拟南芥SIRT基因产物的亚细胞定位及其功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Sirtuins (Sir2)是从细菌到人类都高度保守的NAD+依赖的去乙酰化酶/ADP-核糖基转移酶。Sir2最初发现于芽殖酵母并能延长其寿命。哺乳动物有七个Sirtuins (SIRT1-7)成员,都含有一个保守的NAD+结合和催化域,称作Sirtuin核心域;这些Sirtuins还有不同的N端和C端结构,定位于细胞的不同部位,并有不同的底物和生物学功能。目前,哺乳动物Sirtuins已经被越来越多的研究认为是从能量代谢、应激反应到肿瘤发生以及衰老等各种细胞过程的关键调节因子。
     人hSIRT4定位于线粒体基质,NAD+依赖的ADP-核糖基转移酶是它唯一的活性。有证据表明,hSIRT4能ADP核糖基化谷氨酸脱氢酶(GDH),在胰腺β细胞中对热量限制(CR)做出反应时能控制胰岛素分泌。人hSIRT6是一种核定位的染色质结合蛋白。它不仅具有ADP-核糖基转移酶活性,还有去乙酰化酶活性,并优先作用于组蛋白H3K9和H3K56. hSIRT6在DNA修复、端粒功能、基因组稳定和细胞衰老中起着非常重要的作用。hSIRT6主要是通过调节C端结合蛋白(CtBP). DNA蛋白激酶(DNA-PK)和聚腺嘌呤二核苷酸核糖聚合酶
     1(PARP1)等参与DNA双链断裂修复。
     拟南芥有两个SIRT基因家族基因,分别命名为AtSIRT1(At5g09230)和AtSIRT2(At5g55760)。过去的十年里,哺乳动物Sirtuins的研究已经取得了显著的进步,但是对植物SIRT基因研究却很少。本文以拟南芥的两个SIRT基因家族基因(AtSIRTl和AtSIRT2)为研究对象,分析它们表达部位和基因产物的亚细胞定位,并对它们的生物学功能进行了初步研究,主要结果以下:
     1从GenBank获得拟南芥和其他生物SIRT蛋白的相关信息,进行了同源性比较和进化树构建。分析表明,拟南芥AtSIRT1与哺乳动物SIRT4蛋白高度同源,而拟南芥AtSIRT2蛋白与哺乳动物SIRT6蛋白高度同源。
     2构建了AtSIRT-EGFP融合蛋白表达载体来分析AtSIRT蛋白的亚细胞定位。结果表明,AtSIRT1蛋白定位于线粒体上,而AtSIRT2则定位于细胞核。同时,构建了AtSIRT:GUS启动子报告株系。GUS的组织化学染色结果表明,AtSIRTl基因主要在拟南芥的根、茎、叶组织中表达,尤其在分生组织如叶芽和根尖表达量较高,同时发现光照条件下其表达量比黑暗条件下有明显增加。
     3我们购买和鉴定了针AtSIR噻因的T-DNA突变体和TILLING突变体,通过对突变体的初步研究发现,AtSIRT1突变可引起幼苗的子叶变黄和早衰。用FLAG蛋白标签过量表AtSIRT1四种转录本,表型观察时发现AtSIRT1.7-FLAG株系的种子萌发迟缓,萌发率低,幼苗个体偏小,在高糖培养基中,有停止生长、甚至致死的表型;而AtSIRT1.3-FLAG株系的种子萌发速度快,幼苗个体大,在高糖培养基中生长旺盛。SIRT蛋白的抑制剂Sirtinol不能表型模写AtSIRT1和AtSIRT2突变体,说明Sirtino1在拟南芥中的作用机制不同于其他生物。
     4双分子荧光互补(bimolecular fluorescence complementation, BiFC)是指两个不发光的荧光蛋白互补片段在与其融合的蛋白质的相互作用驱动下重新组装形成荧光复合物,恢复荧光特性。为了弄清AtSIRT2的底物是什么,我们构建了DNA-PK、CtIP、PARP1等多个可能与SIRT互作的蛋白的BiFC载体。结果表明,ATSIRT2与CtIP, DNA-PK没有相互作用,但与PARP1有相互作用。
     5DNA双链断裂(DSBs)是细胞最严重的损伤形式之一。高等动植物中主要通过同源重组(HR)和非同源末端连接(NHEJ)途径进行DNA双链断裂修复。为了研究拟南芥在DNA双链断裂修复期间AtSIRT2蛋白的工作模式,我们构建了EJ2-GFP、EJ5-GFP、HDR-GFP等一系列DSB修复方式报告载体以作进一步深入研究。我们发现AtSIRT2在两种主要的DNA双链断裂修复通路即HDR和NHEJ中有明显的作用。
     纵上所述,我们的初步研究表明:拟南芥AtSIRT1与人的同源蛋白hSIRT4相同,定位于线粒体,它的主要功能是通过调节线粒体活性参与子叶和叶片衰老的调节;AtSIRT2与人的同源蛋白hSIRT6相同,定位于细胞核,可能通过DSB修复途径调节细胞寿命。
