致癌物诱导大鼠肺鳞癌癌变过程中DNA甲基化动态改变与作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     肺癌是全球性的恶性肿瘤,其发病率和死亡率在我国以及世界其它地区的肿瘤性疾病中均居第一位,严重危害人们的健康和生命。因此,深入研究肺癌发生的分子机制,尤其是癌前病变的分子机制,对于开展高危人群的筛选和利用有效的分子生物标记进行早期诊断,降低肺癌发生率和死亡率具有十分重要的意义。
     肺癌的发生是一个多阶段、多步骤的过程。例如:肺鳞癌由支气管粘膜上皮恶变所经历的病变包括:增生→鳞状上皮化生→轻度、中度、重度不典型增生→原位癌→浸润癌。既往的研究表明,在肺癌发生过程中需要一系列的遗传学改变的积累,包括DNA突变、缺失、扩增、重组、染色体畸变等引起的基因表达的改变。近年来,人们逐渐认识到基因表达调控的另一重要机制—DNA甲基化,在肺癌的发生发展过程中也起着重要的作用,但是相关的研究还不够深入。
     DNA甲基化是表遗传学修饰的主要形式,其主要特点是通过对CpG序列的胞嘧啶进行甲基化修饰来调控基因的表达,而DNA序列本身并不改变。已有的研究表明,DNA异常甲基化是人类肿瘤组织中常见的改变之一。一方面,基因组范围内散发的CpG二核苷酸序列普遍发生低甲基化,从而导致染色体的断裂、易位、丢失、以及部分原癌基因的激活;另一方面,抑癌基因的启动子区域CpG岛DNA发生高甲基化,造成相关基因的表达失活。目前,已有较多文献报道肺癌肿瘤组织和细胞株中许多肿瘤相关基因启动子区发生了高甲基化,这些基因涉及到细胞周期调控、细胞凋亡、DNA修复、细胞黏附等多条信号通道。可见,在肺癌的发生发展过程中,以DNA甲基化为主的表遗传学机制与遗传学机制占有同等重要的地位。但是,对肺癌癌前组织中DNA甲基化的研究相对较少,DNA异常甲基化在癌前病变中的作用机制也还不清楚。
     研究表明, 3-甲基胆蒽(3-methylcholanthrene, MCA)和二乙基亚硝胺(Diethylnitrosamine, DEN)诱导的大鼠肺鳞癌的发生与人类肺癌的发生经历了相似的形态学过程,在分子生物学水平上,也都有相似的变化,并导致相似的基因表达的改变。上述研究为利用此肺癌模型探讨人类肺癌发生的表遗传学机制提供了依据。
     基于以上考虑,我们以致癌物MCA和DEN诱导的大鼠肺鳞癌模型为基础,研究癌变过程中DNA甲基化的动态改变情况及作用机制,包括全基因组低甲基化动态变化趋势、各种肿瘤相关基因甲基化状态的改变及对蛋白表达的影响以及DNA甲基转移酶的改变情况等,初步揭示DNA甲基化在化学致癌过程中的作用,为阐明肺癌癌变的表遗传学机制奠定基础。
     材料和方法:
     1. Wistar大鼠90只,雌雄各半,6周龄,体重200g±20g,随机分为实验组80只,对照组10只。实验组每只大鼠左肺下叶一次性灌注0.1ml致癌物碘油混悬液(含10 mg MCA和10μl DEN),对照组每只大鼠灌注0.1ml碘油。于灌注后第15、35、55、65、75天随机抽取各实验组动物16只和对照组动物2只处死。取灌注部位病变组织,一分为二,一份抽提组织RNA和蛋白质,另一半置于4%多聚甲醛固定液中,常规石蜡包埋,制备成4μm和10μm厚的切片。利用激光捕获显微切割的方法获取正常和处于不同癌变阶段的组织细胞并提取DNA。
     2.采用抗5-甲基胞嘧啶(5-methycytosine, 5-mC)抗体免疫组化的方法,检测大鼠肺鳞癌癌变各阶段基因组甲基化水平,利用图像分析系统测量其平均光密度值和积分光密度值,从细胞形态学水平获取DNA低甲基化的发生情况;利用甲基化敏感性随机引物PCR(Methylation-sensitive arbitrarily primed PCR, MS-AP-PCR)方法分析了11例癌前病变组织和11例肿瘤组织及其配对的正常支气管上皮组织基因组DNA中异常甲基化的改变情况,观察癌变过程中DNA甲基化的差异;分离差异甲基化片段,克隆并进行测序;利用BLAST软件对序列的同源性进行分析,确定是否为已知基因。
     3.采用甲基化特异性PCR(Methylation-specific PCR, MSP)和测序的方法检测癌变过程中肿瘤相关基因p15、p16、p27、p57、RASSF1A、TSLC1、TIMP-3、E-cadherin、N-cadherin、DAPK1、FHIT、SOCS-3高甲基化的发生情况;采用免疫组化检测p16、p27、p57、RASSF1A、TSLC1、TIMP-3、N-cadherin、DAPK1、FHIT、SOCS-3蛋白在大鼠肺鳞癌癌变各阶段的表达水平,采用Western blot检测各蛋白在正常、癌变和鳞癌组织中的表达水平。
     4.采用免疫组化检测DNA甲基转移酶(DNA methyltransferase, DNMT)1、3a和3b在大鼠肺鳞癌癌变各阶段的表达水平,分析其与各肿瘤相关基因甲基化之间的关联;原代培养p16、p57、TSLC1基因甲基化大鼠肺鳞癌细胞,采用不同浓度(2μM、5μM、10μM)去甲基化试剂5-氮杂-2′-脱氧胞苷(5-aza-2′-deoxycytidine, 5-aza-dC)处理,MSP和逆转录PCR(Reverse transcription-PCR, RT-PCR)分别检测处理前后各基因甲基化和mRNA表达的情况。
     5.所有参数均采用SPSS13.0统计软件分析处理,各基因甲基化发生频率和各蛋白阳性率差异比较以及甲基化和表达的相关性分析采用χ2检验,方差分析用于分析组间均数差别,双侧概率检验,检验水平α为0.05及0.01两种。
     结果:
     1.灌注后15-75天分批处死大鼠,大体病理观察发现对照组左肺无明显改变,实验组大鼠左肺下叶有直径0.5cm-1cm不等的肿块。HE切片染色,光镜下观察发现,对照组无明显的增生性或肿瘤性病变;实验组出现从正常支气管上皮组织到肺鳞癌各阶段病变,包括支气管粘膜上皮过度增生、鳞状上皮细胞化生、不典型增生、原位癌以及广泛浸润癌,且多为一例病变组织中同时存在多个癌变阶段。癌变过程各阶段的计数结果:正常支气管上皮20例(包括对照组和实验组各10例)、上皮增生25例、鳞状化生27例、不典型增生37例、原位癌30例、浸润癌25例。
     2.抗5-mC抗体在支气管上皮细胞胞核表达,正常对照组胞核呈棕黄至黄褐色,随着癌变过程的延续,染色程度逐渐变淡,至浸润癌阶段胞核呈浅黄色。癌变各阶段细胞胞核染色基底层较腔细胞层深。支气管粘膜上皮增生、鳞状化生、不典型增生、原位癌、浸润癌5-mC免疫组化平均光密度值和积分光密度值呈总体下降趋势,与正常对照组比值均有显著差异(P < 0.01);正常与癌变各阶段支气管上皮基底层细胞平均光密度值和积分光密度值比腔细胞层细胞层高,差异有显著性意义(P < 0.01)。
     3.利用MS-AP-PCR方法分析了11例癌前病变组织和11例肿瘤组织,及其配对的正常支气管上皮组织DNA中异常甲基化的改变情况,结果发现多数标本中均能发现异常甲基化片段。在200bp-700bp范围内,我们一共回收了8个扩增片段,其中低甲基化片段7个,高甲基化片段1个。通过克隆、测序和BLAST分析显示,8个DNA片段中有7个与大鼠基因组序列有高度同源(99%-100%的同源性)。这些序列位于大鼠的染色体1、3、9、12、13、20和X上,与细胞周期调控、细胞生长分化相关。采用MSP和测序的方法对高甲基化片段Hyper-1进行了鉴定分析,结果发现Hyper-1在正常组织中未发现甲基化,而在肿瘤和癌变组织中均发现甲基化。
