B. Lim, A. V. Sel'kin, G. Yushin, and M. F. Limonov, Resonant Behavior and Selective Switching of Stop Bands in Three-Dimensional Photonic Crystals with Inhomogeneous Components. Physics Review Letters, 2007, 99(6): 063906.
    [22] E. Yablonovitch, T. J. Gmitter,R. D. Meade, A. M. Rappe, K. D. Brommer,and J. D. Joannopoulos, Donor and acceptor modes in photonic band structure, Physics Review Letters, 1991, 67(24): 3380-3383.
    [23] Brown E. R., Parker C. D., Yablonovitch E. Radiation properties of a planar antenna on a photonic-crystal substrate. Journal of the Optical Society America B, 1993, 10(2): 404-407.
    [24] C .A .Condat and T. R. Kirpatrick. Resonant scattering and Anderson localization of acoustic waves. Physics Review B, 1987, 36(13): 6782 - 6793.
    [25] J. Martorell and N. M. Lawandy. Observation of inhibited spontaneous emission in a periodic dielectric structure. Physics Review Letters, 1990, 65(15): 1877-1880.
    [26] G. Kurizki, B. Sherman, and A. Kadyshevitch, Quantum electrodynamics in photonic band gaps: atomic-beam interaction with a defect mode. Journal of the Optical Society America B, 1993, 10(2): 346 - 352.
    
    [27] John S. Localization of light. Physics Today, 1990,4(5): 32-34.
    [28] Knight, J C; Birks, T A; Russell, P St J; Atkin, D M, All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters, 1996, 21(19): 1547-1549.
    [29] S. L. MeCall, P. M. Platzman, R. Dalichaouch, David Smith, and S. Schultz, Microwave propagation in two-dimensional dielectric lattices, Physics Letters, 1991, 67(15): 2017-2020.
    [30] S. Y. Lin. and J. G S. Fleming. A three-dimensional optical photonic crystal. IEEE Journal of Lightwave Technology, 1999, 17(11): 1944-1947.
    [31] Cuisin C., Chelnokov A., Rowson S. et al., Submicrometer Resolution Yablonovite Templates Fabricated by X-ray Lithography [J]. Applied Physics Letters, 2000, 77(6): 770 - 772
    [32]Toader O., John S., Proposed square spiral microfabricationa architecture for large three-dimensional Photonic band gap crystals [J]. Science, 2001, 292(5519): 1133-1135.
    [33] J. Schilling, F. Miiller, S. Matthias, R. B. Wehrspohn, and U. Gosele, Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter, Applied Physics Letters, 2001, 78(26): 1180-1182.
    [34] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas. Band gaps in three dimensions : New layer-by-layer periodic structures . Solid state Communication, 1994, 89(5): 413-416.
    [35] S. Y. Lin, J. Q Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. SigMas, W. Zubrzycki, S. R. Kuftz. A three-dimensional photonic crystal operating at infrared wavelengths. Nature, 1998, 394(6690): 251-253.
    [36] E. Ozbay, A. Abeyta, G. Tuttle, C. T. Chan et al. Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods [J]. Physics Review B, 1994,50(3): 1945-1948.
    [37] E. Ozbay, E. Michel, G. Tuttel, R. Biswas, M. Sigalas, K. M. Ho. Micromachined millimeter-wave photonic band-gap crystals [J]. Applied Physics Letters, 1994, 64(16): 2059-2061.
    [38] E. Ozbay, E. Michel, G. Tuttel, R. Biswas, K. M. Ho, J. Bostak, D. M. Bloom. Terahertz spectroscopy of three-dimensional photonic band-gap crystal [J]. Optics Letters, 1994, 19(15): 1155-1157.
    [39] S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan. Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths [J]. Science, 2000, 289(5479): 604-606.
    [40] S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, M. Okano, A three-dimensional optical photonic crystal [J]. IEEE Journal of Lightwave Technology, 1999, 17(11): 1948-1955.
    [41] H. Miguez, S. M. Yang, G. A. Ozin. Colloidal photonic crystal microchannel array with periodically modulated thickness [J]. Appl. Phys. Lett., 2003, 81(14): 2493-2495.
