聚集对银纳米粒子非线性光学性质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属纳米粒子因其突出的光功能特性,很可能成为未来光电子器件的基础材料之一,其极大的非线性极化系数预示着这类材料有丰富的光功能现象和极大的应用潜力。对其中的物理机制进行研究并加以利用,从而改善或有目的地控制它的非线性无疑是十分重要的。通过研究,人们认识到金属纳米粒子的线性光学性质与粒子表面等离子体共振(SPR)过程密切相关。SPR是纯粹的纳米效应,对边界条件特别敏感,这决定了金属纳米粒子的性质具有强烈的尺寸和形状依赖性。相对于线性光学性质,对金属纳米粒子非线性光学性质的研究相对欠缺。本文以银纳米粒子为对象,研究了聚集对其二阶和三阶非线性光学性质的影响,取得了一些成果,主要内容包括以下几个方面。
     根据实验室条件建立了超瑞利散射(HRS)检测系统。HRS实验光路相对简单,但是HRS信号容易受到其它因素的影响,因此对实验条件的要求比较苛刻。我们在实验中采取了离焦激发方式,有效地避免了其它非线性过程(如受激布里渊散射、介质击穿等)对HRS信号的干扰。用标准样品(pNA),从信号光强与溶液浓度的关系、信号光强与入射光强的关系和信号光谱三个方面仔细地对建立的HRS检测系统进行了校准和检查,证实此HRS装置各单元工作状况稳定、光路配置合理、测量结果准确。
     采用改进的Lee和Meisel方法,制备了粒径为10.5 nm且分散高度均匀的银纳米粒子。运用HRS检测系统,采取内参法确定了银粒子的二阶非线性极化系数,并对其二阶非线性极化过程进行分析。
     由KNO3诱导聚集,通过粒子尺寸测量和透射电镜(TEM)观察,表明聚集方式为链状聚集。文中分析了聚集效应对银纳米粒子吸收光谱的影响。运用HRS技术,研究了银纳米粒子聚集体的二阶非线性光学响应。实验结果表明,银粒子聚集体的HRS增强效应存在最佳聚集尺度,当聚集体平均尺寸为120纳米时,HRS信号强度比聚集前增大了约15倍。经过分析发现,聚集导致了银纳米粒子表面局域场强度的增强和分布的改变,并通过表面和体贡献机制对二阶非线性极化过程产生影响。
     在用柠檬酸修饰的银纳米粒子中加入吡啶后,吡啶中的氮原子与羟基氢形成氢键(-N...H-O-),无氮原子的另一端疏水,在表面张力的作用下,也会引起银纳米粒子的链状聚集,并且这种聚集体与由库仑力引起的聚集体也必然存在不同。文中对此种聚集体的吸收光谱和二阶非线性光学性质进行了实验研究,从实验上观察到纯粹局域场增强对HRS信号的影响。实验结果表明,此种聚集体同样存在最佳聚集尺度,当聚集体平均尺寸为120纳米时,HRS信号强度比聚集前增大了约5.5倍。分析指出,聚集体中银纳米粒子的间距增大导致粒子表面局域场强度增强的减弱,所以此种聚集体有较小的HRS增强效应。
     文中研究了聚集效应对三种不同粒径银纳米粒子二阶光学非线性的影响。实验结果表明,三种尺寸的银粒子聚集体都存在最佳聚集尺度,使HRS响应最大;随着粒径的增加, HRS信号的增加倍数下降。我们将其中的原因总结为表面效应和相位延迟效应共同作用的结果。
     文中建立了偶极叠加模型和偶极场相互作用模型,进行了理论推导。运用理论推导结果,对上述实验现象进行了模拟计算,取得了较一致的结果。
     建立了一套较好的Z-扫描实验系统。运用Z-扫描装置,首次报道了聚集对银纳米粒子非线性折射率的影响。结果表明:聚集使银纳米粒子溶液的非线性折射响应增大了约4倍,局域场增强是其中的主要因素。实验中也观察到最佳聚集尺度的现象。
     运用理论分析计算和Z-扫描技术,从局域场角度研究了不同表面修饰的Fe_2O_3纳米粒子的非线性折射率。理论计算结果与实验现象吻合的较好。
Noble metal nanoparticles have attracted significant attention because of their good chemical stability, unusual optical and electronic properties, and their potential applications in optoelectronic and photonic technologies. Their linear optical characteristics are recognized as being dominated by the surface plasmon resonance (SPR), which is sensitive to the boundary conditions. So, the shapes and sizes of these particles would provide important control over their linear and nonlinear responses. Parallel to the linear optical properties, their nonlinear optical properties have been reported on fewer occasions. In this dissertation, the aggregate influences on the second-order and third-order optical nonlinearities of silver nanoparticles have been studied. The dissertation is mainly comprised with the following parts.
     The Hyper-Rayleigh scattering experimental system has been established. The optical route of HRS is relatively comprehensible, but the HRS signal is easily disturbed. Therefore, the experimental condition is restricted. In practice, the excited way of off-focus is applied to avoid some unwanted nonlinear processes, such as stimulated Raman scattering, stimulated Brillouin scattering and dielectric breakdown etc. By using pNA, the quadratic dependence of the HRS signal with the incident light intensity, the linear dependence of the HRS signal with the material concentration, and scattering intensity as a function of the wavelength around 532 nm were checked to access the HRS system.
     A highly monodisperse 10.5 nm diameter silver nanoparticle has been synthesized by following the Lee and Meisel method. According to the inner reference method (IRM), the particle’sβis determined by HRS. The second-order polarization process has been discussed.
     The HRS has been employed to determine the second-order nonlinear optical response from the silver nanoparticle and its aggregates, which are induced by the presence of KNO_3. Through size distribution and TEM measurements, the morphology of aggregated silver nanoparticles has been observed as a chain-like aggregation. The HRS results reveal that there is an optimum size for the aggregates to yield the maximum HRS response. The dramatically enhanced second-order nonlinearity was explained by the enhanced electromagnetic (EM) field near the surface of thesilver nanoparticles as they approaching. The enhanced local EM field participates to the nonlinear polarization through surface and bulk contributions.
     The silver aggregates could also be caused by the addition of pyridine, and these two kind aggregates are obviously different. The different enhancement between the aggregates was considered with the diversity of separated distance between silver nanoparticles.
     The HRS signals from three volume silver nanoparticles with aggregate effects have been measured. With the size increase, the HRS enhancement is decreased. The observed size dependence of the second harmonic generation from the aggregates is explained by assuming the surface contribution and phase delay effect.
     The models of induced dipolar accumulation and interaction among the dipolar fields are established to analysis the above phenomena, and good agreements have been found between experimental results and theoretical simulations.