     4. p15和E-cadherin在正常和癌变各阶段均未发生甲基化。其余肿瘤相关基因在癌变过程中甲基化程度逐渐增强,至少一个基因发生甲基化的频率和平均甲基化基因个数不断增加。正常、增生、鳞状化生、不典型增生、原位癌和浸润癌各阶段组织中甲基化频率分别为:p16:0%、8.00%、22.22%、40.54%、50.00%和56.00%;p27:0%、0%、0%、0%、3.33%和8.00%;p57:0%、0%、11.11%、18.92%、26.67%和36.00%;RASSF1A:0%、0%、3.70%、8.11%、6.67%和16.00%;TSLC1:0%、0%、18.52%、24.32%、40.00%和48.00%;TIMP-3:10.00%、12.00%、18.52%、24.32%、30.00%和60.00%;N-cadherin:0%、0%、7.41%、18.92%、26.67%和36.00%;DAPK1:0%、0%、7.41%、10.81%、26.67%和36.00%;FHIT:0%、0%、3.70%、16.22%、43.33%和48.00%;SOCS-3:0%、0%、7.41%、16.22%、26.67%和48.00%。相反,除N-cadherin表达增强外,其余各肿瘤相关基因蛋白在正常、增生、鳞状化生、不典型增生、原位癌和浸润癌各阶段组织中表达不断下降,阳性表达率分别为:p16:90.00%、84.00%、70.37%、59.46%、40.00%和32.00%;p27:95.00%、88.00%、74.07%、67.57%、60.00%和44.00%;p57:95.00%、92.00%、81.48%、75.68%、63.33%和56.00%;RASSF1A:100.00%、92.00%、70.37%、64.86%、53.33%和48.00%;TSLC1:95.00%、88.00%、55.56%、48.65%、43.33%和40.00%;TIMP-3:100.00%、96.00%、77.78%、70.27%、53.33%和24.00%;N-cadherin:0%、0%、14.81%、21.62%、33.33%和44.00%;DAPK1:100.00%、100.00%、88.89%、81.08%、70.00%和56.00%;FHIT:100.00%、96.00%、81.48%、62.16%、43.33%和36.00%;SOCS-3:100.00%、100.00%、88.89%、86.49%、73.33%和56.00%。Western blot结果:未甲基化且免疫组化阳性的标本蛋白表达较强,甲基化且免疫组化阴性的标本蛋白表达较弱或无表达。p16、p57、TSLC1、TIMP-3、
     DAPK1、FHIT、SOCS-3基因甲基化与蛋白表达呈显著负相关。5.正常、增生、鳞状化生、不典型增生、原位癌和浸润癌各阶段DNA甲基转移酶的阳性表达率分别为:DNMT1:0%、16.00%、29.63%、40.54%、46.67%和64.00%; DNMT3a:0%、0%、18.52%、37.84%、40.00%和68.00%;DNMT3b:0%、0%、0%、5.41%、10.00%和12.00%。DNMT1与DNMT3a、DNMT3b表达均呈显著正相关(P < 0.05),DNMT3a与DNMT3b表达无相关(P > 0.05)。DNMT1、DNMT3a、DNMT3b的表达与肿瘤相关基因甲基化相关性分析结果显示:p16、p57、TSLC1基因甲基化分别与DNMT1和DNMT3a的表达呈显著正相关(P < 0.01),此外,RASSF1A、TIMP-3、N-cadherin基因甲基化与DNMT3a的表达呈显著正相关(P < 0.01)。DNMT1和DNMT3a表达阳性的标本中平均甲基化基因数目是2.43±1.85和2.65±1.82,显著高于表达阴性的标本中平均甲基化基因数目1.35±1.98和1.34±1.95。对p16、p57、TSLC1基因甲基化的大鼠肺鳞癌原代细胞进行去甲基化试剂处理后,其基因mRNA表达水平显著升高。
     结论:
     1.采用支气管灌注MCA和DEN两种致癌物成功建立Wistar大鼠肺鳞癌癌变模型。
     2.基因组甲基化水平的降低在肺癌癌变早期就已发生,高甲基化和低甲基化共同存在于癌变组织和肿瘤组织中,并且在MCA和DEN诱导的大鼠癌变过程中起到非常重要的作用。筛选出的差异性甲基化片段所在区域可能是化学致癌癌变过程中改变的敏感地区,这些序列可以探索作为接触致癌物质的潜在生物标志物。经鉴定的高甲基化片段,提示其可能来自新基因,并且高甲基化可能与相关基因转录抑制有关。
     3.细胞周期调控相关基因p16、p27、p57、RASSF1A,细胞黏附相关基因TSLC1、TIMP-3、N-cadherin,凋亡相关基因DAPK1、FHIT以及SOCS-3基因高甲基化导致的基因沉默是MCA和DEN诱导的大鼠肺鳞癌癌变过程中的早期和频繁的事件,并在此过程中起重要作用。
     4. DNMT1和DNMT3a表达的增加是癌变过程中一个具有特征的早期分子改变,共同调控基因甲基化的发生,参与了MCA和DEN诱导的大鼠肺鳞癌发生发展的全过程。
     5. DNA甲基化是肿瘤相关基因失活的重要机制,并且CpG岛高甲基化导致的基因沉默是一个可以逆转的过程。
     综上所述,MCA和DEN诱导的大鼠肺鳞癌模型可以从表遗传学机制来阐明致癌物在诱发癌变过程中的作用及其机制,丰富传统的“遗传学致癌理论”。建立的实验体系,为进一步全面评价环境因素与DNA甲基化相互作用参与肺癌癌变的发生奠定了基础,也将对传统的基于“突变检测”的致癌物的评价体系起到完善作用。同时,本研究为进一步研究相关基因如何通过表遗传学/遗传学的相互作用介导相关信号通路参与癌变提供资料,也为利用该模型筛选新的脱甲基化制剂用于肺癌治疗以及评价我国环境因素与DNA甲基化相互作用在肺癌发生中的机制提供方法学和实验模型。
Backgroud and Objective:
     Lung cancer is the most common cause of cancer-related mortality in China, as well as in the United States and Europe. Effective early diagnosis and targeted therapies to reduce incidence and mortality would benefit from a better understanding of the key molecular changes from normal cells to precancerous lesions to malignant tumor cells. However, the molecular events responsible for lung cancer initiation and development are still largely unknown.