    [42]Y.-H. Ye, F. LeBlanc, A. Hache, V.-V. Truong. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality [J]. Applied Physics Letters, 2001,78(1):52-54.
    [43] Hideo Kosaka, Takayuki Kawashima, Akihisa Tomita,etc al. Self-collimating phenomena in photonic crystals, Applied Physics Letters, 1999, 74(9), 1212-1214.
    [44] I. Tarhan, G. H. Watson. Photonic Band Structure of fcc Colloidal Crystals [J]. Physics Review Letters, 1996, 76(2): 315-318.
    [45] B. Mei, H. G. Liu, B. Y. Cheng, Z. L. Li, D. Z. Zhang, P. Dong. Visible and near-infrared silica colloidal crystals and photonic gaps [J]. Physics Review B, 1998, 58(1): 35-38.
    [46] S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, H, Misawa. Formation of free-standing micropyramidal colloidal crystals grown on silicon substrate [J]. Applied Physics Letters, 2003, 82(24): 4283-4285.
    [47] H. Miguez, V. Kitaev, G. A. Ozin. Band spectroscopy of colloidal photonic crystal films [J]. Applied Physics Letters, 2004, 84(8): 1239-1241.
    [48] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. LUpez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. V. Driel. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J]. Nature, 2000, 405(6785): 437-439.
    [49] J. E. G. J. Wijnhoven, W. L. Vos. Preparation of Photonic Crystals Made of Air Spheres in Titania [J]. Science, 1998, 281(5378): 802-804.
    [50] F. Garcia-Santamaria, C. Lopez, F. Meseguer, F. Lopez-Tejeira, J. Sanchez-Dehesa, H. T. Miyazaki. Opal-like photonic crystal with diamond lattice [J]. Applied Physics Letters, 2001, 79(15): 2309-2311.
    [51] M. Muller, R. Zentel, T. Maka, S. G. Romanov, C. M. Sotomayor Torres. Photonic Crystal Films with High Refractive Index Contrast [J]. Advanced Materials, 2000, 12(20): 1499-1503.
    [52] H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, V. Fornes, Germanium FCC Structure from a Colloidal Crystal Template [J]. Langmuir, 2000, 16:4405-4408.
    [53] Kurt Busch, Sajeev John. Photonic band gap formation in certain self-organizing systems [J]. Physics Review E, 1998, 58(3): 3896-3908.
    [54] S. H. Park, Y. Xia. Macroporous Membranes with Highly Ordered and Three-Dimensionally Interconnected Spherical Pores [J]. Advanced Materials, 1998, 10(13): 1045-1048.
    [55] Q. Luo, Z. Liu, L. Li, S. Xie, J. Kong, D. Zhao. Creating Highly Ordered Metal, Alloy, and Semiconductor Macrostructures by Electrodeposition, Ion Spraying, and Laser Spraying [J]. Advanced Materials, 2001, 13(4): 286-289.
    [56] D. Wang, F. Caruso. Fabrication of Polyaniline Inverse Opals via Templating Ordered Colloidal Assemblies [J]. Advanced Materials, 2001, 13(5): 350-354.
    [57] P. V. Braun, P. Wiltzius. Electrochemical Fabrication of 3D Microperiodic Porous Materials [J]. Advanced Materials, 2001, 13(7): 482-485.
    [58] G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, K.-M. Ho. Inverse Face-Centered Cubic Thin Film Photonic Crystals [J]. Advanced Materials, 2001, 13(6): 443-446.
    [59] S. M. Kirkpatrick, J. W. Baur, C. M. Clark, L. R. Denny, D. W. Tomlin, B. R. Reinhardt, R. Kannan,M. O. Stone. Holographic recording using two-photon-induced photopolymerization [J]. Applied Physics A, 1999, 69(4): 461-464.
    [60] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield. Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature, 2000, 404(6773): 53-56.
    [61] Dong G Y, Cai L Z, Yang X L, Shen X X, Meng X F, Xu X F, and Wang Y R, Holographic design and band gap evolution of photonic crystals formed with five-beam symmetric umbrella configuration. Opt. Express, 2006, 14(18): 8096-8102
    [62] G. Grynberg, B. Lounis, P. verkerk, J. Y. Courtois, C. Salomon. Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials [J]. Physics Review Letters, 1993, 70(15): 2249-2252.
