扬子鳄(Alligator sinensis)和中华鳖(Trionyx sinensis)的Sox基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sox基因均含有一个编码高速泳动蛋白(High-Mobility-Group,HMG)的盒区,其对应的氨基酸组成与位于哺乳动物Y染色体上的SRY基因的HMG盒区相比,至少有50%的同源性。据不完全统计,目前已从包括哺乳类、鸟类、爬行类、两栖类、鱼类以及果蝇等不同物种中克隆了150多个Sox基因。Sox基因家族分成7个亚族(A,SRY;B,Sox-1,-2,-3,-14,-21;C,Sox-4,-11,-12,-22,-24;D,Sox-5,-6,-13,-23;E,Sox-8,-9,-10;F,Sox-7,-17,-18;G,Sox-15,-16,-20),其中,除了Sox3和SRY基因分别位于哺乳动物的X和Y染色体上,其他Sox基因均位于常染色体上。哺乳动物Sox3基因被认为是睾丸决定基因SRY的起源基因。Sox3、Sox9等其它Sox基因也可能与脊椎动物的性别决定和分化有关。然而,对于温度决定型性别决定的分子机理至今仍不清楚。
     本研究以性别决定方式为温度决定型(Temperature-dependent sex determination,TSD)的扬子鳄(Alligator sinensis)和中华鳖(Trionyx sinensis)为实验对象,采用兼并引物PCR,从扬子鳄和中华鳖的基因组DNA中分别克隆并测序8个和7个HMG盒区,每个盒区长度均为216bp。扬子鳄的8个HMG盒区命名为AS41~48基因,中华鳖的7个HMG盒区命名为TS41~47基因。8个AS基因组成3组(Class),7个TS基因也组成3组,但AS与TS之间没有互相重叠。同源序列比较表明:AS43~46和TS43~46与鼠Sox12的HMG盒区有95%的氨基酸同源性,表明是鼠Sox12的同源基因(homologues):AS47~AS48与鼠Sox4的HMG盒区分别有100%和97%的氨基酸同源性,可以认为AS47~48是鼠Sox4的同源基因;与鼠、鸟Sox21的HMG盒区相比,TS47分别有98%和100%的氨基酸同源性。分析结果表明:AS47和TS47是直向同源基因(orthologues)。
     与鼠的Sox1、Sox2或Sox3的HMG盒区相比,AS41、AS42、TS41、TS42分别有81%、79%、80%、72%的氨基酸同源性,表明AS41~42和TS41~42是鼠Sox-1、-2、-3的同源基因。进一步序列分析表明:AS41~42、TS41~42与非爬行类脊椎动物的Sox-1、-2、-3的氨基酸同源性低于非爬行类脊椎动物包括哺乳
    
    类、鸟类、两栖类和鱼类的肠工一1、一2、一3相互之间的氨基酸同源性,。分子系统
    发生分析表明AS41~42和Z弘1碑2的成簇(Cluster)偏离非爬行类脊椎动物肋工一1、
    一2、一3同源基因之间的成簇,显示了AS41~42和了万碑1一2在物种内的特异性进
    化,并且序列变化一定发生在羊膜动物多样化之后。本研究首次在爬行动物中克
    隆了哺乳动物辜丸决定基因(SR力的起源基因(加力)的同源序列,有助于进一步
    研究5’Ox基因与温度决定型性别决定的关系。
     为了克隆到与胚胎发育有关的新基因,以孵化一星期的中华鳖(Trto尸砂优
    sinensis)胚胎的头部、生殖晴混合组织为原始材料,采用SMART但witching
    丛eehanism丛5’end of旦NA Iranseript)和长距离PCR伍D一PCR)技术,构建T一
    个中华鳖cDNA表达文库。分析结果表明,该未扩增的cDNA文库大约含有4.134
    xlo,个克隆。任意挑取了192个克隆,提取质粒后用助I酶切鉴定表明:没有
    插入片段的克隆为9个,插入了CDNA片段的克隆为183个,插入的。DNA片段
    大小范围为0.4一3.skb。其中,插入片段在0.4一1.0 kb之间的克隆为19个,在
    1.1一2.okb之间的克隆为53个,在2.1一3.okb之间的克隆为92个,大于3.Ikb的
    克隆为19个。
     从插入片段在2.1一3.Okb之间的克隆中,任意挑选12个克隆,提取质粒后,
    从5’端进行测序,序列分析表明:12个序列均有开放阅读框(旦pen一:eading丘ame,
    oRF)的第一个密码子(ATG),没有内含子。Poly(A)信号序列伍AUAAA)也在
    招月晒因D中被证实。Blast分析表明,12个序列代表5种类型的基因:核糖体蛋
    白基因(ts RpL4,tsRp丈6,招天尸乙26)、组织特异性表达的基因(钻尸乃从招月叨火D)、线粒
    体基因(tsC“叨、结构蛋白基因伽DC从括人从石,,ts刀一ctin)、编码转录因子的基
    因(招月沏吟1,tsDA尸5)。其中,招月沏吟1、招刀CN、仃尺尸乙26、招材从护和招刃只PS基
    因在爬行动物中为首次克隆。该发育阶段特异性cDNA文库可以进一步用于中