     The aggregate influence on the nonlinear refraction of silver nanoparticles has been observed by Z-scan technique. The nonlinear refraction of the silver aggregates is enhanced by 4 times at the optimum size of 120 nm. This phenomenon is explained by the local field effect.
     Using the Z-scan technique and theoretical calculation, the local field effect on the nonlinear refraction of Fe_2O_3 nanoparticles has been studied, and a consistence is reached.
引文
1. 刘颂豪,赫光生,“强光光学及其应用”, 广东科技出版社,1995
    2. K. Clays, A. Persoons, L. D. Maeyer, “Modern nonlinear optics”, Part 3, John Wiley & Sons Inc., 1994
    3. Y. R. Shen, “The principles of nonlinear optics”, John Wiley & Sons Inc., 1984
    4. Yiping Cui, “Study on the dynamic characteristics of the organic materials by FWM”, a doctoral dissertation of SEU(东南大学博士论文), 1994
    5. N. Bloembergen, “Nonlinear optics”, World Scientific, 1996
    6. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics”, Phys. Rev. Lett., 1961, 7: 118-119
    7. V. Surla, P. J. Wilbur, M. Johnson, J. D. Williams, A. P. Yalin, “Sputter erosion measurements of titanium and molybdenum by cavity ring-down spectroscopy”, Rev. Sci. Instrum., 2004, 75: 3025-3030
    8. Jean-Philippe Feve, Olivier Pacaud, Benoit Boulanger, Bertrand Menaert, M. Renard, “Tunable phase-matched optical parametric oscillators based on a cylindrical crystal”, J. Opt. Soc. Am. (B), 2002, 19: 222-233
    9. K. Nakamura, T. Hatanaka, H. Ito, “High output energy quasi-phase-matched optical parametric oscillator using diffusion-bonded periodically poled and single domain LiNbO3”, Jpn. J. Appl. Phys., 2001, 337-339
    10. A. Douillet, J. J. Zondy, A. Yelisseyev, S. Lobanov, L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS[sub 2] optical parametric oscillators”, J. Opt. Soc. Am. (B), 1999, 16: 1481-1498
    11. K. C. Burr, C. L. Tang, M. A. Arbore, M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate”, Appl. Phys. Lett., 1997, 70: 3341-3343
    12. J. Applequist, “Fundamental relationships in the theory of electric multipole moments and multipole polarizabilities in static fields”, Chem. Phys., 1984, 85: 279-290
    13. E.G. Sauter, “Nonlinear optics”, Wiley, 1996, Chapter 1
    14. R. P. Feynman, “The Feynman lectures on physics”, Addison-Wesley, Reading, MA, 1964, Chapter 11
    15. Mingtang Zhao, Yiping Cui, Marek Samoc, Paras N. Prasad, Marilyn R. Unroe, Bruce A. Reinhardt, “Influence of two-photon absorption on third-order nonlinear optical processes as studied by degenerate four-wave mixing: The study of soluble didecyloxy substituted polyphenyls”, J. Chem. Phys., 1991, 95: 3991-4001
    16. Yiping Cui, Mingtang Zhao, Guang S. He, Paras N. Prasad, “Dynamic characteristics of coherent and population grating processes in resonant degenerate four-wave mixing”, J. Phys. Chem., 1991, 95: 6842-6848
    17. Laura Genberg, F. Heisel, G. McLendon, R. J. Dwayne Miller, “Vibrational energy relaxation processes in heme proteins: model systems of vibrational energy dispersion in disordered systems”, J. Phys. Chem., 1987, 91: 5521-5524
    18. V. B. Fleurov, C. M. Lawson, D. Brown-Anderson, A. Y. Dergachev, S. B. Mirov, R. G. Lindquist, “Low-coherence reflectometry based on DFWM in a thin liquid layer”, Proc. SPIEInt. Soc. Opt. Eng., 1996, 2853: 126-134
    19. D. Krause, C. W. Teplin, C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum”, J. Appl. Phys., 2004, 96: 3626-3634
    20. N. Wojciech, “Scale formulation of first-order nonlinear optics”, Optics Communications, 1997, 137: 107-112
    21. Guang Yang, Huanhua Wang, Guotai Tan, Anquan Jiang, Yueliang Zhou, Zhenghao Chen, “Rh:BaTiO3 thin films with large nonlinear optical properties”, Appl. Opt., 2002, 41: 1729 –1732
    22. H. Nakayama, H. Fujimura, C. Egami, O. Sugihara, R. Matsushima, N. Okamoto, “Fabrication techniques of a nonlinear optical structure using optical polymeric films by direct electro-beam irradiation”, Appl. Opt., 1998, 37: 1213 –1219
    23. Rashid Ali N., Gunter P., “Self-assembled organic supramolecular thin films for nonlinear optics”, Organic Electronics, 2004, 5: 147-155
    24. Izabela Fuks, Beata Derkowska, Bouchta Sahraoui, Stanislaw Niziol, Jerzy Sanetra, Dariusz Bogdal, Jan Pielichowski, “Third-order nonlinear optical susceptibility of polymers based on carbazole derivatives”, J. Opt. Soc. Am. (B), 2002, 19: 89-93
    25. Victor Ostroverkhov, Kenneth D. Singer, Rolfe G. Petschek, “Second-harmonic generation in nonpolar chiral materials: relationship between molecular and macroscopic properties”, J. Opt. Soc. Am. (B), 2001, 18: 1858-1865
    26. Bosch M., Fischer C., Cai C., Liakatas I., Bosshard Ch., Gunter P., “Photochemical stability of highly nonlinear optical bithiophene chromophores”, Synthetic Metals, 2001, 124: 241-243
    27. Aktsipetrov O. A., “Nonlinear magneto-optics in magnetic nanoparticles”, Colloids and Surfaces (A), 2002, 202: 165-173
    28. Yu Baolong, Yin Guosheng, Zhu Congshan, Gan Fuxi, “Optical nonlinear properties of PbS nanoparticles studied by the Z-scan technique”, Optical Materials, 1998, 11: 17-21
    29. Kyoung Minjoung, Lee Minyung, “Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique”, Optics Communications, 1999, 171: 145-148
    30. Li H. P., Liu B., Kam C. H., Lam Y. L., Que W. X., Gan L. M., Chew C. H., Xu G. Q., “Femtosecond Z-scan investigation of nonlinear refraction in surface modified PbS nanoparticles”, Optical Materials, 2000, 14: 321-327
    31. Yu Baolong, Zhu Congshan, Gan Fuxi, “Large nonlinear optical properties of Fe2O3 nanoparticles”, Physica E, 2000, 8: 360-364