    [63] Cai L. Z., Dong G. Y., Feng C. S., Yang X. L., Shen X. X., and Meng X. F., Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete band gap. Journal of Optics Society America B, 2006, 23(8): 1708-1711.
    [64] W. Hu, H. Li, B. Cheng, J. Yang, Z. L. Li, J. R. Xu, D. Z. Zhang. Planar optical lattice of TiO2 particles [J]. Optics Letters, 1995, 20(9): 964-966.
    [65]Shen X X,Cai L Z,Yang X L,Dong G Y,Meng X F,Xu X F and Wang Y R,Holographic design of hexagonal photonic crystals of irregular columns with large full band gap,2006,Optics Communication,267(2):305-309.
    [66]E.R.Brown,and O.B.Mc Mahon.High zenithal direetivity from a dipole antenna on a photonic crystal.Applied Physics Letters,1996,68(9):1300-1302.
    [67]周承刚,朱百生,周轴等《宽带城域光纤网络技术》,科学出版社,2004.
    [68]V.I.Kopp,B.Fan,K.K.M.Vithana,and A.Z.Genack.low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,Optics Letters,1998,23(21):1707-1709.
    [69]S.H.Fan,Pierre R.Villeneuve,and J.D.Joannopoulos.High extraction efficiency of spontaneous emission from slabs ofphotonic crystals,Physics Review Lettters,1997,78(17):3294-3297.
    [70]H.Hirayama,T.Hamano,Y.Aoyagi.Novel surface emitting laser diode using photonic band-gap crystal cavity[J].Applied Physics Letters,1996,69(6):791-793.
    [71]Attila Mekis,J.C.Chen,I.Kurland,Shanhui Fan,Pierre R.Villeneuve,and J.D.Joannopoulos.High transmission through sharp bends in photonic crystal waveguides.Physics Review Letters,1996,77(18):3787-3790.
    [72]S.Y.Lin,E.Chow,V.Hietala,and P.R.Villeneuve.Experimental demonstration of guiding and banding of electromagnetic waves in a photonic crystal.Science,1998,282(5387):274-276.
    [73]S.Y.Lin,E.Chow,S.G Johnson,and J.D.Joannopoulos.Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5 micron wavelength.Optics Letters,2000,25(17):1297-1299.
    [74]Jin,Chongjun,Johnson,Nigel,Chong,Harold et al.,Transmission of photonic crystal coupled-resonator waveguide(PhCCRW) structure enhanced via mode matching.Optics Express,2005,13(7):2295-2302.
    [75]Kurt Hamza;Citrin David S.,Reconfigurable multimode photonic-crystal waveguides.Optics Express,2008,16(16):11995-12001.
    [76]S.Kim.P.N.Gregory,J.H.Jiang et al.Hight efficiency 900 silica waveguide bend using an air hole photonic crystal region.IEEE Photonics Technology Letters,2004,16(8):1846-1848.
    [77]Momeni,Babak;Huang,Jiandong;Soltani,Mohammad;et al.Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,Optics Express,2006,14(6):2413-2422.
    [78]Baba,Toshihiko;Matsumoto,Takashi;Echizen,Manabu,Finite difference time domain study of high efficiency photonic crystal superprisms,Optics Express,2004,12(19):4608-4613.
    [79]Bita,Ion;Thomas,Edwin L,Structurally chiral photonic crystals with magneto-optic activity:indirect photonic bandgaps,negative refraction,and superprism effects,Journal of Optics Society America B,2005,22(6):1199-1210.
    [80]Centeno,Emmanuel;Felbacq,Didier,Second-harmonic emission in two-dimensional photonic crystals,Journal of Optics Society America B,2006,23(10):2257-2264.
    [81]欧阳征标,李景镇.光子晶体的研究进展[J].激光杂志,2000,21(2):2-5.
    [82]万钧,张淳,王灵俊,资剑.光子晶体及其应用[J].物理,1999,28(7):393-398.
    [83]P.St.J.Russcll,J.C.Knight,T.A.Birks,et al.Recent progress in photonic crystal fiber,Process of optical fiber communication,2000,3:98-100.