Sirtuins (Sir2) are NAD-dependent deacetylases and/or ADP-ribosyltransferases that are highly conserved from bacteria to human. Sir2was originally shown to extend lifespan in budding yeast. In mammals, there are seven sirtuins (SIRT1-7). All mammalian sirtuins contain a conserved NAD-binding and catalytic domain, termed as the sirtuin core domain, but differ in their N and C-terminal domains. They have different specific substrates and biological functions, and are found in various cell compartments. Sirtuins have been increasingly recognized as crucial regulators for a variety of cellular processes, ranging from energy metabolism and stress response to tumorigenesis and aging.
     hSIRT4is found in the mitochondrial matrix. The only reported activity of hSIRT4is the NAD+-dependant ADP-ribosyltransferase activity. It has been shown that hSIRT4can ADP-ribosylate glutamate dehydrogenase (GDH) and control insulin secretion in pancreatic β-cells in response to CR. hSIRT6is a nuclear, chromatin-bound protein. hSIRT6is shown to have ADP-ribosyltransferase and deacetylase activity, preferentially acting on histone H3K9and H3K56. hSIRT6is playing an important role in DNA repair, telomere function, genomic stability, and cellular senescence. SIRT6is involved in DNA double-strand break repair by regulating C-terminal binding protein (CtBP), DNA protein kinase and poly[adenosine diphosphate (ADP)-ribose] polymerase1(PARP1).
     Arabidopsis thaliana contain two SIRT gene families, named AtSIRTl (At5g09230) and AtSIRT2(At5g55760). However, little research on SIRT in plant has been conducted. The present study focuses on the AtSIRTl and AtSIRT2of Arabidopsis. Here, we aim to reveal their expression patterns, subcellular locations and function in plants. The results are summarized as follows:
     1Phylogenetic trees of AtSIRTl, AtSIRT2and the homologous proteins of other model organisms is constructed by means of the MEGA method. The results show that AtSIRTl is closest homologs with mammalian SIRT4, and AtSIRT2is closest homologs with mammalian SIRT6.
     2The AtSIRT-EGFP fusions are constructed to analyze the subcellular localization of AtSIRT proteins. The results suggest that AtSIRTl was targeted to the mitochondrial, and AtSIRT2was located in nucleolus. Meanwhile, PAtSIRT1:GUS report lines were generated. The histochemical localization of GUS staining indicated that AtSIRT1is expressed in roots, stems and leaves, especially in the leaf and root tips. Investigation of accumulation of AtSIRTl transcripts during a photoperiod by real-time PCR indicated that AtSIRT1gene was a diurnal-regulated gene.