    32. Ai Xicheng, Guo Lin, Zou Yinghua, Li Qianshu, Zhu Hesun, “The effect of surface modification on femtosecond optical Kerr effect of PBS nanoparticles”, Materials Letters, 1999, 38: 131-135
    33. Kryachko Eugene S., “Ab initio study of L-orientational defect in the hydrogen-bonded pattern of liquid water”, Journal of Molecular Structure, 1997, 416: 43-61
    34. Zbigniew odziana, Tejs Vegge, “Structural Stability of Complex Hydrides: LiBH4 Revisited”, Phys. Rev. Lett., 2004, 93: 145501-145503
    35. Y. Shiyoshi, N. Tatsuo, O. Akira, M. Shinro, “Second harmonic generation of dipolar dendrons in the assembled thin films”, Thin Solid Films, 1998, 331: 248-253
    36. Kityk I.V., Gruhn W., Sahraoui B., “Manifestation of hexagonal-like structure in the second-order nonlinear effects in the GaN nanocrystallites”, Optics and Lasers inEngineering, 2004, 41: 51-56
    37. S. Oksana, H. Akira, H. Yoshihiko, “Phase transitions in Langmuir monolayers of a rhodamine dye as studied by a second harmonic generation technique”, Surface Science, 2002, 509: 713-718
    38. Tessier Gilles, Beauvillain Pierre, “Nonlinear optics and magneto-optics in ultrathin metallic films”, Applied Surface Science, 2000, 164: 175-185
    39. Hayes P., Taylor A.G., Levitt J.A., Wilde C.P., “An in situ second harmonic generation study of the electrochemical oxidation of silicon in fluoride media”, Electrochemistry Communications, 2003, 5: 883-886
    40. LeCaptain Dale J., Berglund Kris A., “The applicability of second harmonic generation for in situ measurement of induction time of selected crystallization systems”, Journal of Crystal Growth, 1999, 203: 564-569
    41. Marvin H. Wu, Koen Clays, Andre Persoons, “High-resolution electric-field-induced second-harmonic generation with ultrafast Ti:sapphire laser”, Rev. Sci. Instrum., 1996, 67: 3005-3009
    42. C. Ohlhoff, C. Meyer, G. Lupke, T. Loffler, T. Pfeifer, H. G. Roskos, H. Kurz, “Optical second-harmonic probe for silicon millimeter-wave circuits”, Appl. Phys. Lett., 1996, 68: 1699-1701
    43. Cheng-Quan Li, Takaaki Manaka, Xiao-Man Cheng, Mitsumasa Iwamoto, “Second harmonic generation from copper-tetratert-butyl-phthalocyanine Langmuir--Blodgett film/metal interface: Electric quadrupole or electric field induced second harmonic generation effect?”, J. Appl. Phys., 2002, 92: 6390-6398
    44. Li Cheng-Quan, Manaka Takaaki, Iwamoto Mitsumasa, “Static electric field effect in the second harmonic generation from phthalocyanine film/metal electrode”, Thin Solid Films, 2003, 438: 162-166
    45. Sentein C., Fiorini C., Lorin A., Sicot L., Nunzi J. M., “Study of orientation induced molecular rectification in polymer films”, Optical Materials, 1998, 9: 316-322
    46. S. K. Kurtz, T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials”, J. Appl. Phys., 1968, 39: 3798-3813
    47. K. Clays, A. Persoons, “Hyper-Rayleigh scattering in solution”, Phys. Rev. Lett., 1991, 66:1980-2983
    48. K. Clays, A. Persoons, “Hyper-Rayleigh scattering in solution”, Rev. Sci. Instrum., 1992, 63: 3285-3289
    49. K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, J. L. Bredas, “Nonlinear Optical Properties of Proteins Measured by Hyper-Rayleigh Scattering in Solution”, Science, 1993, 262: 1419-1421
    50. W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, A. Persoons, “Large second-order optical polarizabilities in mixed-valency metal complexes”, Nature, 1993, 363: 58-60
    51. Ok-Keun Song, C. H. Wang, “Dicarbocyanine dyes in methanol solution probed by depolarized Rayleigh and hyper-Rayleigh light scattering”, J. Chem. Phys., 1996, 104: 8230-8236
    52. T. W. Chui, K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet”, J. Chem. Phys., 1998, 109: 1391-1396
    53. M. Kiguchi, M. Kato, Y. Taniguchi, “Measurement of second harmonic generation fromcolored powders”, Appl. Phys. Lett., 1993, 63: 2165-2167
    54. C. Bosshard, G. Knopfle, P. Petre, P. Gunter, “Second-order polarizabilities of nitropyridine derivatives determined with electric-field-induced second harmonic generation and a solvatochromic method: a comparative study”, J. Appl. Phys., 1992, 71: 1594-1605
    55. Wang K.F., Tieu A.K., “Volume-grating phase-shifting digital speckle pattern interferometry used for measurement of out-of-plane displacement field”, Optics and Laser Technology, 2004, 36: 117-120
    56. Alice C. Liu, Michel J. F. Digonnet, and Gordon S. Kino, “Measurement of the dc Kerr and electrostrictive phase modulation in silica”, J. Opt. Soc. Am. (B), 2001, 18: 187-194
    57. Imanishi Yasuo, Ishihara Shingo, “Optical Kerr effect measurements for organic multilayered structures”, Thin Solid Films, 1998, 331: 309-313
    58. Xu Yong, Xiong Guiguang, “Third-order optical nonlinearity of semiconductor carbon nanotubes for third harmonic generation”, Chemical Physics Letters, 2004, 388: 330-336
    59. Ren-Bao Liu, Bang-Fen Zhu, “Degenerate four-wave-mixing signals from a dc- and ac-driven semiconductor superlattice”, Phys. Rev. (B), 1999, 59: 5759-5769
    60. Hermann J.A., “Optimisation approach to modelling nonlinear optical absorption in thick media”, Optics Communications, 2003, 217: 421-429
    61. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. V. Stryland, “Sensitivity measurement of optical nonlinearities using a single beam”, IEEE J. Quantum Electron., 1990, 26: 760-769
    62. F. Gelmukhanov, A. Baev, P. Macak, Y. Luo, and H. Agren, “Dynamics of two-photon absorption by molecules and solutions”, J. Opt. Soc. Am. (B), 2002, 19: 937-945
    63. Matsudo Tatsuo, Takahara Yuichiro, Hori Hirokazu, Sakurai Takeki, “Pseudomomentum transfer from evanescent waves to atoms measured by saturated absorption spectroscopy”, Optics Communications, 1998, 145: 64-68