    [84]Birks T.A.,Knight J.C.,Russell P.St.J.,Endlessly single-mode photonic crystal fiber,Optics Letters,1997,22(13):961-963.
    [85]R.F.Cregan,B.J.Mangan,J.C.Knight,et al.,Single-Mode Photonic Band Gap Guidance of Light in Air,Science,1999,285(5433):1537-1539.
    [86]S.Kawakami,T.Sato,K.Miura,Y.Ohtera,T.Kawashima,and H.Ohkubo.3-D photonic crystal hetero structures:Fabrication and in.line resonator.IEEE Photonics Technology Letters,2003,15(6):816-818.
    [87]K.Miura,Y.Ohtera,H.Ohkubo,N.Akutsu,and S.Kawakami.Reduction of propagation and bending losses of heterostruetured photonic crystal waveguides by use of a high-delta structure.Optics Letters,2003,28(9):734-736.
    [88]F.Qiao,c.Zhang,J.Wan,and J.Zi.Photonie quantum-well structures:Multiplechanneled filtering phenomena.Applied Physics Letters,2000,77(23):3698-3700.
    [89]Y.Zhang.and B.Y.Gu.Aperiodic photonic quantum-well structures for multiplechanneled filtering at arbitrary preassighed frequencies,Opt.Express,2004,12(24):5910-5915.
    [90]S.G Johnson,S.Fan,P.R.Villeneuve,J.D.Joannopoulos,and L.A.Kolodziejski,Guided modes in photonic crystal slabs.Physics Review B,1999,60(8):5751-5758.
    [91]Lan-Lan Lin and Zhi-Yuan Li,Interface states in photonic crystal heterostructures,Physics Review B,2001,63(3):033310
    [92]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,IEEE Transation on Antennas Propagation, 1966,14(3):302-307.
    [93]H.Y.D.Yang.Finite difference Analysis of 2D photonic crystals.IEEE Transation on Microwave Theory Techniques,1996,44(12):2688-2695.
    [94]C.T.Chan,Q.L.Yu,and K.M.Ho.Order-N spectral method for electromagnetic waves,Physics Review B,1995,51(2323):16635-16642
    [95]马科斯·波恩和埃米尔·沃耳夫著,杨霞荪等译.光学原理上册光的传播、干涉和衍射的电磁理论[M],北京:电子工业出版社,2005(Ch1,49)
    [96]Z.Y.Li.and L.L.Lin.Photonic band structures solved by a plane-wave.Based transfer-matrix method,Physics Review E,2003,67(4):046607.
    [97]N.Stefanon,V.Yannopapas,A.Modinos.MULTEM 2:a new version of the program for transmission and band.structure calculations of photonic crystals,Computer Physics Communations,2000,132(1-2):189-196.
    [98]A.Modinos.Scattering ofelectromagnetic waves by a plane ofspheres-formalism Physica A,1987,141(2-3):575-588.
    [99]L.C.Botten,N.A.Nicorovici,R.C.McPhedran,C.Martijn de Sterke,and A.A.Asatryan,Photonic band structure calculations using scattering matrices,Physics Review E,2001,64(4):046603.
    [100]K.M.Leung.Defect modes in photonic band structures:a Green'S function approach using vector Wannier functions.Journal of Optics Society America B,1993,10(2):303-306.
    [101]A.R.McGurn.Green'S-function theory for row and periodic defect arrayes in photonic band structures.Physics Review B,53(11):7059-7064.
    [102]R.Sainidou,N.Stefanou,and A.Modinos.Green'S function formalism for photonic crystals.Physics Review B,2004,69(6):064301.
    [103]C.T.Chan,L.Q.Yu,K.M.Ho.Order-N spectral method for electromagnetic waves [J].Physics Review B,1995,51(23):16635-16642.
    [104]H.Fuess,Th.Hahn,H.Wondratschek,U.Mu" ller et al.,International Tables for Crystallography,Springer,jointly published with the IUCr,2007.
    [105]M.Wohlgenmuth,et al.,Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries.Macromolecules,2001,34(17):6083-6089
    [106]Ullal C.K.,Chaitanya K;Maldovan,Martin;Wohlgemuth,Meinhard;Thomas,Edwin L;White,Christopher A;Yang,Shu,Triply periodic bicontinuous structures through interference lithography:a level-set approach,Journal of Optics Society America A,2003,20(5):948-954.