     The occurrence of lung cancer is a multiphase and multistep process. Take lung squamous cell carcinoma for example, it will experience several stages from bronchial epithelial to malignant lesions, including hyperplasia, squamous metaplasia, dysplasia (mild, moderate, and severe), carcinoma in situ (CIS) and infiltrating carcinoma. Previous studies have shown that there is an accumulation of many genetic changes that occur during the process of lung tumorigenesis, including DNA mutations, deletions, amplification, rearrangements, chromosome aberrations, and so on. In recent years, DNA methylation as another important mechanism for the regulation of gene expression has been shown to play an important role in the lung carcinogenesis, but the relevant research is still in the initial stage.
     Methylation of DNA, which occurs at the cytosine residues of cytosine- phospho-guanine (CpG) dinucleotides by an enzymatic reaction that produces 5-methycytosine (5-mC), is an extensively characterized mechanism for epigenetic gene regulation. Neoplastic cells may simultaneously harbor widespread genomic hypomethylation and regional areas of hypermethylation. The prevalence of global hypomethylation in many types of human cancers suggests that such hypomethylation plays an important role in tumorigenesis. Global DNA hypomethylation may induce neoplastic transformation, genomic instability, and abnormal chromosomal structures. Alterations in normal DNA methylation patterns are frequently observed in cancer cells, and hypermethylation in the promoter regions of tumor suppressor genes is associated with an epigenetically mediated gene silencing. This is a common feature of human carcinomas, and is a key to the tumorigenic process, contributing to all of the typical hallmarks of a cancer cell. With regard to abnormal DNA methylation in lung cancer, many literatures have found that tumor-related genes hypermethylation occurred in the tumor tissues. These genes are involved in a number of intracellular signal pathways: cell cycle regulation, cell apoptosis, DNA repair, cell adhesion and so on. Thus, epigenetic mechanisms representative of DNA methylation and genetic mechanisms are of equal importance during the process of lung cancer initiation, development, and progression. However, research about DNA methylation in precancerous tissues of lung cancer is relatively small and the underlying mechanisms are unclear.
     Previous studies have suggested that there are many similarities in not only the morphological process, but also the level of molecular biology, alterations in 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN)-induced lung squamous cell carcinoma and human lung cancer. Therefore, the animal model may be particularly informative and helpful in gaining a better understanding of the epigenetic alterations that occur during human lung carcinogenesis.
     Based on these considerations, the aim of this study was to determine the role of DNA methylation alterations in the progression of MCA and DEN-induced rat lung carcinogenesis from normal bronchial epithelium to cancer. We focused on the changes in DNA methylation associated with the progression of lung carcinogenesis, including the global methylation status, the presence of differentially methylated DNA fragments, the alterations in methylation of tumor-related genes and their regulation of protein expression, DNA methyltransferases changes and their expressions association with tumor-related genes methylation, and demethylation experiments.
     Materials and Methods:
     1. Wistar rats of both sexes (6 weeks old, 200±20g) randomly assigned to two groups. The 80 animals assigned to Group 1 were treated with a single dose of 10mg MCA and 10μl DEN in iodized oil by left intra-bronchial instillation. The 10 animals assigned to Group 2 were instilled with 0.1 ml iodized oil without any carcinogen into the left lung as a control. Rats were killed by exsanguination under anesthesia on days 15, 35, 55, 65 and 75 after instillation. The left lungs were split into two halves. One was rapidly frozen in liquid nitrogen and kept at -80℃. The other was fixed by immersion in 4% formaldehyde in phosphate buffer for 24 hours, embedded in paraffin, sectioned to 4μm and 10μm thickness, and routinely processed for hematoxylin and eosin staining. Laser capture microdissection (LCM) was employed to obtain near-pure normal, precancerous and malignant cells for methylation analysis.
     2. The status of genomic methylation during rat lung carcinogenesis was detected by immunohistochemistry with anti-5-methycytosine (5-mC) antibody, and the mean optical density (OD) and integrated optical density (IOD) were measured by image analysis system. We also used methylation-sensitive arbitrarily-primed PCR (MS-AP-PCR) to screen differentially methylated DNA fragments in 11 tumor and 11 precancerous tissues, and their paired normal bronchial epithelial tissues isolated using LCM. Differentially methylated fragments products were separated cloned into vector and sequenced. Sequence data were used to determine genomic information, including homology to characterized or novel genes and cytogenetic map positions, employing the NCBI’s BLAST program.
     3. Methylation-specific PCR (MSP) and sequencing were used to detect the methylation status of tumor-related genes, including p15, p16, p27, p57, RASSF1A, TSLC1, TIMP-3, E-cadherin, N-cadherin, DAPK1, FHIT and SOCS-3 during MCA and DEN-induced rat lung carcinogenesis. Immunohistochemistry was used to examine the expressions of p16, p27, p57, RASSF1A, TSLC1, TIMP-3, N-cadherin, DAPK1, FHIT and SOCS-3 proteins during rat lung carcinogenesis. Normal tissues, precancerous and tumor tissues were examined by Western blot for the expressions of these proteins.
     4. Immunohistochemistry was used to examine the expressions of DNA methyltransferases (DNMTs) 1, 3a and 3b proteins during MCA and DEN-induced rat lung carcinogenesis. Correlation analyses were applied to study the relationship between DNMTs expressions and tumor-related genes methylation. After purification through a series of pathologic, morphological and immunologic identifications, primary rat lung squamous cell carcinoma cells with methylated p16, p57 and TSLC1 were cultured and exposed to different concentrations (2μM, 5μM, 10μM) of 5-aza-2′-deoxycytidine (5-aza-dC). DNA and RNA were harvested on day 3 after initial treatment. The methylation status and mRNA expression of p16, p57 and TSLC1 were detected by MSP and reverse transcription-polymerase chain reaction (RT-PCR).
     5. Statistical analyses were performed with the SPSS 13.0 software. Chi-square analyses were applied to study the correlation between expression and CpG methylation, the differences in methylation, and differences in expression between normal, precancerous, and tumor tissues. Multiple comparisons in 5-mC immunostaining intensity were evaluated using one-way ANOVA and significant differences between two groups were analyzed by Tukey's test. The level of significance was set at P < 0.05.
     Results:
     1. Rats treated with carcinogens had no obviously pathological lesions in any of the main organs, except the treated lung. No pathological changes were found in any of the control groups. We obtained different morphological tissues representative of hyperplasia, squamous metaplasia, dysplasia, CIS and infiltrating carcinoma in the multistep process of rat lung tumorigenesis by selecting different durations of time after instillation of the carcinogens to sacrifice the animals. All of the lung cancers induced by MCA and DEN were diagnosed as squamous cell carcinoma by a professional pathologist. In all, 20 samples of normal bronchial epithelium (including 10 samples from chemically-treated and 10 samples from untreated rats), 25 samples of hyperplasia, 27 samples of squamous metaplasia, 37 samples of dysplasia, 30 samples of CIS and 25 samples of infiltrating carcinoma were included.
     2. Anti-5-mC antibody was expressed in the nucleus of bronchial epithelial cells. Staining levels gradually decreased from normal with nucleus brown to tumor with nucleus yellow during the process of carcinogenesis. Nuclear staining in basal cells was deeper than that in luminal cells of normal and precancerous stages. The OD and IOD of combined 5-mC scores of different types of tissues decreased gradually during the progression of carcinogenesis (P < 0.01). The degree of global methylation was, in general, higher in basal cells compared to luminal cells of normal and precancerous tissues (P < 0.01).