    1. Michael Stoker, Ermanno Gherardi, Marion Perryman, Julia Gray, “Scatter factor is a fibroblast-derived modulator of epithelial cell mobility”, Nature, 1987, 327: 239-242
    2. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, W. Ketterle, “Superradiant Rayleigh Scattering from a Bose-Einstein Condensate”, Science, 1999, 285: 571-574
    3. S. F. Sun, “Light Scattering”, John Wiley & Sons Inc., 2004, Chapter 2
    4. J. Bent, L. R. Hutchings, R. W. Richards, T. Gough, R. Spares, P. D. Coates, I. Grillo, O. G. Harlen, D. J. Read, R. S. Graham, A. E. Likhtman, D. J. Groves, T. M. Nicholson, and T. C. B. McLeish, “Neutron-Mapping Polymer Flow: Scattering, Flow Visualization, and Molecular Theory”, Science, 2003, 301: 1691-1695
    5. Iam-Choon Khoo, “Liquid crystals: physical properties and nonlinear optical phenomena”, John Wiley & Sons Inc., 1995, Chapter 7, 8
    6. N. Bloembergen, R. K. Chang, C. H. Lee, “Second-harmonic generation of light in reflection from media with inversion symmetry”, Phys. Rev. Lett. 1996, 16: 986-989
    7. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, “Surface-Enhanced Non-Linear Raman Scattering at the Single Molecule Level”, Chemical Physics, 1999, 247: 155-162
    8. G. Beaucage, “Determination of branch fraction and minimum dimension of mass-fractalaggregates”, Phys. Rev. (E), 70: 031401-1~10
    9. Claudia Schmidt, Friedhelm Bladt, Stefanie Goedecke, Volker Brinkmann, Wolfgang, “Scatter factor/hepatocyte growth factor is essential for liver development”, Nature, 1995, 373: 699-702
    10. Marc R. Sontag, Sujit K. Ray, “Determination of differential scatter--air ratios (dSAR) for three-dimensional scatter integration”, Medical Physics, 1995, 22: 775-780
    11. Matthew Y. Sfeir, Feng Wang, Limin Huang, Chia-Chin Chuang, J. Hone, Stephen P. O'Brien, Tony F. Heinz, Louis E. Brus, “Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering”, Science, 2004, 306: 1540-1543
    12. John A. Goff, “The relationship between local- and global-scale scattering functions for fractal surfaces under a separation of scales hypothesis”, The Journal of the Acoustical Society of America, 1995, 97: 1586-1595
    13. L. Ray, “Multiple scattering description of intermediate energy deuteron-nucleus elastic scattering”, Phys. Rev. (C), 1988:, 38: 2743-2755
    14. John F. Mustard, Carle M. Pieters, “Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra”, Journal of Geophysical Research, 1989, 94: 13619-13634
    15. Philip Campbell, “Incoherent scatter radar: Auroral visions”, Nature, 1981, 292: 788
    16. Li Yinyuan, “On the Raman effect of multiple radiation process and its applications in spectroscopy”, Acta Physica Sinica (物理学报), 1964, 20: 164-173
    17. R. W. Terhune, P. D. Maker, C. M. Savage, “Measurements of nonlinear light scattering”, Phys. Rev. Lett., 1965, 14: 681-684
    18. R. Bersohn, Y. H. Pao, H. L. Frisch, “Double quantum light scattering by molecules”, J. Chem. Phys., 1966, 45: 3184-3198
    19. K. Clays, A. Persoons, “Hyper-Rayleigh scattering in solution”, Phys. Rev. Lett., 1991, 66:1980-2983
    20. K. Clays, A. Persoons, “Hyper-Rayleigh scattering in solution”, Rev. Sci. Instrum., 1992, 63: 3285-3289
    21. K. Clays, E. Hendrickx, M. Triest, T. Verbiest, A. Persoons, C. Dehu, J. L. Bredas, “Nonlinear Optical Properties of Proteins Measured by Hyper-Rayleigh Scattering in Solution”, Science, 1993, 262: 1419-1421
    22. W. M. Laidlaw, R. G. Denning, T. Verbiest, E. Chauchard, A. Persoons, “Large second-order optical polarizabilities in mixed-valency metal complexes”, Nature, 1993, 363: 58-60
    23. H. Anja, H. Johan, M. Emad, B. Fredrik, J. Lennart, “Two-photon excitation and time-resolved fluorescence: I. The proper response function for analysing single-photon counting experiments”, Chemical Physics Letters, 2002, 354: 367-375
    24. Meshulam G., Berkovic G., Kotler Z., Ben-Asuly A., Mazor R., Shapiro L., Khodorkovsky V., “2-D effects in the second-order optical nonlinearity of organic molecules incorporating carbazole”, Synthetic Metals, 2000, 115: 219-223
    25. Ok-Keun Song, C. H. Wang, “Dicarbocyanine dyes in methanol solution probed by depolarized Rayleigh and hyper-Rayleigh light scattering”, J. Chem. Phys., 1996, 104: 8230-8236
    26. Nandi P.K., Chattopadhyay T., Bhattacharyya S.P., “Theoretical study of solvent modulation of the first hyperpolarizability of PNA, DNBT and DCH”, Journal of Molecular Structure,2001, 545: 119-129
    27. T. W. Chui, K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet”, J. Chem. Phys., 1998, 109: 1391-1396
    28. Pal Sushanta K., Krishnan Anu, Das Puspendu K., Samuelson Ashoka G., “Second harmonic generation in ferrocene based hydrogen bonded assemblies”, Journal of Organometallic Chemistry, 2001, 638: 827 – 831
    29. Wyss Christian J., Smith Gerald J., Woolhouse Anthony D., Kay Andrew J., Wadsworth William J., “The first-order hyperpolarizabilities of some charge transfer conjugated molecules with high transmission in the far red”, Optical Materials, 2001, 16: 341-347
    30. Licandro Emanuela, Maiorana Stefano, Papagni Antonio, Hellier Paul, Capella Laura, Persoons Andre, “Synthesis and non-linear properties of conjugated poly-unsaturated amino carbene complexes”, Journal of Organometallic Chemistry, 1999, 583: 111 – 119
    31. R. W. Munn, “Microscopic theory of hyper-Rayleigh scattering for molecular crystals”, J. Chem. Phys., 2001, 114: 5607-5613