    [107]葛德彪,电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002.
    [108]R.D.Meade,K.D.Brommer,A.M.Rappe,J.D.Joannapoulos,"Existence of a photonic band gap in two dimensions," Applied Physics Letters,1992,61(4):495-497.
    [109]P.R.Villeneuve,M.Piche,"Phonic band gaps in two-dimensional square and hexagonal lattices,"Physics Review B,1992,46(8):4969-4972.
    [110]P.R.Villeneuve,M.Piche,"Photonic band gaps in two-dimensional square lattices:Square and circular rods," Physics Review B,1992,46(8):4973-4975.
    [111]D.L.Bullock,C.Shih,R.S.Margulies,Photonic band structure investigation of two-dimensional Bragg reflector mirrors for semiconductor laser mode control,Journal of Optics Society America B,1993,10(2):399-403.
    [112]C.M.Anderson and K.P.Giapis,Larger two-dimensional photonic band gaps,Physics Review Letters,1996,77(14):2949-2952.
    [113]S.Y.Lin,G.Arjavalingam,W.M.Robertson,"Investigation of absolute photonic band-gaps in 2-dimensional dielectric structures," Journal of Modern.Optics,1994,41(2):385-393.
    [114]Z.Y.Li,B.Y.Gu,G.Z.Yang,Large absolute band gaps in two-dimensional anisotropic photonic crystals,Physics Review Letters,1998,81(12):2574-2577.
    [115]M.Agio,L.C.Andreanm,Complete photonic band gap in a two-dimensional chessboard lattice,Physics Review B,2000,61(23):15519-15522.
    [116]M.Qiu,S.He,Optimal design of two-dimensional photonic crystal of square lattice with large complete two-dimensional bandgap,Journal of Optics Society America B,2000,17(6):1027-1030.
    [117]X.L.Yang,L.Z.Cai,Q.Liu,Theoretical bandgap modeling of two-dimensional triangular photonic crystals formed by interference technique of three-noncoplanar beams,Opt.Express,2003,11(9):1050-1055.
    [118]X.L.Yang,L.Z.Cai,Q.Liu,H.K.Liu,Theoretical bandgap modeling of two-dimensional square photonic crystals fabricated by interference technique of three-noncoplanar beams," Journal of Optics Society America B,2004,21(9):1699-1672.
    [119]Y.A.Vlasov,X.Z.Bo,J.C.Sturm,D.J.Norris,On-chip natural assembly of silicon photonic bangap crystals,Nature,2000,414(6835):289-293.
    [120]K.M.Leung,Y.F.Liu.Photon band structures:The plane-wave method,Physics Review B,1990,41(14):10188-10190.
    [121]T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals, Applied Physics Letters, 2001, 79(6): 725-727.
    [122]Cai L Z, Dong G Y, Feng C S, Yang X L, Shen X X, and Meng X F. Holographic design of a two-dimensional photonic crystal of square lattice with a large two-dimensional complete bandgap. Journal of Optics Society America B, 2006, 23(8): 1708-1711.
    [123]L. Z. Cai, C. S. Feng, X. L. Yang, X. F. Meng and G. Y. Dong, Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps. Optics Express, 2005, 13(11): 4325-4330.
    [124]X. H. Wang, B. Y. Gu, Z. Y. Li and G. Z. Yang, Large absolute photonic band gaps created by rotating noncircular rods in two-dimensional lattices, Physics Review B, 1999,60(16): 11417-11421.
    [125]R. C. Gauthier and K. M. Mnaymneh, Design of photonic band gap structures through a dual-beam multiple exposure techniques, Optics & Laser Technology, 2004, 36(8): 625-633.
    [126]Painter O., Lee R. K., Scherer A., Yariv A., Obrien J. D., Dapkus P. D., and Kim I. Two-Dimensional Photonic Band-Gap Defect Mode Laser, Science, 1999, 284(5421): 1819-1821
    [127]C. Goffaux and J. P. Vigneron, Theoretical study of a tunable photonic band gap system, Physics Review B, 2001, 64(7): 075118.