     3. We chose 11 tumor and 11 precancerous tissues, and their paired normal bronchial epithelial tissues, for screening differentially methylated DNA fragments by MS-AP-PCR following LCM. Results showed that abnormal methylation fragments can be found in majority of samples. In the range of 200bp-700bp, we identified a total of eight differentially methylated DNA fragments, including seven hypomethylated and one hypermethylated DNA fragment in both precancerous tissues and tumor tissues. DNA sequence analysis of these fragments revealed that seven of the eight DNA fragments had significant homology matches (99-100% homology) to sequences in the GENBANK database after a BLAST search. These sequences were found to reside on rat chromosomes 1, 3, 9, 12, 13, 20 and X, indicating putative target genes in these regions. The methylation status of hypermethylated fragment CpG islands, which confirmed the MS-AP-PCR results.
     4. p15 and E-cadherin were unmethylated in normal, precancerous and tumor tissues. Other tumor-related genes methylation gradually increased during the process of carcinogenesis. The prevalence of DNA methylation of at least one gene and the average number of methylated genes were significantly increase from normal to precancerous and tumor tissues. The frequency of each tumor-related gene methylation in the stage of normal, hyperplasia, squamous metaplasia, dysplasia, CIS and infiltrating carcinoma was as follows: p16: 0%, 8.00%, 22.22%, 40.54%, 50.00% and 56.00%; p27: 0%, 0%, 0%, 0%, 3.33% and 8.00%; p57: 0%, 0%, 11.11%, 18.92%, 26.67% and 36.00%; RASSF1A: 0%, 0%, 3.70%, 8.11%, 6.67% and 16.00%; TSLC1: 0%, 0%, 18.52%, 24.32%, 40.00% and 48.00%; TIMP-3: 10.00%, 12.00%, 18.52%, 24.32%, 30.00% and 60.00%; N-cadherin: 0%, 0%, 7.41%, 18.92%, 26.67% and 36.00%; DAPK1: 0%, 0%, 7.41%, 10.81%, 26.67% and 36.00%; FHIT: 0%, 0%, 3.70%, 16.22%, 43.33% and 48.00%; SOCS-3: 0%, 0%, 7.41%, 16.22%, 26.67% and 48.00%. On the contrary, protein expression of tumor-related genes decreased during the process of carcinogenesis except the increase of N-cadherin expression. The rates of positive protein expression in the stage of normal, hyperplasia, squamous metaplasia, dysplasia, CIS and infiltrating carcinoma were as follows: p16: 90.00%, 84.00%, 70.37%, 59.46%, 40.00% and 32.00%; p27: 95.00%, 88.00%, 74.07%, 67.57%, 60.00% and 44.00%; p57: 95.00%, 92.00%, 81.48%, 75.68%, 63.33% and 56.00%; RASSF1A: 100.00%, 92.00%, 70.37%, 64.86%, 53.33% and 48.00%; TSLC1: 95.00%, 88.00%, 55.56%, 48.65%, 43.33% and 40.00%; TIMP-3: 100.00%, 96.00%, 77.78%, 70.27%, 53.33% and 24.00%; N-cadherin: 0%, 0%, 14.81%, 21.62%, 33.33% and 44.00%; DAPK1: 100.00%, 100.00%, 88.89%, 81.08%, 70.00% and 56.00%; FHIT: 100.00%, 96.00%, 81.48%, 62.16%, 43.33% and 36.00%; SOCS-3: 100.00%, 100.00%, 88.89%, 86.49%, 73.33% and 56.00%. Results of Western blot showed that samples with unmethylation and positive by immunohistochemistry showed strong protein expression, while samples with methylation and negative by immunohistochemistry showed weak or no expression. The correlation between methylation of p16, p57, TSLC1, TIMP-3, DAPK1, FHIT, SOCS-3 and their protein expressions was significant.
     5. The rates of positive DNMTs protein expression in the stage of normal, hyperplasia, squamous metaplasia, dysplasia, CIS and infiltrating carcinoma were as follows: DNMT1: 0%, 16.00%, 29.63%, 40.54%, 46.67% and 64.00%; DNMT3a: 0%, 0%, 18.52%, 37.84%, 40.00% and 68.00%; DNMT3b: 0%, 0%, 0%, 5.41%, 10.00% and 12.00%. The expression of DNMT1 was significant positively correlated with DNMT3a and DNMT3b expression (P < 0.05). The expression of DNMT3a was not correlated with DNMT3b expression (P > 0.05). Correlation analyses between DNMT1, DNMT3a, DNMT3b expression and 10 tumor-related genes with hypermethylation showed that the expression of DNMT1 and DNMT3a were significantly positively correlated with p16, p57 and TSLC1 gene methylation, respectively (P < 0.01). In addition, RASSF1A, TIMP-3, N-cadherin gene methylation was significantly positively correlated with the expression of DNMT3a (P < 0.01). The average numbers of methylated genes were significantly higher in samples with positive expression of DNMT1 and DNMT3a (2.43±1.85 and 2.65±1.82) than those with negative expression of DNMT1 and DNMT3a (1.35±1.98 and 1.34±1.95), respectively. After the primary tumor cell lines were treated with 5-aza-dC, the mRNA expression of p16, p57 and TSLC1 significantly increased compared to the untreated cells.
     Conclusions:
     1. Using bronchial instillation, two kinds of carcinogens MCA and DEN successfully established animal model for lung squamous cell carcinoma model in Wistar rats.
     2. Global hypomethylation not only occurred in tumors, but also in precancerous tissues. The decrease in the degree of genomic methylation and coexist of hypermethylation and hypomethylation may play an important role during carcinogenesis of lung squamous cell carcinoma in rats. Screened differential methylated fragments may locate in sensitive regions that are altered during MCA and DEN-induced lung carcinogenesis. In the future, these sequences could be explored as potential biomarkers of carcinogen exposure. Identification of Hyper-1 suggests that it might be new gene and the aberrant hypermethylation may be the main mechanism of gene inactivation.
     3. Dynamic changes in hyperthylation of cell cycle regulation-related genes p16, p27, p57, RASSF1A, cell adhesion-related gene TSLC1, TIMP-3, N-cadherin, cell apoptosis-related genes DAPK1, FHIT, and SOCS-3 gene, accounting for their defective expression, are an early and frequent event in tumorigenesis and play an important role during the progression of MCA/DEN-induced multistep rat lung carcinogenesis.
     4. DNMT1 and DNMT3a overexpression associated with accumulation of DNA methylation of multiple tumor-related genes are involved in multistage carcinogenesis from normal to early precancerous stages to malignant progression.
     5. DNA methylation is an important mechanism for tumor-related genes inactivation and CpG island hypermethylation leading to gene silencing is a reversible process.
     To sum up, the present investigation explored the underlying epigenetic mechanisms of chemically induced rat lung carcinogenesis and enriched the traditional“cancer genetics theory”. The experimental model used in present study may be particularly informative and helpful in gaining a better understanding of the epigenetic alterations that occur during genotoxic carcinogen-induced lung carcinogenesis. Established experimental system has laid a foundation for further comprehensive assessment of environmental factors and DNA methylation interactions associated with the occurrence of lung cancer. It also plays a key role in traditional evaluation system for carcinogenic compounds based on the“mutation detection”. At the same time, this study provide information for further study on how related genes on the signal pathway involved in cancer through epigenetic/genetic interactions. The experimental model can be used for screening new demethylation agents for lung cancer treatment and evaluating the interaction between DNA methylation and environmental factors in the mechanism of lung cancer in China.
引文
1. Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2009. CA Cancer J Clin, 2009, 59(4): 225-249.