    32. Cross G.H., Hackman N. A., Thomas P. R., Szablewski M., Palsson L. O., Bloor D., “Local field and aggregation dependence of the micro- and macroscopic optical non-linearity of zwitterionic molecules”, Optical Materials, 2003, 21: 29-37
    33. R. H. C. Janssen, D. N. Theodorou, S. Raptis, M. G. Papadopoulos, “Molecular simulation of static hyper-Rayleigh scattering: A calculation of the depolarization ratio and the local fields for liquid nitrobenzene”, J. Chem. Phys., 1999, 111: 9711-9719
    34. S. J. Cyvin, J. E. Rauch, J. C. Decius, “Theory of hyper-Raman effects (nonlinear inelastic light scattering): selection rules and depolarization ratios for the second-order polarizability”, J. Chem. Phys., 1965, 43: 4083-4095
    35. K. Clays, A. Persoons, L. D. Maeyer, “Modern nonlinear optics”, Part 3, John Wiley & Sons Inc., 1994
    36. P. Kaatz, D. P. Shelton, “Polarized Hyper-Rayleigh light scattering measurements of nonlinear optical chromophores”, J. Chem. Phys., 1996, 105: 3918-3929
    37. S. Brasselet, J. Zyss, “Multipolar molecules and multipolar fields: probing and controlling the tonsorial nature of nonlinear moclecular media”, J. Opt. Soc. Am. (B), 1998,15: 257-288
    38. T. Verbiest, M. Kauranen, A. Persoons, “Parametric light scattering”, J. Chem. Phys., 1994, 101: 1745-1747
    39. C. Boutton, K. Clays, A. Persoons, T. Wada, H. Sasabe, “Second-order off-diagonal hyper-polarizability tensor components of substituted carbazoles by hyper-Rayleigh scattering depolarization measurements”, Chem. Phys. Lett., 1998, 286: 101-106
    40. J. Zyss, I, Ledoux, “Nonlinear optics in multipolar media: theory and experiments”, Chem. Rev., 1994, 94: 9320-9323
    41. D. P. Shelton, “Polarization and angle dependence for Hyper-Rayleigh scattering from local and nonlocal modes of isotropic fluids”, J. Opt. Soc. Am. (B), 2000, 17: 2032-2036
    42. D. P. Shelton, P. Kaatz, “Librons observed in liquid acetonitrile by Hyper-Rayleigh scattering”, Phys. Rev. Lett., 2000, 84: 1224-1227
    43. Instruction manual Quantel YG900 mode-locked Nd: YAG laser
    44. N. W. Song, T. I. Kang, S. C. Jeoung, S. J. Jeon, B. R. Cho, D. Kim, “Improved method of measuring the first-order hyperpolarizability of organic NLO materials in solution by using the hyper-Rayleigh scattering technique”, Chem. Phys. Lett. 1996, 261: 307-312
    45. P. Kaatz, D. P. Shelton, “Spectral measurements of Hyper-Rayleigh light scattering”, Rev. Sci. Instrum., 1996, 67: 1438-1444
    46. V. Ostroverkhov, R. G. Petschek, K. D. Singer, L. Sukhomlinova, R. J. Twieg, S.-X. Wang, L. C. Chien, “Measurements of the hyperpolarizability tensor by means of hyper-Rayleigh scattering”, J. Opt. Soc. Am. (B), 2000, 17: 1531-1542
    1. G. G. Roberts, “An applied science perspective of Langmuir-Blodgett films”, Advan. Phys., 1985, 34: 475-512
    2. Yannick Champion, “Nano-Architectured Materials: Fabrication, Control and Properties”, John Wiley & Sons, 2004
    3. C. M. and Mirkin, C. A. Niemeyer, “Nanobiotechnology : Concepts Applications and Perspectives”, John Wiley & Sons, 2004
    4. Marc S. Lavine, “A Brighter Future by Working Together”, Science, 2004, 306: 1263
    5. Shen Y., Friend C. S., Jiang Y., Jakubezyk D., Swiatkiewicz J., Prasad P. N., “Nanophotonics: Interactions, Materials, and Applications”, 2000, J. Phys. Chem. (B), 104: 11440-11440,
    6. Fadel A. Samatey, Hideyuki Matsunami, Katsumi Imada, Shigehiro Nagashima, Tanvir R. Shaikh, Dennis R. Thomas, James Z. Chen, David J. DeRosier, Akio Kitao, Keiichi Namba, “Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism”, Nature, 2004, 431: 1062 – 1068
    7. 张立德, 牟季美, “纳米材料和纳米结构”, 科学出版社, 2001
    8. 顾 宁, 付德刚, “纳米技术及应用”, 人民邮电出版社, 2002
    9. 马克·瑞特,丹尼尔·瑞特, “纳米技术:对又一重大概念的简明阐释”, 西安交通大学出版社, 2004
    10. Mohammed Ibn-Elhaj, Martin Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies”, Nature, 2001, 410: 796-799
    11. Shengtai He, Jiannian Yao, Peng Jiang, Dongxia Shi, Haoxu Zhang, Sishen Xie, Shijin Pang, Hongjun Gao, “Formation of Silver Nanoparticles and Self-Assembled Two-Dimensional Ordered Superlattice”, 2001, Langmuir, 17: 1571-1575
    12. R. K. Jain, R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glass”, J. Opt. Soc. Am., 1983, 73: 647-653
    13. N. I. Zheludev, “Nonlinear optics on the nanoscale”, Contemporary Phys., 2002, 43: 365-377
    14. D. Ricard, P. Roussignol, F. Hache, C. Flyzanis, “Nonlinear optical properties of quantum confined semiconductor microcrystallites”, Phys. Stat. Sol. (B), 1990, 159: 275-285
    15. L. Brus, “Quantum crystallites and nonlinear optics”, Appl. Phys. (A), 1991, 465-474
    16. D. S. Chemla, “Nonlinear optics in quantum confined structures”, Phys. Today, 1993, June, 46-52
    17. L. Banyai, Y. Z. Hu, M. Lindberg, S. W. Koch, “Third-order optical nonlinearities in semiconductor microstructures”, Phys. Rev. (B), 1988, 38: 814-8153
    18. S. S. Rink, D. A. B. Miller, D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites”, Phys. Rev. (B), 1987, 35: 8113-8125
    19. Y. Wang, “Nonlinear optical properties of nanometer-sized semiconductor clusters”, Acc. Chem. Res., 1991, 24: 133-139
    20. Jorg P. Kottmann, Olivier J. F. Martin, “Retardation-induced plasmon resonances in couplednanoparticles”, Optics Letters, 2001, 26: 1096-1098
    21. Charles M. Lieber, “One-Dimensional Nanostructures: Chemistry, Physics & Applications”, Solid State Communications, 1998, 107: 607-616
    22. N. R. Jana, L. Gearheart, C. J. Murphy, “Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods”, J. Phys. Chem. (B), 2001, 105: 4065-4067
    23. Krassimir P. Velikov, Gabby E. Zegers, Alfons van Blaaderen, “Synthesis and characterization of Large Colloidal Silver Particles”, Langmuir, 2003, 19: 1384-1389