    [128]N. Malkova, S. Kim and V. Gopalan, Symmetrical perturbation analysis of complex two-dimensional photonic crystals. Physics Review B, 2002, 66(11): 115113
    [129]Cassagne D., Jouanin C. and Bertho D., Photonic band gaps in a two-dimensional graphite structure. Physics Review B, 1995, 52(4): R2217-R2220.
    [130]Cassagne D., Jouanin C. and Bertho D., Hexagonal photonic-band-gap structures. Physics Review B, 1995, 53(11): 7134-7142.
    [131]N. Malkova, S. Kim, T. DiLazaro, and V. Gopalan, Symmetrical analysis of complex two-dimensional hexagonal photonic crystalsPhysics Review B, 2003, 67(12): 125203
    [132]Martinez L J, Garcia-Martin A and Postigo P A, Photonic band gaps in a two-dimensional hybrid triangular-graphite lattice, Optics Express, 2004, 12(23): 5684-5689.
    [133]Tadashi Murao, Kunimasa Saitoh, and Masanori Koshiba, Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation, Optics Express, 2006, 14(6): 2404-2412.
    [134]Kaliteevski M A, Brand S, Abram R A, Krauss T F, De La Rue R M and Millar P, Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure, Nanotechnology, 2000, 11(4): 274-280
    [135]Jin C J, Cheng B Y, Man B Y, Li Z L, Zhang D J, Ban S Z and Sun B. Band gap and wave guiding effect in a quasiperiodic photonic crystal. Applied Physics Letters, 1999,75(13): 1848-1850.
    [136] Jin C J, Cheng B Y, Man B Y, Li Z L and Zhang D J, Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region, Physics Review B, 2000, 61(16): 10762-10767.
    [137] Zhang X, Zhang Z Q, and Chan C T, Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals, Physics Review B, 2001, 63(8): 081105.
    [138]Fu H K and Chen Y F, Connected hexagonal photonic crystals with largest full band gap, Optics Express, 2005, 13(20): 7854-7860.
    [139]Chern R L, Chang C Chung, Chang Chien C and Hwang R R, Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration. Physics Review E, 2003, 68(2): 026704.
    [140] G. Y. Dong, X. L. Yang, L. Z. Cai et al, Band gap analysis and holographic design of 3-fold hybrid triangular photonic crystals of irregular columns with large full band gaps Journal of Optics A: Pure Applied Optics, 2007, 9(5): 531-536.
    [141]D. Caballero, J. Sanchez-Deheza, C. Rubio, R. Martinez-Sala, J.V. Sanchez-Perz, F. Meseguer, and J. Llinares, Large two-dimensional sonic band gaps. Physics Review E, 1999, 60(6):R6316-R6319.
    [142]X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, "Interference of four umbrellalike beams by a diffractive beam splitter for fabrication of two-dimensional square and trigonal lattices," Opt. Lett. 28, 453-455 (2003).
    [143]X. L. Yang, L. Z. Cai, Y. R. Wang, and Q. Liu, Interference technique by three equal-intensity umbrellalike beams with a diffractive beam splitter for fabrication of two-dimensional trigonal and square lattices. Optics Communication, 2003, 218(): 325-332.
    [144]Birks T. A., Roberts P. J., Russell P. S. J., Atkin D. M. and Shepherd T. J., Full 2-D photonic bandgaps in silica/air structures. Electronics Letters, 1995, 31(22): 1941-1943.
    [145]G.Y.Dong,X.L.Yang,L.Z.Cai et al.,Photonic band gap properties of 6-fold hybrid triangular photonic crystals formed by holographic lithography.Journal of Physics D:Applied Physics,2007,40(16):4761-4766.
    [146]G.Y.Dong,X.L.Yang,L.Z.Cai et al,6-fold hybrid photonic crystal formed holographically with full band gap for low refractive index.Europhysics Letters,2007,80(1):14006.
    [147]M.Chen and R.Yu,Analysis of photonic bandgaps in modified honeycomb structures,IEEE Photonics Technology Letters,2004,16(3):819-821.
    [148]Shen X.X.,Cai L.Z.,Yang X.L.,Dong G.Y.,Meng X.F.,Xu X.F.and Wang Y.R.,Holographic design of hexagonal photonic crystals of irregular columns with large full band gap,Optics Communication,2006,267:305-309.