    2. Zhao P, Dai M, Chen W, et al. Cancer Trends in China. Jpn J Clin Oncol, 2010, 40(4): 281-285.
    3. Scott A, Salgia R. Biomarkers in lung cancer: from early detection to novel therapeutics and decision making. Biomark Med, 2008, 2(6): 577-586.
    4. Yasufuku K. Early diagnosis of lung cancer. Clin Chest Med, 2010, 31(1): 39-47.
    5. Kersting M, Friedl C, Kraus A, et al. Differential frequencies of p16INK4a promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol, 2000, 18(18): 3221-3229.
    6. Montuenga LM, Pio R. Current challenges in lung cancer early detection biomarkers. Eur J Cancer, 2009, 45(Suppl1): 377-378.
    7. Breuer RH, Pasic A, Smit EF, et al. The natural course of preneoplastic lesions in bronchial epithelium. Clin Cancer Res, 2005, 11(2 Pt 1): 537-543.
    8. Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 2008, 452(7187): 638-642.
    9. Tezcan H. DNA methylation in lung cancer. N Engl J Med, 2008, 358(23): 2514.
    10. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8(4): 286-298.
    11. Feng Q, Hawes SE, Stern JE, et al. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev, 2008, 17(3): 645-654.
    12. De Jong WK, Verpooten GF, Kramer H, et al. Promoter methylation primarily occurs in tumor cells of patients with non-small cell lung cancer. Anticancer Res, 2009, 29(1): 363-369.
    13. Vaissière T, Hung RJ, Zaridze D, et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and itsassociation with gender and cancer risk factors. Cancer Res, 2009, 69(1): 243-252.
    14. Han W, Wang T, Reilly AA, et al. Gene promoter methylation assayed in exhaled breath, with differences in smokers and lung cancer patients. Respir Res, 2009, 10: 86.
    15. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet, 2009, 10(11): 805-811.
    16. Morey Kinney SR, Smiraglia DJ, James SR, et al. Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model. Mol Cancer Res, 2008, 6(8): 1365-1374.
    17. Benbrahim-Tallaa L, Waterland RA, Dill AL, et al. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect, 2007, 115(10): 1454-1459.
    18. Belinsky SA. Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis, 2005, 26(9): 1481-1487.
    19. Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci, 2004, 41(5-6): 585-607.
    20. Esteller M. DNA methylation and cancer therapy: new development and expectations. Curr opin Oncol, 2005, 17(1): 55-60.
    21. Furonaka O, Takeshima Y, Awaya H, et al. Aberrant methylation of p14(ARF), p15(INK4b) and p16(INK4a) genes and location of the primary site in pulmonary squamous cell carcinoma. Pathol Int, 2004, 54(8): 549-555.
    22. Kondo K, Takahashi Y, Hirose Y, et al. The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer, 2006, 53(3): 295-302.
    23. Helmbold P, Lahtz C, Herpel E, et al. Frequent hypermethylation of RASSF1A tumour suppressor gene promoter and presence of Merkel cell polyomavirus in small cell lung cancer. Eur J Cancer, 2009, 45(12): 2207-2211.
    24. Tzao C, Tsai HY, Chen JT, et al. 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer, 2004, 40(14): 2175-2183.
    25. Virmani AK, Rathi A, Z?chbauer-Müller S, et al. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst, 2000, 92(16): 1303-1307.
    26. Hoffmann AC, Kaifi JT, Vallb?hmer D, et al. Lack of prognostic significance of serum DNA methylation of DAPK, MGMT, and GSTPI in patients with non-small cell lung cancer. J Surg Oncol, 2009, 100(5): 414-417.
    27. Machida EO, Brock MV, Hooker CM, et al. Hypermethylation of ASC/TMS1 is a sputum marker for late-stage lung cancer. Cancer Res, 2006, 66(12): 6210-6218.
    28. Lin Q, Geng J, Ma K, et al. RASSF1A, APC, ESR1, ABCB1 and HOXC9, but not p16INK4A, DAPK1, PTEN and MT1G genes were frequently methylated in the stage I non-small cell lung cancer in China. J Cancer Res Clin Oncol, 2009, 135(12): 1675-1684.
    29. De Jong WK, Verpooten GF, Kramer H, et al. Promoter methylation primarily occurs in tumor cells of patients with non-small cell lung cancer. Anticancer Res, 2009, 29(1): 363-369.
    30. Hsu HS, Wen CK, Tang YA, et al. Promoter hypermethylation is the predominant mechanism in hMLH1 and hMSH2 deregulation and is a poor prognostic factor in nonsmoking lung cancer. Clin Cancer Res, 2005, 11(15): 5410-5416.
    31. Kikuchi S, Yamada D, Fukami T, et al. Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 2006, 106(8): 1751-1758.
    32. Wang G, Hu X, Lu C, et al. Promoter-hypermethylation associated defective expression of E-cadherin in primary non-small cell lung cancer. Lung Cancer, 2008, 62(2): 162-172.
    33. Gu J, Berman D, Lu C, et al. Aberrant promoter methylation profile and association with survival in patients with non-small cell lung cancer. Clin Cancer Res, 2006, 12(24): 7329-7338.
    34. Zochbauer-Muller S, Minna JD, Gazdar AF. Aberrant DNA methylation in lung cancer: Biological and clinical implication. The oncologist, 2002, 7(5): 451-457.
    35. Piyathilake CJ, Frost AR, Bell WC, et al. Altered global methylation of DNA: an epigenetic difference in susceptibility for lung cancer is associated with its progression.Hum Pathol, 2001, 32(8): 856-862.
    36. Licchesi JD, Westra WH, Hooker CM, et al. Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin Cancer Res, 2008, 14(9): 2570-2578.
    37. Malkinson AM. Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res, 1998, 24(4): 541-555.
    38.陈洪雷,刁路明,陈德基,等.大鼠肺癌癌变过程中Rb肿瘤抑制途径失控的意义.武汉大学学报(医学版), 2003, 24(3): 208-211.
    39. Fraga MF, Herranz M, Espada J, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res, 2004, 64(16): 5527-5534.
    40. Tian HS, Gao WQ, Liu MQ, et al. [Methodology in establishing an animal model of lung carcinoma. I. Lung carcinoma induced by intratracheal instillation of 3-methylcholanthrene saline suspension]. Chung Hua Chung Liu Tsa Chih, 1981, 2: 94-96.
    41. Tian HS, Liu MQ, Gao WQ, et al. Induction of lung carcinoma by intralobar bronchial instillation of iodized oil in rats. Chin Med J(Engl), 1984, 97(1): 36-40.
    42.鲁植艳,夏东,刘绚,等.改良型大鼠肺鳞癌发展模型的建立.武汉大学学报(医学版), 2003, 24(3): 222-224.
    1. Chapman EJ, Harnden P, Chambers P, et al. Comprehensive analysis of CDKN2A status in microdissected urothelial cell carcinoma reveals potential haploinsufficiency, a high frequency of homozygous co-deletion and associations with clinical phenotype. Clin Cancer Res, 2005, 11(16): 5740-5747.
    2. Bouzid M, Heavens D, Elwin K, et al. Whole genome amplification (WGA) for archiving and genotyping of clinical isolates of Cryptosporidium species. Parasitology, 2010, 137(1): 27-36.
    3. Malkinson AM. Molecular comparison of human and mouse pulmonary adenocarcinomas. Exp Lung Res, 1998, 24(4): 541-555.
    4.陈洪雷,刁路明,陈德基,等.大鼠肺癌癌变过程中Rb肿瘤抑制途径失控的意义.武汉大学学报(医学版), 2003, 24(3): 208-211.