    华鳖胚胎发育过程中相关基因的鉴定分离、结构功能分析、以及表达调控机制研
    究。
    采用”GW一pCR区andom助med少ne里alki飞pCR)方法,从经及。天I消化
    
    过的中华鳖(Trio矛移优sinensis)基因组DNA中克隆了c眨治xZ基因(72ObP),它与
    鼠、鸟的及戏2基因分别有85%和91%的核昔酸同源性,93%和97%的氨基酸同
    源性。进一步分析表明,已巴滩2编码的238个氨基酸多肤链含有两个保守的功
    能区域:位于N端的HMG盒区(1一78aa)和位于C端的转录激活区(131一236aa),
    以及一个保守的特征性B亚族同源区域(79一90aa)与HMG盒区的C端相连。高
    度的序列同源性和结构相似性表明C泛治戈2是中华鳖的直向同源基因。肠工2基因
    在哺乳类、鸟类、爬行类以及两栖类中极端保守,说明sbxZ功能在进化中可能
    也是非常保守的。C心以2基因的HMG盒区外的序列信息可以进一步研究它的功
    育旨。
Members of the Sox gene family are characterized by a HMG-box which shows sequence similarity with that of the mouse testis-determining gene SRY. Using degenerate primers PCR, seven and eight HMG-box motifs of SRY-related genes from respective genomic DNA of Trionyx sinensis and Alligator sinensis with TSD were cloned and sequenced, which were called TS41-TS47 in Trionyx sinensis and AS41-AS48 in Alligator sinensis respectively. TS41-TS47 form three major gene classes, which are not completely overlapped with those from AS41-AS48. TS43-TS46 and ,AS43-AS46 were demonstrated to be the mouse Sox12 homologues. ,AS48 was identified to be the mouse Sox4 homologue. TS47 may be a Sox21 orthologue of Trionyx sinensis, and ,AS47 may be a Sox4 orthologue of Alligator sinensis based on Blast search. Blast analyses showed that the percentage of identity at the amino acid level in the HMG-box region between TS-41, -42, AS-41, -42 and the non-reptilian Sox-1, -2, -3 was lower than that among the non-reptilian Sox-l, -2, -3
    . The molecular phylogenetic analysis indicated that the clustering of TS-41, -42 and AS-41, -42 was distant to the clustering of the non-reptilian Sox-l, -2, -3 homologues identified previously in species, including fish, amphibian, bird and mammalian. This suggests that TS-41, -42 and ,AS-41, -42 may represent the species-specific evolution and share a unique function. The unexpected sequence change in TS-41, -42 and ,AS-41, -42 may have occurred after divergence of amniotes. It is the first report that the sequence homologues of the progenitor of the mammalian testis-determining gene SRY were identified in reptile. These findings might provide molecular evidences that SRY-related genes may be involved into TSD.