    [149]L.Z.Cai,X.L.Yang,and Y.R.Wang,Formation of a microfiber bundle by interference of three noncoplanar beams.Optics Letters,2001,26(23):1858-1860.
    [150]Ahishido S.,Diviliansky I.B.,Khoo I.C.,Mayer T.S.,Direct fabrication of two-dimensional titania arrays using interference photolithography.Applied Physics Letters,2001,79(20):3332-3334.
    [151]Shoji S and Kawata S,Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin.Applied Physics Letters,2000,76(19):2668-2670.
    [152]D.N.Sharp,A.J.Turberfield,and R.G.Denning,Holographic photonic crystals with diamond symmetry,Physics Review B,2003,68(20):205102.
    [153]Ao X Y and He S.Two-stage design method for realization of photonic bandgap structures with desired symmetries by interference lithography.Optics Express,2004,12(6):978-983.
    [154]刘欢,姚建铨,李恩邦.激光全息法制作二、三维光子晶体得模拟计算及禁带分析[J].物理学报,2006,55(5):2286~2292.
    [155]Mao W D,Liang G Q,Zou H and Wang H Z,Controllable fabrication of two-dimensional compound photonic crystals by single-exposure holographic lithography.Optics Letters,2006,31(11):1708-1710.
    [156]Yang X.L.,Cai L.Z.and Liu Q.Polarization optimization in the interference of four umbrellalike symmetric beams for making three-dimensional periodic microstructures.Applied Optic,2002,41(32):6894-6900.
    [157]Cai L Z and Yang X L,What kind of Bravais lattices can be made by the interference of four umbrellalike beams? Optics Communication,2003,224: 243-246.
    [158]T. Y. M. Chan, O. Toader, and S. John, Photonic band gap templating using optical interference lithography. Physics Review E, 2005, 71(4): 046605.
    [159]D. C. Meisel, M. Wegener, and K. Busch, Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: symmetries and complete photonic band gaps, Physics Review B, 2004, 70(16): 165104.
    [160]Corne D, Dorigo M and Glover F editors. New ideas in Optimization, (McGraw-Hill, New York, 1999), p. 79.
    [161]Babin V, Garstecki P, and Holyst R. Photonic properties of multicontinuous cubic phases. Physics Review B, 2002, 66(23), 235120.
    [162] Cohen M. H. Energy Bands in the Bismuth Structure. I. A Nonellipsoidal Model for Electrons in Bi. Physics Review, 1961, 121(2), 387-395.
    [163]S. Shoji, H. Sun, and S. Kawata, Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference. Applied Physics Letters, 2003, 83(4): 608-610.
    [164]C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. Han, and S. Yang, Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures. Applied Physics Letters, 2004, 84(26): 5434-5436.
    [165]L. Z. Cai, X. L. Yang, and Y. R. Wang, All fourteen Bravais lattices can be formed by interference of four noncoplanar beams. Optics Letters, 2002, 27(11): 900-902.
    [166]I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. Applied Physics Letters, 2003, 82(11): 1667-1669.
    [167]Yu. V. Miklyaev, D. C. Meisel, A. Blanco, and G. von Freymann, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Applied Physics Letters, 2003, 82(8): 1284-1286.
    [168]M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, Photonic properties of bicontinuous cubic microphases. Physics Review B, 2002, 65(16): 165123.
    [169]O. Toader, T. Y. M. Chan, and S. John, Photonic band gap architectures for holographic lithography. Physics Review Letters, 2004, 92(4): 043905.
    [170]Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Applied Physics Letters, 2005, 86(7): 071117.
    
    [171]Jesper Serbin, Aleksandr Ovsianikov, and Boris Chichkov, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Optics Express, 2004, 12 (21):5221-5228.
    
    [172] Pang, Yee Kwong; Lee, Jeffrey Chi; Ho, Cheuk Ting; Tam, Wing Yim, Realization of woodpile structure using optical interference holography. Optics Express, 2006, 14(20): 9113-9119.
    [173]B. Gralak and M. de Dood. Theoretical study of photonic band gaps in woodpile crystals. Physics Review E, 2003, 67(6): 066601.