    24. Michaels A. M., Nirmal M., Brus L. E., “Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals”, J. Am. Chem. Soc., 1999, 121: 9932-9939
    25. Y. Fang, “Optical absorption of nanoscale collioidal silver: Aggregate band and adsorbate-silver surface band”, Journal of Chemical Physics, 1998, 108: 4315-4318
    26. Colby A. Foss, Jr. Gabor L. Hornyak, Jon A. Stockert, Charles R. Martin, “Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape”, J. Phys. Chem., 1994, 98: 2963-2971
    27. Y. Kayanuma, “Quantum size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape”, Phys. Rev. (B), 1988, 38: 9797-9805
    28. Y. Wang, N. Herron, “Nanometer sized semicondutor clusters: materials synthesis, quantum size effects, and photophysical properties”, J. Phys. Chem., 1991, 95: 525-532
    29. Yoshio Nosaka, “Finite depth spherical well model for excited states of ultrasmall semiconductor particles: an application”, J. Phys. Chem., 1991, 95: 5054-5058
    30. P. E. Lippens, M. Lannoo, “Calculation of the Band Gap for Small CdS and ZnS Crystallites”, Phys. Rev. (B), 1987, 39: 10935-10941
    31. G.T. Einevoll, “Confinement of excitons in quantum dots”, Phys. Rev. (B), 1992,45: 3410-3417
    32. M. Xu, M. J. Dignam, “A new approach to the surface plasma resonance of small metal particles”, J. Chem. Phys., 1992, 96: 3370-3378
    33. Gang Wang, Yu Zhang, Yiping Cui, Muyun Duan and Mi Liu, “Study on the Behavior of Hyper-Rayleigh Scattering for Silver Nanoparticles with Aggregation Effects”, J. Phys. Chem. (B), 2005, 109, 1067-1071
    34. Gang Wang, Yu Zhang, Yiping Cui, Muyun Duan and Mi Liu, “Study on the Nonlinear Refraction of Silver Nanoparticle with the Aggregation Effect”, Opt. Comm., Accepted
    35. J. Missiger, U. Raben, R. K. Chang, Phys. Rev. (B), 1981, 24: 649-658
    36. A. Henglein, “Small particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles”, Chem. Rev., 1989, 89: 1861-1873
    37. P. Maly, J. Kudrna, F. Trojanek, D. Mikes, P. Nemec, A. Maciel, J. Ryan, “Dominant role of surface states in photoexcited carrier dynamics in CdSe Nanocrystalline films prepared by chemical deposition”, Appl. Phys. Lett., 2000, 77: 2352-2354
    38. M. Kuli, J. Coutaz, G. Manneberg, V. Grivickas, “Absorption saturation and photodarkening in semiconductor doped glass”, Appl. Phys. Lett., 1989, 54: 1830-1832
    39. Y. Wang, N. Herron, W. Mahler, A. Suna, “linear and nonlinear optical properties of semiconductor clusters”, J. Opt. Soc. Am. (B), 1989, 6: 808-813
    40. E. Hilinski, P. Lucas, Y. Wang, “A picosecond bleaching study of quantum confined cadmium sulfide micro crystallites in a polymer film”, J. Chem. Phys., 1988, 89: 3435-3441
    41. K. W. Delong, A. Gabel, C. T. Seaton, G. I. Stegeman, “Nonlinear transmission, degenerate four wave mixing, photodarkening and the effects of carrier density dependent nonlinearities in semiconductor doped glasses”, J. Opt. Soc. Am. (B), 1989, 6: 1306-1313
    42. Lee P. C, Meisel D, “Absorption and SERS of dyes on silver and gold sols”, J. Phys. Chem, 1982, 86: 3391-3395
    43. Nicholas J. Turro, “Modern molecular photochemistry”, University Science Books, 1991
    44. Kerker M., “The scattering of light and other electromagnetic radiation”, Academic Press, 1989
    45. G. Mie, Ann. Phys., 1908, 25: 377-445
    46. T. Jensen, L. Kelly, A. Lazarides, G. C. Schatz, “Electrodynamics of Noble Metal Nanoparticles and Nanoparticle Clusters”, J. Cluster Science, 1999, 10: 295-317
    47. A. Wokaun, “Surface enhancement of optical fields mechanism and applications”, Mole. Phys., 1985, 56: 1-33
    48. Wang W., Efrima S., Regev O., “Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases”, Langmuir, 1998, 14: 602-610
    49. I. I. Smolyaninov, A. V. Zayats, C. C. Davis, “Near field second harmonic generation from a rough metal surface”, Phys. Rev. (B), 1997, 56: 9290-9293
    50. M. Adameck, R. Blum, M. Eich, “Scanning second harmonic microscopy techniques with monomode and near field optical fibers”, Appl. Phys. Lett., 1998, 73: 2884-2886
    51. 51, J. I. Dadap, J. Shan, K. B. Eisenthal, T. F. Heinz, “Second harmonic Rayleigh scattering from a sphere of centrosymmetric matericals”, Phys. Rev. Lett., 1999, 83: 4045-4048
    52. Robert C. Johnson, Jiangtian Li, Joseph T. Hupp, George C. Schatz, “Hyper-Rayleigh scattering studies of silver, copper and platinum nanoparticle suspensions”, Chemical Physics Letters, 2002, 356: 534-540
    53. Ok-Keun Song, C. H. Wang, “Dicarbocyanine dyes in methanol solution probed by depolarized Rayleigh and hyper-Rayleigh light scattering”, J. Chem. Phys., 1996, 104: 8230-8236
    54. T. W. Chui, K. Y. Wong, “Study of hyper-Rayleigh scattering and two-photon absorption induced fluorescence from crystal violet”, J. Chem. Phys., 1998, 109: 1391-1396
    55. R. W. Munn, “Microscopic theory of hyper-Rayleigh scattering for molecular crystals”, J. Chem. Phys., 2001, 114: 5607-5612
    56. Petrov D. V., Santos B. S., Pereira G. A. L., de Mello Donega C., “Size and Band-Gap Dependences of the First Hyperpolarizability of CdxZn1-xS Nanocrystals”, J. Phys. Chem. (B), 2002, 106: 5325-5334
    57. Vera L. Brudny, Bernardo S. Mendoza, W. Luis Mochan, “Second-harmonic generation from spherical particles”, Physical Review (B), 2000, 62: 11152-11162
    58. K. Clays, E. Hendrickx, M. Triest, A. Persoons, “Second-order nonlinear optics in isotropic liquids: Hyper-Rayleigh scattering in solution”, J. Mole. Liquids, 1995, 67: 133-155
    59. E. C. Hao, G. C. Schatz, R. C. Johnson, T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles”, J. Chem. Phys., 2002, 117: 5963-5966