     3We characterized the Arabidopsis T-DNA insertional mutant lines of AtSIRT. We found that mutation in AtSIRT1leaded to early senescence of cotyledons. Four transcripts of AtSIRTl were overexpressed harbouring the FLAG tag. Transgenic plants overexpressing the AtSIRT1.7-FLAG displayed low seed germination rate and delayed seedling development. When they grow on B5medium supplemented with high levels of sucrose, they fail to develop green expanded cotyledons and true leaves, and even die. Transgenic plants overexpressing AtSIRT1.3-FLAG and the T-DNA mutants exhibited vigorous growth both on B5and high levels of sucrose media. Sirtinol, a inhibitor of SIRT which did not cause the same phenotype of the mutation of AtSIRTl indicated that the mechanism of Sirtinol in Arabidopsis was different from other organism.
     4Bimolecular fluorescence complementation (BiFC) means two non-fluorescent complementary fragments of fluorescent protein can reassemble to form fluorescent complex and restore fluorescence when they are fused to two proteins that interact with each other. To figure out which protein AtSIRT2does to interact with, we construct a series vectors mat associate with mammalian hSIRT6, including DNA-PK-cGFP, CtIP-cGFP and PARP1-cGFP. Protein-protein interaction between AtSIRT2and substrates were studied in vivo. The results suggest that PARP1was the substrate.
     5The DNA double strand breaks (DSBs) is one o f the most serious form of DNA damage. Nonhomologous end joining (NHEJ) and homologous recombnation (HR) are the two major pathway to repair DNA double strand break damages in both higher plants and animals. To check the role of AtSIRT2during DSB repair of Arabidopsis, we constructed a series reporter vectors, including EJ2-GFP, EJ5-GFP, HDR-GFP. The results show that AtSIRT2is playing an important role in DNA repair.
     AtSIRTl was located in mitochondria as hSIRT4of human, and maybe take part in respiration and electron transformation chain to regulate cotyledon and leaf senescence. AtSIRT2was located in nucleolus as hSIRT6of human, maybe play important role in DSB repair.
引文
Ahn, B. H., Kim, H. S., Song, S., Lee, I. H., Liu, J., Vassilopoulos, A., Deng, C. X. and Finkel, T.2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA,105:14447-14452.
    Ahuja, N., B. Schwer, S. Carobbio, D. Waltregny, B.J. North, V. Castronovo, P. Maechler and E. Verdin.2007. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem.282:33583-33592.
    Anderson, R.M., Bitterman, K.J., Wood, J.G., et al.2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature.423:181-185.
    Asher, G., Gatfield, D., Stratmann, M., et al.2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell.134:317-328.
    Avalos, J.L., Celic, I., Muhammad, S., et al.2002. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol Cell,10:523-535
    Bennardo, N., Cheng, A., Huang, N., Stark, J.M.2008. Alternative-NHEJ Is a Mechanistically Distinct Pathway of Mammalian Chromosome Break Repair. PLoS Genetics.4 (6):e1000110:1-10.
    Bennardo, N., Gunn, A., Cheng, A., Hasty, P., Stark, J.M.2009. Limiting the Persistence of a Chromosome Break Diminishes Its Mutagenic Potential. PLoS Genetics.5(10):e1000683:1-14
    Bishop, N.A. and Guarente, L.2007. Genetic links between diet and lifespan:shared mechanisms from yeast to humans. Nat Rev Genet.8:835-844.
    Buchanan-Wollaston, V., Earl. S., Harrison, E., et al.2003. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnology Journal.Y.3-22.
    Bushman, W., Thompson, J.F., Vargas, L., and Landy, A.1985. Control of Directionality in Lambda Site Specific Recombination. Science,230:906-911.
    Brunet, A., Sweeney, L.B., Sturgill, J.F., et al.2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science,303:2011-2015.
    Burnett, C., Valentinil, S., Cabreirol, F., et al.2011. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature.477:482-485.
    Biirkle A.2000. Poly(ADP-ribosyl)ation:a posttranslational protein modification linked with genome protection and mammalian longevity. Biogerontology.1:41-46.