    In order to clone new genes expressed during early embryonic development of Trionyx sinensis, we constructed and characterized a cDNA expression library from poly (A+) mRNA isolated from 250 mg of cranial/kidney/gonad complex tissues of one-week-old embryos of Trionyx sinesis using the SMART (Switching Mechanism
    
    
    At 5' end of RNA Transcript) cDNA synthesis and LD-PCR amplification strategy. The measured complexity of the cDNA library is 4.134X 10s directional clones. The insert lengths of 192 randomly selected clones ranged from 400 to 3800 bp. In all, 12 clones were randomly picked and sequenced, all showing typical cDNA characteristics. All sequences had the first codon of the ORFs. These sequences represent five groups: including ribosomal protein gene(tsRPL4, tsRPL6, tsRPL26), tissue-specific gene (tsFTH, tsHBAD), mitochondria! gene (tsCOXI), structure protein gene (tsDCN, tsMMIP, tsB-Actiri), transcriptional factor gene (tsHMG1, tsDAP5). The cDNA library can be used to provide expressed sequence tags (ESTs). The stage-specific cDNA library will be a useful resource for the study of gene structure, expression and regulatory during the early process of embroygensis of Trionyx sinensis.
    Using Random Primed Gene Walking PCR (RPGW-PCR), CtSox2 gene was cloned and sequenced from the digested genomic DNA of Trionyx sinensis. Compared with the mouse and chicken Sox2, CtSox2 shared 86% and 91% nucleotide homology respectively, and 93% and 97% amino acid identity respectively. The predicated amino acid sequences contain two conserved functional domains: a DNA-binding domain (HMG-box) and a transactivation domain. The conserved motif of group B homology lies immediate adjacent to C-proximal region of the HMG-box. Similar structure and identity of Sox2 gene among mammals, birds, amphibians and reptiles suggest that Sox2 gene have evolutionary conserved roles. Cloning of CtSox2 gene shows the validation of RPGW-PCR used for isolating genes from the digested genomic DNA.
引文
Adams, M. D., Kelley, J.M., Gocayne, J.D., et al., 1991. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252,1651-1656.
    Adams, M., Celniker, S., Holt, R., 2000. The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.
    Arendse, M.S., Dubery, I.A., Berger, D.K., 1999. Isolation by PCR-based methods of a plant antifungal polygalacturonase-inhibiting protein gene. Electronic J. Biotechnology 2, 152-158.
    Barbara, P.de S., Bonneaud, N., Boizet, B., et al., 1998. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti mullerian hormone gene. Mol. Cell Biol. 18, 6653-6665.
    Bardom, B., Zanaria, E., Guioli, R, et al., 1994. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat. Genet. 7,497-501.
    Barnes, W.M., 1994. PCR amplification of up to 35 kb DNA with high fidelity and high yield from X bacteriophage templates. Pro. Natl. Acad. Sci. USA 91:2216-2220.
    Behringer, R.R., 1994. Mullerian-inhibiting substance function during mammalian sexual development. Cell 79,415-425.
    Berta, P., Hawkins, J.R., Sinclar, A.H., et al., 1990. Genetic evidence equating SRY and the testis. determining factor. Nature 348, 448-450.
    Bull, J.J., 1980. Sex determination in reptiles. Quart Rev. Biol. 55, 1-21.
    Bull, J.J., 1983. Evolution of sex determining mechanisms. Benjmin. Menlo Park. Californiaa. Charnier, M., 1966. Action de la temperature sur la sex-ration chez I'embryon d'agama agama (Agamidae, Lacertlien). Soc.Biol. Oest Af. 160,620-622.
    Chenchik, A., Zhu, Y.Y., Diatchenko, L., et al., 1998. Generation and use of high-quality, cDNA from small amounts of total RNA by SMART PCR. In Gene Cloning and Analysis by RT-PCR (BioTechniques Books, MA), pp. 305-319.
    Choudhary, B., Ganesh, S., Raman, R., 2000. Evolutionary conservation of the gene CvSox9 in the lizard, Calotes versicolor, and its expression during gonadal differentiation. Dev. Genes Evol. 210, 250-257.
    
    
    Cohen, M.M., Gans, C., 1990. The chromosomes of the order Crocodilia. Cytogenetics 9, 81-105.
    Cohen, D.R., Sinclair, A.M., McGovem, J.D., 1994. Sry protein enhances transcription of fos-related antigen-1 promoter constructs. Pro. Natl. Acad. Sci. USA 94,4372-4376.