    60. G. S. Agarwal, S. S. Jha, “Theory of second harmonic generation at a metal surface with surface plasmon excitation”, Solid State Comm.; 1982, 41: 499-501
    61. Yu Zhang, “Study on the optical characteristics of the surface modified semiconductor nanoparticles”, a doctoral dissertation of SEU(东南大学博士论文), 2001
    62. J. H. Liao, K. J. Chen, L. N. Xu, C. W. Ge, J. Wang, L. Huang, N. Gu, “Self-assembly of length tunable gold nanoparticle chains in organic solvents”, Appl. Phys. (A), 2003, 76: 541-543
    63. Nikhil R. Jana, Latha Gearheart, Catherine J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio”, Chemical Communications, 2001, 617-618
    64. Yu Y. Y., Chang S. S., Lee C. L., Wang C. R. C., “Gold Nanorods: Electrochemical Synthesis and Optical Properties”, J. Phys. Chem. (B), 1997, 101: 6661-6664
    65. Nikoobakht B., Wang Z. L., El-Sayed M. A., “Self-Assembly of Gold Nanorods”, J. Phys. Chem. (B), 2000, 104: 8635-8640
    66. Link S., Mohamed M. B., El-Sayed M. A., “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant”, J. Phys. Chem. (B); 1999, 103: 3073-3077
    67. Yu Y. Y., Chang S. S., Lee C. L., Wang C. R. C, “Gold Nanorods: Electrochemical Synthesis and Optical Properties”, J. Phys. Chem. (B), 1997, 101: 6661-6664
    68. Boon K. Teo, K. Keating, Y. H. Kao, “Observation of plasmon frequency in the optical spectrum of Au18Ag20 cluster: the beginning of the collective phenomenon characteristics of the bulk?”, J. Am. Chem. Soc., 1987, 109: 3494-3495
    69. Link S., Wang Z. L., El-Sayed M. A., “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition”, J. Phys. Chem. (B), 1999, 103: 3529-3533
    70. Edward D. Palik, “Handbook of optical constants of solids”, Academic Press, 1985
    71. Galletto P., Brevet P. F., Girault H. H., Antoine R., Broyer M., “Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation”, J. Phys. Chem. (B), 1999, 103: 8706-8710
    72. Vance F. W., Lemon B. I., Hupp J. T., “Enormous Hyper-Rayleigh Scattering from Nanocrystalline Gold Particle Suspensions”, J. Phys. Chem. (B), 1998, 102: 10091-10093
    73. J. L. Qudar, D. S. Chemla, “Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment”, J. Chem. Phys., 1977, 66: 2664-2668
    74. Jiang Jiang, Ken Bosnick, Mathieu Maillard, Louis Brus, “Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals”, J. Phys. Chem. (B), 2003, 107: 9964-9972
    75. H. X. Xu, “A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres”, Phys. Lett. (A), 2003, 312: 411-419
    76. A. A. Lzazrides, G. C. Schatz, “DNA-linked metal nanosphere materials: Fourier-transform solutions for the optical response”, J. Chem. Phys., 2000, 112: 2987-2993
    77. Duval Malinsky M., Kelly K. L., Schatz G. C., Van Duyne R. P., “Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles”, J. Phys. Chem. (B), 2001, 105: 2343-2350
    78. E. C. Hao, G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers”, J. Chem. Phys., 2004, 120: 357-366
    79. Junying Zeng, Xiaoyan Zhang, Tao Zhou, Qing Zhou, “Plasmon localization and local field distribution of metal nanoparticles”, Proc. SPIE Int. Soc. Opt. Eng., 2005, 5635: 460-467
    80. 郭硕鸿, “电动力学”, 高等教育出版社, 1995
    81. C. H. Munro, W. E. Smith, M. Garner, J. Clarkson, P. C. White, “Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman Scattering”, Langmuir, 1995, 11: 3712-3720
    82. David R. Lide, “Handbook of chemistry and physics”, CRC Press, 1990
    83. Michael Quinten, Uwe Kreibig, “Absorption and elastic scattering of light by particle aggregates”, Appl. Opt., 1993, 32: 6173-6182
    84. W. H. Weber, G. W. Ford, “Enhanced Raman scattering by adsorbates including the nonlocal response of the metal and the excitation of nonradiative modes”, Phy. Rev. Lett., 1980, 44: 1774-1777
    85. S. L. Mccall, P. M. Platzman, P. A. Wolff, “Raman scattering from chemisorbed molecules at surfaces”, Phys. Rev. (B), 1980, 22: 1660-1662
    86. Catherine Amiens, Dominique de Caro, Bruno Chaudret, John S. Bradley, Robert Mazel, Christian Roucau, “Selective synthesis, characterization, and spectroscopic studies on a novel class of reduced platinum and palladium particles stabilized by carbonyl and phosphine ligands”, J. Am. Chem. Soc., 1993, 115: 11638-11639
    87. U. Kreibig, M. Vollmer, “Optical properties of metal clusters”, Springer, 1995
    1. R. Y. Chiao, Phys. Rev. Lett., 1964, 13: 479
    2. Y. R. Shen, Prog. Quantum Electron., 1975, 4: 1
    3. J. H. Marburger, Prog. Quantum Electron., 1975, 4: 35
    4. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. V. Stryland, “Sensitivity measurement of optical nonlinearities using a single beam”, IEEE J. Quantum Electron., 1990, 26: 760-769
    5. T. Cassano, R. Tommasi, F. Babudri, A. Cardone, G. M. Farinola, and F. Naso, “High third-order nonlinear optical susceptibility in new fluorinated poly(p-phenylenevinylene) copolymers measured with the Z-scan technique”, Opt. Lett., 2002, 27: 2176-2178
    6. S. M. Lima, H. Jiao, L. A. O. Nunes, and T. Catunda, “Nonlinear refraction spectroscopy in resonance with laser lines in solids”, Opt. Lett., 2002, 27: 845-847
    7. K. S. Bindra and A. K. Kar, “Role of femtosecond pulses in distinguishing third- and fifth-order nonlinearity for semiconductor-doped glasses”, Appl. Phys. Lett., 2001, 79: 3761-3764
    8. K. Y. Tseng, K. S. Wong, and G. K. L. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe”, Opt. Lett., 1996, 21: 180-182
    9. Geon Joon Lee, “z-Scan Method Using the Flat-Topped Beam and Its Application to the Evaluation of the Two-Photon-Absorbing Material”, Jpn. J. Appl. Phys., 2003, 42: 3419-3423