    Canto, C. and Auwerx, J. Caloric restriction, SIRT1 and longevity.2009. Trends Endocrinol Metab.20:325-331
    Chen, D., Bruno, J., Easlon, E., Lin, S.J., Cheng, H.L., Alt, F.W. and Guarente, L.2008. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev.22: 1753-1757.
    Chen, W.Y., Wang, D.H., Chiu, Yen. RW., et al 2005. Tumor Suppressor HIC1 Directly Regulates SIRT1 to Modulate p53-Dependent DNA-Damage Responses. Cell. 123:437-438
    Cheng, W. H., Muftuoglu, M. and Bohr, V. A.2007. Werner syndrome protein: Functions in the response to DNA damage and replication stress in S-phase. Exp. Gerontol.42,871-878.
    Choi, M.M., Huh, J.W., Yang, S.J., Cho, E.H., Choi, S.Y. and Cho, S.W.2005. Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes. FEBS Lett.,579:4125-4130.
    Cohen, H.Y., Lavu, S., Bitterman, K.J., Hekking, B., Imahiyerobo, T.A., et al. 2004. Acetylation of the C terminus of Ku70 by CBP and PCAF controls bax-mediated apoptosis. Mol. Cell.13:627-638.
    Cohen, H.Y., Miller, C., Bitterman, K.J., et al.2004. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Science.305,390-392.
    Cucurachi, M., Busconi, M., Morreale, G., et al.2012. Characterization and differential expression analysis of complete coding sequences of Vitis vinifera L. sirtuin genes. Plant Physiology and Biochemistry.54,123-132.
    Fabrizio, P., Gattazzo, C., Battistella, L., et al 2005. Sir2 blocks extreme life-span extension. Cell 123:655-667
    Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I. and Guarente, L.2006. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev.20:1075-1080.
    Frei, B. and Richter, C.1988. Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry,27:529-535.
    Frye, R.A.1999. Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophy. Res Commun.260:273-279.
    Frye, R.A.2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun.273:793-798.
    Guarente, L. P., Partridge, L. and Cwallace, D.2008. MolecularBiology of Aging.New York:Cold Spring HarborLaboratory Press.49-56
    Gan S. S. and Amasino R. M.1997. Making Sense of Senescence. Plant Physiol. 113:313-319
    Gaoxiang Jia, Ling Su, Sunil Singh al and Xiangguo Liu.2012. Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging.Mol Cell Biochem.364:345-350
    Hagopian, K., Ramsey, J.J. and Weindruch, R.2003. Caloric restriction increases gluconeogenic and transaminase enzyme activities in mouse liver. Exp. Gerontol.,38:267-278.
    Haigis, M.C. and Guarente, L.P.2006. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev.20:2913-2921.
    Haigis, M.C. and Sinclair, D.A.2010. Mammalian Sirtuins:Biological Insights and Disease Relevance. Annu Rev Pathol.5:253-295.
    Haigis, M.C., Mostoslavsky, R., Haigis, K.M., et al.2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell,126:941-954.
    Hallows, W.C., Albaugh, B.N. and Denu, J.M.2008. Where in the cell is SIRT3? Functional localization of an NAD+-dependent protein deacetylase. Biochem. J;411:e11-e13.
    Hallows, W. C., Lee, S. and Denu, J. M.2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA.103:10230-10235.
    Hassa, P.O., Haenni, S.S., Elser, M. and Hottiger, M.O.2006. Nuclear ADP-ribosylation reactions in mammalian cells:where are we today and where are we going? Microbiol Mol Biol Rev.70:789-829.
    Hartley J.L., Temple, F.T. and Brasch, M.A.2000. DNA cloning using in vitro site-specific recombination. Genome Res.,10:1788-1795.
    Herrero-Yraola, A., Bakhit, S.M., Franke, P., Weise, C., Schweiger, M., Jorcke, D. and Ziegler, M.2001. Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria. EMBO J.20:2404-2412.
    Hersh, L.B.2006. The insulysin (insulin degrading enzyme) enigma. Cell. Mol. Life Sci.,63:2432-2434.