    Collignon, J., Socknathan, S., Hacker, A., et al., 1996. A comparison of the properties of Sox3 with Sry and two related genes Soxl and Sox2. Development 122, 509-520.
    Compton, T., Innis M.A., Gelfand, D.H., et al., 1990. Degenerate primers for DNA amplification. In: PCR Protocols: A guide to methods and applications, pp. 39-45. Academic Press, London.
    Conner, F., Wright, E., Denny, P., et al., 1995. The Sry-related HMG box containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse. Nucleic Acids Res. 17, 3365-3372.
    Coriat, A.M., Muller, U., Harry, J.L., et al., 1993. PCR amplification of SRY-relaied gene sequences reveals evolutionary conservation of the SRY-box motif. PCR Meth. Appl. 2,218-222.
    Coriat, A.M., Valleley, E., Ferguson, M.W.J. et al., 1994. Chromosomal and temperature-dependent sex determination: the search for a conserved mechanism. J. Exp. Zool. 270, 112-116.
    Cremazy, F., Soullier, S., Berta, P., et al., 1998. Further complexity of human SOX gene family revealed by the combined use of highly degenerate primers and nested PCR. FEBS left. 438, 311-314.
    Cross, S.H., Bird, A.P., 1995. CpG island and genes. Curr. Opin. Genet. Dev. 5, 309-314.
    Daniels, R., Lowell, S., Bolton, V., et al., 1997. Expression of tissue-specific genes in man preimplantation embryos. Hum. Reprod. 12,2251-2256.
    Da Silva, S.M., Hacker, A., Harley, V., et al., 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14, 62-68.
    Denny, P., Swift, S., Conner, F., et al., 1992. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J. 11, 3705-3712.
    De Santa Barbara, P., Bonneaud, N., Botzet, B., et al., 1998. Direct interaction of SRY-related protein Sox9 and steroidogenic factor 1 regulates transcription of the human anti-Mullerian hormone gene. Mol. Cell Biol. 18,6653-6665.
    Dominguez, O., Lopez-Larrea, C., 1994. Gene walking by unpredicatably primed PCR. Nucleic
    
    Acids Res. 22, 3247-3248.
    Dubin, R.A., Ostrer, H., 1994. SRY is a transcriptional activator. Mol. Endocinol. 8,1182-1192.
    Elbrecht, A., Smithe, R.G., 1992. Aromatase enzyme activity and sex determination in chicken. Science 255,467-470.
    Elizabeth, M.A.V., Elizabeth, J.C., Nirvana, J.C., et al., 2001. Characterization and Expression of Sox9 in the Leopard Gecko, Eublepharis macularius. J. Exp. Zool. 291, 85-91.
    Fleming, A., Wibbels, T., Skipper, J.K., et al., 1999. Development expression of steroidogenic factor 1 in a turtle with temperature-dependent sex determination. Gen. Comp. Endocrinol 116, 336-346.
    Foster, J. W., Steglich, S., Guioli, C., et al., 1994a. Campomelic dysplasia and autosomal sex eversal caused by mutations in an SRY-related gene. Nature 372, 525~530.
    Foster, C., Arthur, E., Crespi, S., et al., 1994a. Isolation of a pea (Pisum sativum) seed lipoxygenase promoter by inverse polymerase chain reaction and characterization of its expression in transgenic tobacco. Plant Mol. Biol. 26, 235-248.
    Foster, J.A., Graves, J.A.M., 1994b. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Pro. Natl. Acad. Sci. USA 91, 1927-1931.
    Ganesh, S., Raman, R., 1997. CvSox4, the lizard homologue of the human Sox4 gene , shows remarkable conservation among the amniotes. Gene 196, 287-290.
    Gessler, M., Poustka, A., Cavence, W., et al., 1990. Homozygous deletion in Wilms' tumours of a zinc-finger gene identified by cheomosome jumping. Nature 343, 774-778.
    Goodfellow, P.N., Lovell-Badge, R., 1993. SRY and sex determination in mammals. Annu. Rev. Genet. 27, 71-92.
    Grave, J.A.M., Watson, J.M., 1991. Mammalian sex chromosomes evolution of organization andfunction. Chromosoma 101, 63-68.