    
    [174]Kazuaki Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001)
    [175]S.G. Johnson, P.R. Villeneuve, S. Fan, and J.D. Joannopoulos, Linear waveguides in photonic crystal slabs. Physics Review B, 2000, 62(12): 8212-8222.
    [176] A. Chutinan and S. Noda. Waveguides and waveguide bends in two-dimensional photonic crystal slabs. Physics Review B, 2000, 62(7): 4488-4492.
    [177] A. Talneau, L. Le Gouezigou, N. Bouadma,M. Kafesaki, and C.M. Soukoulis, Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55μm. Applied Physics Letters, 2002, 80(4): 547-549.
    [178] Jasmin Smajic, Christian Hafner, and Daniel Erni, Design and optimization of an achromatic photonic crystal bend. Optics Express, 2003, 11(12): 1378-1384.
    [179]Cui Xudong, Christian Hafner, Rudiger Vahldieck, Franck Robin, Sharp trench waveguide bends in dual mode operation with ultra-small photonic crystals for suppressing radiation. Optics Express, 2006, 14(10): 4351-4356.
    
    [180] Jaime Garcia, Pablo Sanchis and Javier Marti, Detailed analysis of the influence of structure length on pulse propagation through finite-size photonic crystal waveguides. Opt. Express, 2006, 14(15): 6879-6893.
    
    [181]A. Chutinan, M. Okano, and S. Noda, Wider bandwidth with high transmission through waveguide bends intwo-dimensional photonic crystal slabs. Applied Physics Letters, 2002, 80(10): 1698-1700.
    
    [182]A. Talneau, Ph. Lalanne, M. Agio, and C. M. Soukoulis, Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths. Optics Letters, 2002, 27(17): 1522-1524.
    
    [183]P. Sanchis, J. Marti, P. Bienstman, and R. Baets, Semi-analytic approach for analyzing coupling issues in photonic crystal structures. Applied Physics Letters, 2005, 87(20): 203107.
    [184]G. Y. Dong, L. Z. Cai, X. L. Yang, X. X. Shen, X. F. Meng, X. F. Xu and Y. R. Wang, Analysis of structure and band gap evolution of photonic crystals formed hohographically by symmetric umbrella configuration with varying apex angles. Journal of Physics D: Applied Physics, 2006, 39(16): 3566-3570.
    [185]G. Y. Dong, X. L. Yang, L. Z. Cai et al, "Improvement of transmission properties through two-bend resonance by holographic design for a two-dimemsional photonic crystal waveguide" Optics Express, 2008, 16(20): 15375-15381.
    [186] Hong-Bo Sun, Shigeki Matsuo, Hiriaki Misawa. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin [J]. Applied Physics Letters, 1999, 74(6): 786-788.
    [187]X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, W. Y Tarn. Three-dimensional photonic crystals fabricated by visible light holographic lithography [J]. Applied Physics Letters, 2003, 82(14): 2212-2214.
    [188]X. X. Shen, X. Q. Yu, X. L. Yang, L. Z. Cai, G. Y. Dong, Y. R.Wang, X. F.Meng and X. F. Xu, Fabrication of periodic microstructures by holographic photopolymerization with a low-power continuous-wave laser of 532 nm. Journal of Optics A: Pure and Applied Optics, 2006, 8(8): 672-676.
    [189]X. L. Yang, L. Z. Cai. Wave design of the interference of three noncoplanar beams for microfiber fabrication [J]. Optics Communication, 2002, 208: 293-297.
    [190]X. L. Yang, L. Z. Cai, Wave design and polarization optimization in the interference of four noncoplanar beams for making three-dimensional periodical microstructures. Journal of Modern Optics, 2003, 50: 1445-1453.
    [191]Y. Ren, X. Q. Yu, D. J. Zhang, D. Wang, M. L. Zhang, G. B. Xu, X. Zhao, Synthesis, Structure and properties of a new two-photon photopolymerization initiator. J. Mater. Chem, 2002, 12:3431-3437.
    [192]H. B. Sun, A. Nakamura, K. Kaneko, S. Shoji and S. Kawata, Direct laser writing defects in holographic lithography-created photonic lattices. Opt. Lett, 2005, 30(8): 881-883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700