    Hirschey, M. D., Shimazu, T., Goetzman, E., Jing, E., Schwer, B., Lombard, D. B., Grueter, C. A., Harris,C., Biddinger, S.,Illkayeva, O. R. et al.2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature.464,121-125.
    Hu, C.D., Chinenov, Y. and Kerppola, T.K.2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell.9:789-798.
    Huang, L., Sun, Q., Qin, F., et al.2007. Down-regulation of a Silent Information Regulator2-related gene, OsSRTl, induces DNA fragmentation and cell death in rice. Plant Physiology.144:1508-1519.
    Huhtiniemi, T., Wittekindt, C., Laitinen, T., et al.2006. Comparative and pharmacophore model for deacetylase SIRT1. JComput AidedMol Des.20:589-599.
    Hye, S.K. and Melanie,O.2008. The ups and downs of SIRT1. Cell.9:1291-1295.
    Imai, S., Armstrong, C.M., Kaeberlein, M. and Guarente, L.2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 403:795-800.
    J Chang JH, Kim HC, Hwang KY, et al 2002. Structural Basis for the NAD-dependent Deacetylase Mechanism of Sir2. J. Biol. Chem.277:34489-34498.
    Jefferson, R.A., Kavanagh, T.A, and Bevan, M.W.1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.6:3901-3907.
    Jin, L., Wei, W., Jiang,Y., Peng,H., Cai, J., et al.2009. Crystal structures of human SIRT3 displaying substrateinduced conformational changes. J. Biol. Chem. 284:24394-24405.
    Jing, E., Gesta, S. and Kahn, C. R.2007. SIRT2 regulates adipocyte differentiation through FoxOl acetylation/deacetylation. Cell Metab.6:105-114.
    Jorcke, D., Ziegler, M., Herrero-Yraola, A. and Schweiger, M.1998. Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochem. J.,332: 189-193.
    Kaeberlein, M., McVey, M. and Guarente, L.1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev.13:2570-2580.
    Kaidi, A., Weinert, B. T., Choudhary, C. and Jackson, S. P.2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science.329:1348-1353.
    Karimi, M., Inze, D., Depicker, A.2003. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends plant Sci.7:193-195.
    Kawahara, T.L., Michishita, E., Adler, A.S., Damian, M., Berber, E., Lin, M., et al. 2009. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell.136:62-74.
    Kim, H.S., Xiao, C., Wang, R.H., Lahusen, T., Xu, X., Vassilopoulos, A., et al. 2010. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab.12:224-36.
    Kobayashi, J., Iwabuchi, K., Miyagawa, K., et al.2008. Current top ics in DNA double strand break repair. Radiat Res.49:93-103.
    Lamming, D.W., Latorre-Esteves, M., Medvedik, O., et al 2005. HST2 mediates Sir2-independent life-span extension by calorie restriction. Science,309:1861-1864
    Landry, J., Slama, J.T. and Sternglanz,R.2000. Role of NAD+ in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun,278:685-690
    Landry, J., Sutton, A., Tafrov, S.T., Heller, R.C., Stebbins, J., Pillus, L., et al. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A.97:5807-5811.
    Landy, A.1989. Dynamic, Structural, and Regulatory Aspects of Lambda Site-specific Recombination. Ann. Rev. Biochem.,58:913-949.
    Leissring, M.A.2008. The AbetaCs of Abeta-cleaving proteases. J. Biol. Chem.283:29645-29649.
    Li, X.L. and Kazgan, N.2011. Mammalian sirtuins and energy metabolism. Int J Bio Sci.7:575-587.
    Lin, S.J., Defossez, P.A. and Guarente, L.2000. Requirement of NAD and Sir2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 289:2126-2128
    Li, W., Zhang, B., Tang, J., Cao, Q., Wu, Y., Wu, C., Guo J., Ling, E. A. and
    Liang, F.2007. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J. Neurosci.27:2606-2616.