    Grave, J.A.M., 1998. Interactions between SRY and Sox genes in mammalian sex determination. BioEssays 20, 264-269.
    Griffiths, R., 1991. Isolation of conserved DNA sequences related to the backed gull. Proc. R. Soc. Lond. B 244, 123-128.
    Gubbay, J., Collignon, J., Koopman, P., et al., 1990. A gene mapping to the sex-determining
    
    region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 46, 245-250.
    Guerrier, D., 1989. J. Clin. Endocrinol. Metab. 68,46-52.
    Hastie, N.D., 1992. Dominant negative in the Wilm's tumour (WT 1) gene cause Denys_Drash syndrome proof that a tumour-suppressor gene plays a crucial role in normal genitourinary development. Hum. Mol. Genet. 1, 293-295.
    Hastie, N.D., 1994. The genetics of Wilms'tumor: A case of disrupted development. Ann. Rev. Genet. 28, 523-558.
    Hargrave, M., Wright, J., Kun, J., et al., 1997. Expression of Sox11 in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev. Dyn. 210, 79-86.
    Harley, V.R., Lovell-Badge, R., Goodfellow, P.N., 1994. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 22, 1500-1501.
    Hacker, A., Capel, B., Goodfellow, P., Lovell-Badge, R., 1995. Expression of SRY, the mouse sex determining gene. Development 121, 1603-1614.
    Hawkins, J.R., 1994. Sex determination. Hum. Mol. Genet. 3, 1463-1467.
    Hiraoka, Y., Ogawa, M., Sakai, Y, Kido, S., Aiso, S., 1998a. The mouse Sox5 gene encodes a protein containing the leucine zipper and the Q box. Biochim. Biophys. Acta 1396, 132-137.
    Hiraoka, Y, Ogawa, M., Sakai, Y, et al., 1998b. Isolation and expression of a human SRY-related cDNA hSOX20. Biochim. Biophys. Acta 1396, 132-137.
    Just, W., Rau, W., Vogel, W., et al., 1995. Absence of SRY in species of the vole Ellobius. Nat. Genet. 11, 117-118.
    Kamachi, Y, Sockanathan, S., Liu, Q., et al., 1995. Involvement of SOX proteins in lens-specific activation of crystalline genes. EMBO J. 14, 3510-3519.
    Kamachi, Y, Uchikawa, M., Collignon, J., et al., 1998. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125,2521-2532.
    Kamachi, Y, Cheah, K.S.E., Kondoh, H., 1999. Mechanism of regulatory target selection by the SOX High-Mobility-Group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19, 197-120.
    Kanai, Y, Kanai-Azuma, M., Noce, T., et al., 1996. Identification of two Sox17 messenger RNA isoforms with and without the high mobility group box region, and their differential expression in
    
    mouse spermatogenesis. J. Cell Biol. 133,667-681.
    Karl, J., Capel, B., 1995. Three-dimensional structure of the developing mouse genital ridge. Philos. Trans. R. Soc. Lond. Biol. 1995, 235-242.
    Katoh, K., Miyata, T., 1999. A heuristic approach of maximum likelihood method for inferring phylogenetic tree and an application to the mammalian Sox3 origin of the testis-determining gene SRY. FEBS Letter 463, 129-132.
    Kent, J., Wheatley, S.C., Andrews, J.E., et al., 1996. A male-specific role for Sox9 in vertebrate sex determination. Development 122,2813-2822.
    Kimura, M, 1983. The neutral theory of molecular evolution, pp.46-47, Cambridge University Press, Cambridge.
    Koopman, P., Gubbay, J., Vivian, N., et al., 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351,117-121.
    Koopman, P., 1995. The molecular biology of SRY and its role in sex determination in mammals. Reprod. Fertil. Dev. 7, 713-722.
    Koster, R.W., Kuhulein, R.P., Wittbrodt, J., 2000. Ectopic Sox3 activity elicits sensory placode formation. Mech. Dev. 95,175-187.
    Koyano, S., Ito, M., Takamatsu, N., et al., 1997. The Xenopus Sox3 gene expressed in oocytes of early stages. Gene 188, 101-107.