    5.叶波,喻伦银,刘铭球,等.实验性大鼠肺癌癌变过程中外周血淋巴细胞染色体畸变的研究.数理医药学杂志, 2001, 14(3): 203-205.
    6. Belinsky SA. Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis, 2005, 26(9): 1481-1487.
    7. Fraga MF, Herranz M, Espada J, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res, 2004, 64(16): 5527-5534.
    8. Tian HS, Liu MQ, Gao WQ, et al. Induction of lung carcinoma by intralobar bronchial instillation of iodized oil in rats. Chin Med J, 1984, 97(1): 36-40.
    9.刘文斌,刘晋祎,曹佳.大鼠肺鳞癌模型两种麻醉方法的比较.中国比较医学杂志, 2008, 18(1): 54-57.
    10. Liu WB, Liu JY, Ao L, et al. Dynamic changes in DNA methylation during multistep rat lung carcinogenesis induced by 3-methylcholanthrene and diethylnitrosamine. Toxicol Lett, 2009, 189(1): 5-13.
    11.吴逸明,李卫民,李卓炜,等.大鼠肺癌发生发展动物模型的构建.河南医科大学学报, 2000, 35(3): 232-235.
    12. Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2009. CA Cancer J Clin, 2009, 59(4): 225-249.
    13. Kim Y, Liu XS, Liu C, et al. Induction of pulmonary neoplasia in the smoke-exposed ferret by (NNK): a model for human lung cancer. Cancer Lett, 2006, 234(2): 209-219.
    14. Witschi H. A/Jmouse as a model for lung tumorigenesis caused by tobacco smoke: strengths and weaknesses. Exp Lung Res, 2005, 31(1): 3-18.
    15.张朝晖,陈锋,罗招阳,等.烹调油烟诱发小鼠肺癌的实验研究.癌变·畸变·突变, 2001, 13(4): 265.
    16.孙来华,宣琼芬,刘崇林,等.云锡矿工肺癌动物实验研究综述.中国肿瘤, 1999, 8(11): 495.
    17.黄向华,张祥宏,李月红,等. 3种真菌毒素诱发NIH小鼠肺癌的实验研究.河北医科大学学报, 2003, 24(1): 22-23.
    18.顾其华,胡成平,夏莹,等. 3, 4-苯并芘肺内注射构建大鼠肺肿瘤模型的实验研究.中国肺癌杂志, 2007, 10(3): 172-175.
    19. Schuller HM, Becker KL, Witschi HP. An animal model for neuroendocrine lung cancer. Carcinogenesis, 1998, 9(2): 293-296.
    20.罗素琼,刘学泽,王朝俊.等.青石棉,苯并(a)芘联合诱发大鼠肺癌的研究.华西医大学报, 1995, 26(2): 202-205.
    21.曹喜才,刘勇,徐乃勋.犬肺癌模型制作与支气管动脉造影.中华放射学杂志, 2003, 37(10): 877-881.
    22.鲁植艳,夏东,刘绚,等.改良型大鼠肺鳞癌发展模型的建立.武汉大学学报(医学版), 2003, 24(3): 222-224.
    23.李小华,陈德基,江曼,等.实验性肺癌癌变过程中p53、mdm2、K-ras及PCNA蛋白的表达.癌症, 2001, 20(9): 921-925.
    24.陈洪雷,刁路明,陈德基,等.大鼠肺癌癌变过程中G1/S期调节基因的动态表达.中华结核和呼吸杂志, 2002, 25(6): 376-377.
    25.叶波,喻伦银,刘铭球,等.实验性大鼠肺癌癌变过程中外周血淋巴细胞染色体畸变的研究.数理医药学杂志, 2001, 14(3): 203-205.
    26. Emmert-Buck M, Robert F, Paul D, et al. Laser capture microdissection. Science, 1996, 274(8): 998-1001.
    27. Lee JY, Dong SM, Kim SY, et al. A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections. Virchows Arch, 1998, 433(4): 305-309.
    28. Sehutze K, Lahr G. Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol, 1998, 16(8): 737-742.
    29. Fend F, Emmert-Buck MR, Chuaqui R, et al. Immuno-LCM: Laser capture microdissection of immunostained frozen sections for mRNA analysis. Am J Pathol, 1999, 154(1): 61-66.
    30. Fend F, Quintanilla-Martinez L, Kumar S, et al. Composite low grade B-cell lymphomas with tow immunophenotypically distinct cell populations are true biclonal lymphomas. A molecular analysis using laser capture microdissection. Am J Pathol, 1999, 154(6): 1857-1866.
    31. Jin L, Thompson CA, Qian X, et al. Analysis of anterior pituitary hormone mRNA expression in immunopheno typically characterized single cells after 1aser capture microdissection. Lab Invest, 1999, 79(4): 511-512.
    32. Maitra A, Wistuba II, Virmani AK, et al. Enrichment of epithelial ceils for molecular studies. Nat Med, 1999, 5(4): 459-463.
    33. Chen JZ, Gokden N, Greene GF, et al. Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection. Cancer Res, 2002, 62(22): 6470-6474.
    34. Seth RM, Burger AM, Kahn HJ, et al. Analysis of the HER2/neu gene amplification in microdissected breast cancer tumour samples. Anticancer Res, 2006, 26(2A): 927-931.
    35. Pen A, Moreno MJ, Martin J, et al. Molecular markers of extracellular matrix remodeling in glioblastoma vessels: microarray study of laser-captured glioblastoma vessels. Glia, 2007, 55(6): 559-572.
    36. Zhang Y, Ye Y, Shen D, et al. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. Cancer Sci, 2010, 101(2): 523-529.
    37. Donati V, Lupi C, AlìG, et al. Laser capture microdissection: a tool for the molecular characterization of histologic subtypes of lung adenocarcinoma. Int J Mol Med, 2009, 24(4): 473-479.
    38. Sun Y, Shukla GS, Weaver D, et al. Phage-display selection on tumor histological specimens with laser capture microdissection. J Immunol Methods, 2009, 347(1-2): 46-53.
    39. Gagnon JF, Sanschagrin F, Jacob S, et al. Quantitative DNA methylation analysis of laser capture microdissected formalin-fixed and paraffin-embedded tissues. Exp Mol Pathol, 2010, 88(1): 184-189.
    40. Aitchison A, Warren A, Neal D, et al. RASSF1A promoter methylation is frequently detected in both pre-malignant and non-malignant microdissected prostatic epithelial tissues. Prostate, 2007, 67(6): 638-644.
    41. Irahara N, Nosho K, Baba Y, et al. Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn, 2010, 12(2): 177-183.
    42. Yang WH, Wu JR, Wang TH, et al. Methylation profiling using degenerated oligonucleotide primer-PCR specific for genome-wide amplification of bisulfite-modified DNA. Anal Biochem, 2007, 369(1): 120-127.
    43. Nie Y, Liao J, Zhao X, et al. Detection of multiple gene hypermethylation in the development of esophageal squamous cell carcinoma. Carcinogenesis, 2002, 23(10): 1713-1720.
    44. Di Vinci A, Perdelli L, Banelli B, et al. p16(INK4a) promoter methylation and protein expression in breast fibroadenoma and carcinoma. Int J Cancer, 2005, 114(3): 414-421.
    1. Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2009. CA Cancer J Clin, 2009, 59(4): 225-249.
    2. Paleari L, Granone P, Grozio A, et al. Commentary: early diagnosis of lung cancer: where do we stand? Oncologist, 2007, 12(12): 1433-1436.