    10. A. Marcano O., F. E. Hernández, and A. D. Sena, “Two-color near-field eclipsing Z-scan technique for the determination of nonlinear refraction”, J. Opt. Soc. Am. (B), 1997, 14: 3363-3367
    11. H. Ma, A. S. L. Gomes, Cid B. de Araujo., “Measurement of nondegenerate optical nonlinearity using a two-color single beam method”, Appl. Phys. Lett., 1991, 59: 2666-2668
    12. M. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. Van Stryland, “Measurement of nondegenarate nonlinearities uaing a two-color Z-scan”, 1992, Opt. Lett, 17: 258-260
    13. H. Ma, Cid B. de Araujo, “Two-color Z-scan technique with enhanced sensitivity”,Appl .Phys.Lett., 1995, 66: 1581-1583
    14. V. P. Kozich, A. Marcano O., F. E. Hernandez, and J, A. Castillo, “Dual-beamtime-resolved Z-scan in liquids to study heating due to linear and nonlinesr light absorption”, Appl .Spec., 1994, 48: 1506-1512
    15. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities”, J. Opt .Soc Am. (B), 1994, 11: 1009-1017
    16. Tadashi Kawazoe, Hitoshi Kawaguchi, Jun Inoue, Osamu Haba, Mitsuru Ueda, “Measurement of nonlinear refractive index by time-resolved Z-scan technique”, Opt. Commun., 1999, 160: 125-129
    17. A. A. Andrade, T. Catunda, R. Ledbullenger, “Electronic and thermal contribution to the nonlinear refractive index of Nd3+ inn-doped fluoride glasses”, J. Non-Crystalline Solids, 2000, 273: 257-265
    18. F. E. Hernandez, A. Macano O, Ysaias Alvarado, “Measurement of nonlinear refractive index and two-photon absorption in a novel organometalline compound”, Opt. Commun., 1998, 152: 77-82
    19. Sylcia Smolorz, Iunk Kang, Frank Wise, “Studies of optical nonlinearities of chalcogenide and heavy-metal oxide glasses”, J. Non-Crystalliner Solids, 1999, 256&257: 310-317
    20. J. Castillo, V. P. Kozich, O. A. Marcano, “Thermal lensing resulting from one-and two-photon absorption with a two-color time-resolved Z-scan”, Opt. Lett., 1994, 19: 171-173
    21. S. V. Kershow, “Analysis of the EZ-scan measurement technique”, J. Mod. Opt., 1995, 42: 1361-1362
    22. T. Xia, D. J. Hagan, M. Sheik-bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion”, Opt. Lett., 1994, 19: 317-319
    23. 田建国,臧维平, 张光寅, “利用改进的 Z-scan 的方法确定热致非线性”, 物理学报, 1994, 43: 1460-1465
    24. W. Zhao, P. Palffy-Muhoray, “Z-scan technique using top-hat beams”, Appl. Phys. Lett., 1993,
    63: 1613-1615
    25. R. L. Sutherland, “Effects of multiple internal sample reflections on nonlinear refractive Z-scan measurements”, Appl. Opt., 1994, 33: 5567
    26. M. Martinelli, S. Bian, J. R. Leite, and R. J. Horowicz, “Sensitivity enhanced reflection Z-scan by oblique incidence of a polarized beam”, Appl. Phys. Lett., 1998, 72: 1427-1429
    27. D. O. Kaplan, “Characterization of dynamic optical nonlinearities by continuous time-resolved Z-scan”, Opt. Lett., 1996, 21:1342-1344
    28. W. Zhao, P. Palfft-Muhoray, “Z-scan measurement of χ(3) using top-hat beams”, 1994, Appl. Phys. Lett., 1994, 65: 673-675
    29. Y. R. Shen, “The principles of nonlinear optics”, John Wiley & Sons Inc., 1984
    30. T. C. Wen, L. C. Wang, W. Y. Lin, C. H. Chen, C. H. Wu, “Nonlinear absorption of light: two-photon absorption and optical saturation in metallorphyrin-doped boricacid glass”, Chem, Phys., 2003, 286: 293-302
    31. D. Ricard, P. Roussignol, C. Flytzanis, “Surface mediated enhancement of optical phase conjugation in metal colloids”, Opt. Lett., 1985, 10: 511-513
    32. M. A. Palenberg, B. U. Felderhof, “Local field effects in nonlinear dielectrics”, Phys. Rev. (B), 1997, 55: 10326-10336
    33. M. J. Bloemer, J. W. Haus, P. R. Ashley, “Degenerate four wave mixing in colloidal gold as afunction of particle size”, J. Opt. Soc. Am. (B), 1990, 7: 790-795
    34. F. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties”, J. Appl. Phys., 1994, 75: 3075-3080
    35. W. Schrof, S. Rozouvan, E. V. Keuren, D. Horn, J. Schmitt, G. Decher, “Nonlinear optical properties of polyelectrolyte thin films containing gold nanoaprticles investigated by wavelength dispersive fetosecond degenerate four wave mixing”, Adv. Mater., 1998, 3: 338-341
    36. L. T. Cheng, N. Herron, Y. Wang, “Nonresonant third-order optical nonlinearity of quantum confined CdS clusters: a third harmonic generation study”, J. Appl. Phys., 1989, 66: 3417-3419
    37. A. K. Dharmadhikari , Neelesh Kumbhojkar , J. A. Dharmadhikari , Shailaja Mahamuni and R. C. Aiyer, “Studies on third-harmonic generation in chemically grown ZnS quantum dots”, Journal of Physics: Condensed Matter, 1999, 11: 1363-1368
    38. 沈琪敏, 梁培辉, “溶胶毫微晶的双光子吸收及量子尺寸效应”, 光学学报, 1991, 11: 684-687
    39. A. Nakamura, T. Tokizaki, H. Akiyama and T. Kataoka, “Quantum size effects and optical nonlinearity of confined excitons in semiconductor microcrystallites”, J. Lumin, 1992, 53: 105-109
    40. A. Nakamura, Y. L. Lee, T. Kataoka, T. Tokizaki, “Mesoscopic enhancement of optical nonlinearity in semiconducting quantum dots”, J. Lumin., 1994, 60/61: 376-379
    41. Y. Wang, “Nonlinear optical properties of nanometer-sized semiconductor clusters”, Acc. Chem. Res., 1991, 24: 133-139
    42. Fauconnier N., Bee A., Roger J., Pons J. N., “Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles”, J. Molecular Liquids, 1999, 83: 233-242
    43. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-semsitivity, single-beam n2 measurements”, Opt. Lett., 1989, 14: 955-957
    44. M. Yin, H. P. Li, S. H. Tang, “Determination of nonlinear absorption and refraction by single Z-scan method”, Appl. Phys. (B), 2000, 70: 587-591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700