    Kumar, S., Tamura, K., Jakobsen, I.B.,et al., 2001. MEGA2: Molecular Evolutionary Genetics Analysis software, Bioinformatics (submitted).
    Laird C.D., Mcconaughty B.L., McCarthy B.J., 1969. Rate of fixation of nucleotide substitutions in evolution, Nature 224, 149-154.
    Lance, V.A., Bogart, M.H., 1994. Studies on sex determination in the American alligator. J. Exp. Zool. 270, 79-85.
    Lang, J.W., Andrews, H.V., 1994. Temperature-Dependent Sex Determination in Crocodilians. J. Exp. Zool. 270,28-44.
    Laudet, V., Stephelin, D., Clevers, H., 1993. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res. 21, 2493-2501.
    Lefebvre, V., Li, P., de Crombrugghe, B., 1998. A new long firm of Sox5 (L-Sox5) , Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type Ⅱ cooagen gene. ENBO J.
    
    17, 5718-5733.
    Liew, C.C.,Hwang, D.M., Wang, R.X., et al., 1997. Construction of a human heart cDNA library and identification of cardiovascular based genes (CVBest).Mol. Cell. Biochem.172, 81-87.
    Little, M., Wells, C., 1997. A clinical overview of WT1 gene mutations. Hum. Mutat. 8,209-225. Lyons, K.M., Jones, C.M., Hogan, B.L., 1991. Trends Genet. 7,408-412.
    Malo, M.S., Srivastava, K., Andresen, J.M., et al., 1994. Targeted gene walking by low stringency polymerase chain reaction: assignment of a putative human brain sodium channel gene (SCA3A) to chromosome 2q24-31. Pro. Natl. Acad. Sci. USA 91: 2957-2997.
    Mayer, J., 2000. Development profile of SRY transcripts in mouse brain. Neurogenetics 3, 25-30.
    MeDowall, S., Argentaro, A., Ranganathan, S., et al., 1999. Functional and structural studies of wild type Sox9 and mutations causing campomelic dysplasia. J Biol. Chem. 274, 24023-24030.
    Miyata T., Hayashida H., Kuma K., et al., 1985. Male-driven molecular evolution: a model and nucleotide sequence analysis, Cold Spring Harb. Symp. Quant. Biol., 52, 863-867.
    Mizuseki, K., Kishi, M., Matsui, M., et al., 1998. Xenopus Zic-relaed-1 and Sox2 , two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579-587.
    Morais da Silva, S., Hacker, A., Harley, V., et al., 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14, 62-68.
    Muscatelli, R, Strom, T., Walker, A., et al., 1994. Mutations in the DAX1 gene give rise to both X-linked adrenal hypoplasia congenital and hypogonadotropic hypogonadism. Nature 372, 672-676.
    Nachtigal, M.W., Hirokawa, Y., Enyeart D.L., et al., 1998. Wilm's Tumour 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex specific gene expression. Cell 93, 445-454.
    Ng, L.J., Wheatley, S., Muscat, G.E.O., et al., 1997. Sox9 binds DNA, activates transcription, and coexpression with type Ⅱ collagen during chondrogenesis in the mouse. Dev.Biol.183,108-121.
    Nie, L.W., Guo, C.W., Wang, M., 1995. A cytogenetic study of four species of turtle from China. Act. Gen. Sin. 22,40-45 (in Chinese).
    Nie, L.W., Guo, C.W., Wang, M., et al., 2001. Sex determination mechanism of Trionyx sinensis. Chin. J. Appl. Environ. Biol. 7,258-261 (in Chinese).
    
    
    Nishiguchi, S., Wood, H., Kondoh, H., et al., 1998. Sox1 directly regulates the gamma-crystallin genes and is essential for lens development in mice. Genes Dev. 12,776-781.
    Ochman, H., Gerber, A.S., Hartl, D.L., 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120,621-623.
    Ohno, S., 1967. Sex chromosomes and sex-linked genes. Springer-Verlag. Berlin.
    Osaki, E., Nishina, Y., Inazawa, J., et al., 1999. Identification of a novel Sry-related gene and its germ cell-specific expression. Nucleic Acids Res. 27,2503-2510.