    3. Scott A, Salgia R. Biomarkers in lung cancer: from early detection to novel therapeutics and decision making. Biomark Med, 2008, 2(6): 577-586.
    4. Dehan P, Kustermans G, Guenin S, et al. DNA methylation and cancer diagnosis: new methods and applications. Expert Rev Mol Diagn, 2009, 9(7): 651-657.
    5. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Rev Genet, 2007, 8(4): 286-298.
    6. Toyota M, Suzuki H, Yamashita T, et al. Cancer epigenomics: implications of DNA methylation in personalized cancer therapy. Cancer Sci, 2009, 100(5): 787-791.
    7. Kurkjian C, Kummar S, Murgo AJ. DNA methylation: its role in cancer development and therapy. Curr Probl Cancer, 2008, 32(5): 187-235.
    8. Piyathilake CJ, Frost AR, Bell WC, et al. Altered global methylation of DNA: an epigenetic difference in susceptibility for lung cancer is associated with its progression. Hum Pathol, 2001, 32(8): 856-862.
    9. Piyathilake CJ, Henao O, Frost AR, et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control, 2003, 14(1): 37-42.
    10. Zafirellis K, Agrogiannis G, Zachaki A, et al. Prognostic significance of VEGF expression evaluated by quantitative immunohistochemical analysis in colorectal cancer. J Surg Res, 2008, 147(1): 99-107.
    11. Gonzalgo ML, Liang G, Spruck CH, et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res, 1997, 57(4): 594-599.
    12. Liang G, Gonzalgo ML, Salem C, et al. Identification of DNA methylation differences during tumorigenesis by methylation-sensitive arbitrarily primed polymerase chain reaction. Methods, 2002, 27(2): 150-155.
    13. Laird PW. The power and the promise of DNA methylation markers. Nature Rev Cancer, 2003, 3(4): 253-266.
    14. Cheung HH, Lee TL, Rennert OM, et al. DNA methylation of cancer genome. Birth Defects Res C Embryo Today, 2009, 87(4): 335-350.
    15. Pfeifer GP, Rauch TA. DNA methylation patterns in lung carcinomas. Semin Cancer Biol, 2009, 19(3): 181-187.
    16. Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci, 2009, 66(14): 2249-2261.
    17. Kanai Y. Alterations of DNA methylation and clinicopathological diversity of human cancers. Pathol Int, 2008, 58(9): 544-558.
    18. Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta, 2007, 1775(1): 138-162.
    19. Wu J, Issa J, Hermen J, et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH3T3 ceils. Proc Natl Acad Sci USA, 1993, 90(19): 8891-8895.
    20. Oakeley EJ, Podesta A, Jost JP. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA, 1997, 94(21): 11721-11725.
    21. Kuo KC, McCune RA, Gehrke CW, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res, 1980, 8(20): 4763-4776.
    22. Fraga MF, Uriol E, Borja DL, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis, 2002, 23(11): 1677-1681.
    23. Oefner PJ, Bonn GK, Huber CG, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA. Chromatogr, 1992, 625(2): 331-340.
    24.邓大君,邓国仁,吕有勇,等.变性高效液相色谱法检测CpG岛胞嘧啶甲基化.中华医学杂志, 2001, 80(2): 158-161.
    25. Oakeley EJ, Schmitt F, Jost JP. Quantification of 5-methylcytosine in DNA by thechloroacetaldehyde reaction. Biotechniques, 1999, 27(4): 744-746, 748-750, 752.
    26.尹慧,黄代新,翟仙敦,等. HPLC法检测人外周血5-mC含量及其与年龄相关性研究.中国法医学杂志, 2007, 22(1): 8-10.
    27. Fuke C, Shimabukuro M, Petronis A, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet, 2004, 68(Pt 3): 196-204.
    28. Moore LE, Pfeiffer RM, Poscablo C, et al. Genomic DNA hypomethylation as biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case-control study. Lancet Oncol, 2008, 9(4): 359-366.
    29. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet, 2000, 24(2): 132-138.
    30. Hatada I, Hayashizaki Y, Hirotsune S, et al. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA, 1991, 88(21): 9523-9527.
    31. Huang TH, Laux DE, Hamlin BC, et al. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res, 1997, 57(6): 1030-1034.
    32. Frigola J, Ribas M, Risques RA, et al. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res, 2002, 30(7): e28.
    33. Watson RE, Curtin GM, Doolittle DJ, et al. Progressive alterations in global and GC-rich DNA methylation during tumorigenesis. Toxicol Sci, 2003, 75(2): 289-299.
    34. Bachman AN, Curtin GM, Doolittle DJ, et al. Altered methylation in gene-specific and GC-rich regions of DNA is progressive and nonrandom during promotion of skin tumorigenesis. Toxicol Sci, 2006, 91(2): 406-418.
    35. Phillips JM, Yamamoto Y, Negishi M, et al. Orphan nuclear receptor constitutive active/androstane receptor-mediated alterations in DNA methylation during phenobarbital promotion of liver tumorigenesis. Toxicol Sci, 2007, 96(1): 72-82.
    36. Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet, 1999, 8(3): 459-470.
    37. Toyota M, Issa JP. Methylated CpG island amplification for methylation analysis and cloning differentially methylated sequences. Methods Mol Biol, 2002, 200: 101-110.
    38. Shiraishi M, Sekiguchi A, Oates AJ, et al. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Ana Biochem, 2004, 329(1): 1-10.
    39. Yegnasubramanian S, Lin X, Haffner MC, et al. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res, 2006, 34(3): e19.
    40. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008, 30(6): 755-766.
    1. Tezcan H. DNA methylation in lung cancer. N Engl J Med, 2008, 358(23): 2514.
    2. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer, 2004, 4(2): 143-153.
    3. Feng Q, Hawes SE, Stern JE, et al. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev, 2008, 17(3): 645-654.
    4. De Jong WK, Verpooten GF, Kramer H, et al. Promoter methylation primarily occurs in tumor cells of patients with non-small cell lung cancer. Anticancer Res, 2009, 29(1): 363-369.
    5. Vaissière T, Hung RJ, Zaridze D, et al. Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res, 2009, 69(1): 243-252.
    6. Misawa K, Ueda Y, Kanazawa T, et al. Epigenetic inactivation of galanin receptor 1 in head and neck cancer. Clin Cancer Res, 2008, 14(23): 7604-7613.
    7. Zhao L, Wang L, Jin F, et al. Silencing of estrogen receptor alpha (ERalpha) gene by promoter hypermethylation is a frequent event in Chinese women with sporadic breast cancer. Breast Cancer Res Treat, 2009, 117(2): 253-259.
    8. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics, 2002, 18(11): 1427-1431.
    9. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA, 1998, 95(20): 11891-11896.
    10. Asada K, Asada R, Yoshiji H, et al. DNA cytosine methylation profile in various cancer-related genes is altered in cultured rat hepatocyte cell lines as compared with primary hepatocytes. Oncol Rep, 2006, 15(5): 1241-1248.
    11. Akintola AD, Crislip ZL, Catania JM, et al. Promoter methylation is associated with the age-dependent loss of N-cadherin in the rat kidney. Am J Physiol Renal Physiol, 2008, 294(1): F170-176.
    12. Han SY, Iliopoulos D, Druck T, et al. CpG methylation in the Fhit regulatory region: relation to Fhit expression in murine tumors. Oncogene, 2004, 23(22): 3990-3998.