    Li, X., Zhang, S., Blander, G., et al.2007. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell.28:91-106
    Lim, P. O., Woo, H. R. and Nam, H. G.2003. Molecular genetics of leaf senescence in Arabidopsis. TRENDS in Plant Science.8:272-278.
    Lin, S.J., Kaeberlein, M., Andalis, A.A., et al 2002. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature.418:344-348.
    Liou, GG, Tanny,J.C., Kruger, R.G, et al 2005. Assembly of the SIR complex and its regulation by 0-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. Cell.121:515-527
    Liszt, G, Ford, E., Kurtev, M. and Guarente, L.2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem.280:21313-21320.
    Lombard, D. B., et al.2011. Longevity hits a roadblock. Nature.477:410-411.
    Lombard, D.B., Alt, F.W., Cheng, H.L., et al 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol.27:8807-8814.
    Lombard, D. B., Schwer, B., Alt,F. W., et al 2008. SIRT6 in DNA repair, metabolism and ageing. J InternMed.263:128-141
    Lu, H., Yang, Y., Allister, E.M., Wijesekara, N. and Wheeler, M.B.2008. The identification of potential factors associated with the development of type 2 diabetes: a quantitative proteomics approach. Mol. Cell. Proteomics.7:1434-1451.
    Lu, Z.P., Mohammed, B., Jian, H. L., AngelM, A., Yong, C, David, B. L., Marjan, G., Lance, R. P. and Michael, N. S.2011. SIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity. EMBO reports.12:841-846.
    Mahaney, B. L., Meek, K., Lees-Miller, S. P.2009. Repair of ion izing radiation induced DNA double strand breaks by nonhomologous end joining. Biochem J. 417: 639-650.
    Mahlknecht, U., Ho, A.D. and Voelter-Mahlknecht, S.2006. Chromosomal organization and fluorescence in situ hybridization of the human Sirtuin 6 gene. Int J Oncol.28:447-456
    Nakamura, Y., Ogura, M., Tanaka, D. and Inagaki, N.2008. Localization of mouse mitochondrial SIRT proteins:shift of SIRT3 to nucleus by co-expression with SIRT5. Biochem Biophys Res Commun.366:174-179.
    Malito, E., Hulse, R.E. and Tang, W.J.2008. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci.65:2574-2585.
    Manning, T.S., Brian, C.S., Michael, D. J., et al.2004. Coenzyme Specificity of Sir2 Protein Deacetylases:IMPLICATIONS FOR PHYSIOLOGICAL REGULATION. J. Biol. Chem.279:40122-40129.
    Mao, Z.Y., Christopher, Hine., Xiao, Tian., Michael, V. M., Matthew,A., Amita, V., Andrei, S. and Vera, G.2011. SIRT6 Promotes DNA Repair Under Stress by Activating PARP1. Science.332:1443-1446.
    Mao, Z.Y., Xiao Tian, Michael Van Meter, Zhonghe Ke, Vera Gorbunoval, and Andrei Seluanovl.2012. Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. PNAS.2012.29:11800-11805
    Marcia, C.H. and Leonard, P.G.2008. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Gen Dev.20:2913-2921.
    Matthew, D., Hirschey, Tadahiro, S., Enxuan, J., Carrie, A. G., et al 2011. SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome. Molecular Cell.44:1-14.
    McCord, R. A., Michishita, E., Hong, T., Berber, E., Boxer, L. D., Kusumoto, R., Guan, S., Shi, X., Gozani, O., Burlingame, A. L. et al.2009. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging.1:109-121.
    Michan, S. and Sinclair, D.2007. Sirtuins in mammals:insights into their biological function. Biochem. J.404:1-13.
    Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C. and Horikawa, I.2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell.16:4623-4635.
    Michishita, E., McCord, R.A., Berber, E.,Kioi, M., Padilla-Nash, H., Damian, M., et al.2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature.452:492-496.
    Michishita, E., McCord, R. A., Boxer, L. D., Barber, M. F., Hong, T., Gozani, O. and Chua, K. F.2009. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle.8:2664-2666.