    Parker, J.D., Rabinovitch, P.S., Burmer, G.C., 1991. Targeted gene walking polymerase chain reaction. Nucleic Acids Res. 19, 3055-3060.
    Parker, K.L., Schimmer, B.P., Schedl, A., 1999. Genes essential for early events in gonadal development. Cell Mol. Life Sci. 55, 831-838.
    Pask, A., Graves, J.A.N., 1999. Sex chromosomes and sex-determining genes: insights from marsupials and monotremes. Cell Mol. Life Sci. 55, 864-875.
    Pelletier, J., Bruening, W., Li, P.P., et al., 1991a. WT1 mutations contribute to abnormal genital system develoment and heredityary Wilms' tumour. Nature 353,431-434.
    Pelletier, J., Schalling, M., Buckler, A.J., et al., 1991b. Expression of the Wilms' tumor gene WT1 in the murine urogenital system. Genes Dev. 5,1345-1356.
    Pevny, L.H., Sockanathan, S., Placzek, M., et al., 1998. A role for Soxl in neural determination. Development 125, 1967-1978.
    Pingault, V., Bondurand, N., Kuhlbrodt, K., et al., Sox10 mutations in patients with Waardenburg-Hirschsprung disease. Nat. Genet. 18 171-173.
    Poulat, F., Desantabarbara, P., Desclozeaux, M., et al., 1997. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J. Biol. Chem. 272, 7167-7172.
    Rex, M., Orme, A., Uwanogho, D., et al., 1997. Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev. Dyn. 209, 323-332.
    Rashedi, M., Maraud, R., Piet, M., et al., 1990. Influence of heterospecific testis graft on the gonadal sex differentiation of female bird embryos. Cell Diff. Dev. 32, 167-174.
    Roose, J., Korver, W., de Boer, R., et al., 1999. The Soxl 3 gene: structure, promoter characterization, and chromosomal localization. Genomics 57,301-305.
    
    
    Rucknagel, K.P., Reischl, E., Braunitzer, G., 1984. Hemoglobins of reptiles. Expression of alpha-D-genes in the turtles, Chrysemys picta bellii and Phrynops hilarii (Testudines). Hoppe Seylers Z Physiol Chem 365( 10) : 1163-71 (in German).
    Schepers, G.E., Bullejos, M., Hosking, B.M., et al., 2000. Cloning and characterization of the SRY-related transcription factor gene Sox8. Nucleic Acids Res. 28,1473-1780.
    Schilham, M.W., Oosterwegel, M.A., Moerer, P., 1996. Defects in cardiac outflaow tract formation and pro-B-lymphocyte expansion in mice lacking Sox4. Nature 380,711-714.
    Shen, W.H., Moore, C.C.D., Ikeda, Y., et al., 1994. Nuclear receptor steroidagenic factor 1 regulates the Mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 77, 651-661.
    Smith, C.A., Elf, P., Lang, J.W., Joss, J.M.P., 1995. Aromatase enzyme activity during gonadal sex differentiation in alligator embryos. Differentiation 58,281-290.
    Smith, C.A., Smith, M.J., Sinclair, A.M., 1999. Gene expression during gonadogenesis in the chicken embryo. Gene 234, 395-402.
    Soullier, S., Jay, P., Poulat, F., et al., 1999. Diversification pattern of the HMG and SOX family members during evolution. J. Mol. Evol. 48, 517-527.
    Spotila, L.D., Kaufer, N.F., Theriot, E., et al., 1994. Sequence analysis of the ZFY and Sox genes in the turtle, Chelydra serpentina. Mol. Phylogenet. Evol. 3, 1-9.
    Spotial, L.D., Spotila, J.R., Hall, S.E., 1998. Sequence and expression analysis of WT1 and Sox9 in the red-eared slider turtle, Trachemys scripta. J. Exp. Zool. 281,417-427.
    Stevanovic, M., Lovell-Badge, R., Collignon, J., et al., 1993. SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2, 2007-2010.
    Stevanovic, M., Lovell-Badge, R., Collignon, J., et al., 1993. SOX3 is an X-linked gene related to SRY. Hum. Mol. Genet. 2,2007-2010.
    Stevanovic, M., Zuffardi, O., Collignon, J., et al., 1994. The cDNA sequence and chromosomal location of the human SOX2 gene. Mamm. Genome 5,640-642.
    Streit, A., Sockanathan, S., Perez, L., et al., 1997. Preventing the loss of competence for neural induction: HGF/SF, L5 and Sox2. Development 124, 1191-1202.
    Southard-Smith E.M., Kos, L., Pavan, W.J., Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat. Genet. 18,60-64.
    
    
    Swain, A., Narvaez, V., Burgoyne, P.S., et al., 1998. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391, 761-767.
    Tharapel, A.T., Anderson, K.P., Simpson, J.L., et al., 1993. Deletion (X) (q26. 1-q28) in a proband and her mother: molrcular characterization and phenotypic-karyorypic deductions. Am. J. Hum. Genet. 52,463-471.
    Thorbjarnarson, J., Wang, X.M., Ming, S., et al., 2002. Wild population of the Chinese alligator approach extinction. Biol. Conserv. 103, 93-102.
    Tiersch, T.R., Mitchell, M.J., Wachtel, S.S., 1991. Studies on the phylogenetic conservation of the SRY gene. Hum. Genet. 87, 571-573.
    Triglia, T., Peterson, M.G., Kemp, D.J., 1988. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16, 8186.
    Trueba, G.A., Johnson, R.C., 1996. Random primed gene walking PCR: a simple procedure to retrieve nucleotide fragments adjacent to known DNA sequences. BioTechniques 21, 20.
    Tucker P.K., Lundrigan B.L., 1993. Rapid evolution of the sex-determining locus in old world miced rats. Nature 364, 715-717.
    Uchikawa, M., Kamachi, Y., Kondoh, H., 1999. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressers: Their roles during embryonic organogenesis of the chicken. Mech. Dev. 84,103-120.
    Uwanogho, D., Rex, M., Carrwright, E.J., et al., 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 45, 23-36.
    Van de Wetering, M., Oosterwegel, M., Van Norren, K., et al., 1993. Sox4, an Sry like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 12,3847-3854.
    Veneman, T.F., Beverstock, G.C., Exalto, N., et al., 1991. Premature menopause because of an inherited deletion in the long arm of the X-chromosome. Fertil. Steril. 55, 631-633.
    Vigier, J., 1987. Purified bovine AMH induces a characteristic freemartin effect in rat prospective ovaries exposed to in vitro. Development 100,43-55.
    Wagner, T, With, J., Meyer, J., et al., 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene: SOX9. Cell 79,1111-1120.
    Wegner, M., 1999. From head to toes: the multiple facets of Sox protein, Nucleic Acids Res. 27,
    
    1409-1420.
    Werner, M.H., Burley, S.K., 1997. Architectural transcription factor: proteins that remodel DNA. Cell 88, 733-736.
    Western, P.S., Harry, J.L., Graves, J.A.M., et al., 1999. Temperature-dependent sex determination: upregulation of Sox9 expression after commitment to male development. Dev. Dyn. 214, 171-177.
    Whitfield L.S., Lovell-Badge R., Goodfellow P.N., 1993. Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature 364, 713-715.
    Wibbels, T., Bull, J.J., Crews, D., 1992. Steroid hormone-induced male sex determination in an amniotic vertebrate. J. Exp. Zool. 262, 454-457.
    Wibbels, T., Cowan, J., LeBoeuf, R., 1998. Temperature-dependent sex determination in the red-eared slider turtle, Trachemys scripta. J. Exp. Zool. 281, 409-416.
    Wolffe, A.P., 1994. A chitectural transcription factor. Science 264, 1100-1101.
    Wright, E., Hargrave, M.R., Christiansen, J., et al., 1995. The Sry-related gene Sox9 is expressed during chondrogensis in mouse embryo. Nat. Genet. 9, 15-21.
    Yuan, H., Corbi, N., Basilico, C., et al., 1995. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct3. Genes Dev. 9, 2635-2645.
    Zhao, Q., Eberspaecher, H., Lefebvre, V., et al., 1997. Parallel expression of Sox9 and Col2a\ in cells undergoing chondrogensis. Dev. Dyn. 209, 377-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700