    Mostoslavsky, R., Chua, K.F., Lombard, D.B., Pang, W.W., Fischer, M.R., Gellon, L., et al.2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell.124:315-329.
    Motta, M.C., Divecha, N., Lemieux, M., et al.2004.Mammalian SIRT1 represses forkhead transcription factors. Cell.116:551-563.
    Multani, A. S. and Chang, S.2007. WRN at telomeres:implications for aging and cancer. J. Cell Sci.120:713-721.
    Murayama, A., Ohmori, K., Fujimura, A., et al. 2008. Epigenetic control of rDNA loci in response to intracellular energy status. Cell.133:627-639
    Nakagawa, T., Lomb, D. J., Haigis, M. C. and Guarente, L.2009. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell.137:560-570.
    Nasrin, N., Wu, X., Fortier, E., Feng, Y., Bare, O. C., Chen, S., Ren, X., Wu, Z., Streeper, R. S. and Bordone, L.2010. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem.285: 31995-32002.
    Nemoto, S., Fergusson, M.M., Finkel, T.2004. Nutrient Availability Regulates SIRT1 Through a Forkhead-Dependent Pathway. Science.306:2105-2108
    North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M. and Verdin, E.2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular cell.11:437-444.
    North, B.J. andVerdin, E.2007. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS ONE.2:e784.
    North, B.J. and Verdin, E.2004. Sirtuins:Sir2-related NAD-dependent protein deacetylases. Genome Biol.5:224-228.
    Ogura, M., Nakamura, Y., Tanaka, D., Zhuang, X., Fujita, Y., Obara, A., Hamasaki, A., Hosokawa, M. and Inagaki, N.2010. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun.393:73-78.
    Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J. et al. 2007. Sirtuin 2 inhibitors rescue alpha-synucleinmediated toxicity in models of Parkinson's disease. Science.317:516-519.
    Pan, P.W., Feldman, J.L., Devries, M.K., Dong, A., Edwards, A.M. and Denu, J.M.2011. Structure and Biochemical Functions of SIRT6. J Biol Chem. 286:14575-14587.
    Pattanayak, G. K., Venkataramani, S., Hortensteiner, S., et al.2011. ACCELERATED CELL DEATH2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis. The Plant Journal.
    Picard, F., Kurtev,M., Chung, N., et al.2004. Sirtl promotes fatmobilization in white adipocytes by repressing PPAR-gamma. Nature.429:771-776.
    Purushotham,A., Schug,T.T., Xu,Q., et al.2009.Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metabolism.9:327-338.
    Quirino, B. F., Noh, Y. S., Himelblau, E., et al.2000. Molecular aspects of leaf senescence. Trends in plant science.5:278-282.
    Revollo, J.R., Grimm, A.A. and Imai, S.2004. The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells. J. Biol. Chem.279:50754-50763
    Richter, C., Winterhalter, K.H., Baumhuter, S., Lotscher, H.R. and Moser, B. 1983. ADP-ribosylation in inner membrane of rat liver mitochondria. Proc. Natl. Acad. Sci.U.S.A.80:3188-3192.
    Rodgers, J.T. and Puigserver, P.2006. Certainly can't live without this:SIRT6. Cell Metab.3:77-78
    Rodgers, J.T., Lerin, C., Haas, W., et al.2005. Nutrient control of glucose homeostasis through a complex of PGC-laand SIRT1. Nature.434:113-118
    Rogina, B. and Helfand, S. L.2004. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101:15998-16003.
    Scher, M. B., Vaquero, A. and Reinberg, D.2007. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev.21:920-928.
    Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. and Verdin, E.2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase2. Proc. Natl. Acad. Sci. USA.103:10224-10229.
    Schwer, B., North, B.J., Frye, R.A., Ott,M. and Verdin, E.2002. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol.158:647-657.
    Schwer, B., Schumacher, B., Lombard, D.B., Xiao, C., Kurtev, M.V., Gao,J., et al. 2010. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA.107:21790-21794.
    Sinclair, D.A. and Guarente, L.1997. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell.91:1033-1042.
    Sinclair, D.A. and Guarente, L.2006. Unlocking the secrets of longevity genes. Sci. Am.294:48-57.
    Smith, J.S., Brachmann, C.B., Celic, I., Kenna MA, Muhammad S, Starai VJ, et al.2000. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A.97:6658-6663.
    Stanley, C.A.2004. Hyperinsulinism/hyperammonemia syndrome:insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Mol. Genet. Metab.81 Suppl 1:S45-51.
    Stanley, C.A., Lieu, Y.K., Hsu, B.Y., Burlina, A.B., Greenberg, C.R., Hopwood, N.J., Perlman, K., Rich, B.H., Zammarchi, E and Poncz, M.1998. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med.338:1352-1357.
    Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K. and Horio, Y.2007. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem.282:6823-6832.
    Tanny, J.C., G.J. Dowd, J. Huang, H. Hilz and D. Moazed.1999. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell.99: 735-745.
    Tennen, R. I., Berber, E. and Chua, K. F.2010. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. Mech Ageing Dev.131:185-192.
    Tissenbaum, H. A. and Guarente, L.2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227-230.
    Tsukamoto, Y., Kato, J. and IkedaH.1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature.388:900-903.
    Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T. and Bober, E.2008. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res.102: 703-710.
    Van Gool, F., Galli, M., Gueydan, C., Kruys,V., Prevot, P.P., Bedalov, A., et al. 2009. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med.15:206-210.
    Vaquero, A., Scher, M. B., Lee, D. H., Sutton, A., Cheng, H. L., Alt, F. W., Serrano, L., Sternglanz, R. and Reinberg, D.2006. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev.20:1256-1261.
    Vaziri, H., Dessain, S.K., Eaton, E.N., et al.2001. hSir2(SIRT1) Functions as an NAD-Dependent p53 Deacetylase. Cell.107:149-159.
    Verdin, E., Dequiedt, F., Fischle, W. Frye,, R., Marshall, B. and North, B.2004. Measurement of mammalian histone deacetylase activity. Methods Enzymol.377: 180-196.
    Verdin, E., Hirschey, M.D., Finley, L.W. and Haigis, M.C.2010. Sirtuin regulation of mitochondria:energy production, apoptosis, and signaling. Trends Biochem Sci. 35:669-675.
    Wang, Y. and Tissenbaum, H.A.2006. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev.127:48-56.
    Westphal, C. H., Dipp, M. A., and Guarente, L.2007. A therapeutic role for sirtuins in diseases of aging? Trends Biochem Sci.32:555-560.
    Wang, C.Z., Gao, F., Wu, J.G., et al. 2010. Arabidopsis Putative Deacetylase AtSRT2 Regulates Basal Defense by Suppressing PAD4, EDS5 and SID2 Expression. Plant Cell Physiol.51:1291-1299.
    Xiao, C., Kim, H.S., Lahusen, T., Wang,R.H., Xu, X., Gavrilova, O., et al 2010. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. JBiol Chem.285:36776-36784.
    Yang, B., Zwaans, B.M., Eckersdorff,M., et al 2009. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle.15: 2662-2663.
    Yang,Y., Cimen,H., Han, M. J., et al. 2010. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem.285:7417-7429.
    Yao, N. and Greenberg, J. T.2006. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell Death. The Plant Cell.18:397-411.
    Yariv Kanfi, Shoshana Naiman, Gail Amir, Victoria Peshti, Guy Zinman, Liat Nahum, Ziv Bar-Joseph and Haim Y. Cohen1.2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218-221
    Zhong, L., D'Urso, A., Toiber, D., Sebastian, C., Henry, R.E., Vadysirisack, D.D., et al.2010.The histone deacetylase Sirt6 regulates glucose homeostasis via Hiflalpha. Cell.140:280-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700