    13. Herman JG, Graff JR, My?h?nen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996, 93(18): 9821-9826.
    14. Wang YC, Lin RK, Tan YH, et al. Wild-type p53 overexpression and its correlation with MDM2 and p14ARF alterations: an alternative pathway to non-small-cell lung cancer. J Clin Oncol, 2005, 23(1): 154-164.
    15. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009, 9(3): 153-166.
    16. Santamaria D, Ortega S. Cyclins and CDKs in development and cancer: lessons from genetically modified mice. Front Biosci, 2006, 11: 1164-1188.
    17. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999, 13(12): 1501-1512.
    18. Lee MH, Yang HY. Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci, 2001, 58(12-13): 1907-1922.
    19. Malumbres M, Barbacid M. To cycle or not to cycle: a critical decision in cancer. Nat Cancer Rev, 2001, 1(3): 222-231.
    20. Kamb A, Gruis NA, Weaver Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264(5157): 436-440.
    21. Belinsky SA, Snow SS, Nikula KJ, et al. Aberrant CpG island methylation of the p16 (INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis, 2002, 23(2): 335-339.
    22. Bai H, Gu L, Zhou J, et al. p16 hypermethylation during gastric carcinogenesis of Wistar rats by N-methyl-N'-nitro-N-nitrosoguanidine. Mutat Res, 2003, 535(1): 73-78.
    23. Kato A, Shimizu K, Shimoichi Y, et al. Aberrant DNA methylation of E-cadherin and p16 genes in rat lung adenocarcinomas induced by N-nitrosobis (2-hydroxypropyl) amine. Mol Carcinog, 2006, 45(2): 106-111.
    24. Kondo K, Takahashi Y, Hirose Y, et al. The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer, 2006,53(3): 295-302.
    25. Bastide K, Guilly MN, Bernaudin JF, et al. Molecular analysis of the Ink4a/Rb1- Arf/Tp53 pathways in radon-induced rat lung tumors. Lung Cancer, 2009, 63(3): 348-353.
    26. Besson A, Hwang HC, Cicero S, et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev, 2007, 21 (14): 1731-1746.
    27. Viglietto G, Motti ML, Bruni P, et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med, 2002, 8(10): 1136-1144.
    28. Ogino S, Shima K, Nosho K, et al. A cohort study of p27 localization in colon cancer, body mass index, and patient survival. Cancer Epidemiol Biomarkers Prev, 2009, 18(6): 1849-1858.
    29. Kiyokawa H, Kineman RD, Manova-Todorova KO, et al. Enhanced growth of mice lacking the cyclindependent kinase inhibitor function of p27(Kip1). Cell, 1996, 85(5): 721-732.
    30. Tsoli E, Gorgoulis VG, Zacharatos P, et al. Low levels of p27 in association with deregulated p53-pRb protein status enhance tumor proliferation and chromosomal instability in non-small cell lung carcinomas. Mol Med, 2001, 7(6): 418-429.
    31. Hayashi H, Ito T, Yazawa T, et al. Reduced expression of p27/Kip1 is associated with the development of pulmonary adenocarcinoma. J Pathol, 2000, 192(1): 26-31.
    32. Ponce-Castaneda MV, Lee MH, Latres E, et al. p27kip1: chromosomal mapping to 12p12-12p13.1 and absence of mutations in human tumors. Cancer Res, 1995, 55(6): 1211-1214.
    33. Stegmaier K, Takeuchi S, Golub TR, et al. Mutational analysis of the candidate tumor suppressor genes TEL and KIP1 in childhood acute lymphoblastic leukemia. Cancer Res, 1996, 56(6):1413-1417.
    34. Loda M, Cukor B, Tam SW, et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med, 1997, 3(2): 231-234.
    35. Alessandrini A, Chiaur DS, Pagano M. Regulation of the cyclin-dependent kinase inhibitor p27 by degradation and phosphorylation. Leukemia, 1997, 11(3): 342-345.
    36. Pagano M, Tam SW, Theodoras AM, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 1995, 269(5224): 682-685.
    37. Qian X, Jin L, Kulig E, et al. DNA methylation regulates p27kip1 expression in rodent pituitary cell lines. Am J Pathol, 1998, 153(5): 1475-1482.
    38. Lei PP, Zhang ZJ, Shen LJ, et al. Expression and hypermethylation of p27 kip1 in hepatocarcinogenesis. World J Gastroenterol, 2005, 11(29): 4587-4591.
    39. Kibel AS, Christopher M, Faith DA, et al. Methylation and mutational analysis of p27(kip1) in prostate carcinoma. Prostate, 2001, 48(4): 248-253.
    40. Zhang P, Liegeois N, Wong C, et al. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature, 1997, 387(6629): 151-158.
    41. Li JQ, Wu F, Usuki H, et al. Loss of p57KIP2 is associated with colorectal carcinogenesis. Int J Oncol, 2003, 23(6): 1537-1543.
    42. Kikuchi T, Toyota M, Itoh F, et al. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene, 2002, 21(17): 2741-2749.
    43. Li Y, Nagai H, Ohno T, et al. Aberrant DNA methylation of p57(KIP2) gene in the promoter region in lymphoid malignancies of B-cell phenotype. Blood, 2002, 100(7): 2572-2577.
    44. Shen L, Toyota M, Kondo Y, et al. Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. Blood, 2003, 101(10): 4131-4136.
    45. Kobatake T, Yano M, Toyooka S, et al. Aberrant methylation of p57KIP2 gene in lung and breast cancers and malignant mesotheliomas. Oncol Rep, 2004, 12(5): 1087-1092.
    46. Pateras IS, Apostolopoulou K, Koutsami M, et al. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in non small cell lung cancer. Int J Cancer 2006, 119(11): 2546-2556.
    47. Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21. 3. Nat Genet, 2000, 25(3): 315-319.
    48. Burbee DG, Forgacs E, Minna JD, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst, 2001, 93(9): 691-699.
    49. Ramirez JL, Sarries C, de Castro PL, et al. Methylation patterns and K-ras mutations in tumor and paired serum of resected non-small-cell lung cancer patients. Cancer Lett, 2003, 193(2): 207-216.
    50. Honorio S, Agathanggelou A, Schuermann M, et al. Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 2003, 22(1): 147-150
    51. Shimizu K, Kato A, Shigemura M, et al. Aberrant methylation patterns of the Rassf1a gene in rat lung adenocarcinomas induced by N-nitrosobis(2-hydroxypropyl)amine. Mol Carcinog, 2006, 45(2): 112-117.
    52. Lee SH, Lee JK, Jin SM, et al. Expression of cell-cycle regulators (cyclin D1, cyclin E, p27kip1, p57kip2) in papillary thyroid carcinoma. Otolaryngol Head Neck Surg, 2010, 142(3): 332-337.
    53. Sasaki M, Sugio K, Kuwabara Y, et al. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer. Ann Nucl Med, 2003, 17(3): 189-196.
    54. Blanco D, Vicent S, Fraga MF, et al. Molecular analysis of a multistep lung cancer model induced by chronic inflammation reveals epigenetic regulation of p16 and activation of the DNA damage response pathway. Neoplasia, 2007, 9(10): 840-852.
    55. Murakami Y. Functional cloning of a tumor suppressor gene, TSLC1, in human non-small cell lung cancer. Oncogene, 2002, 21(45): 6936-6948.
    56. Kuramochi M, Fukuhara H, Nokubuni, et al. TSLC1 is a gene in human non-small cell lung cancer. Nat Genet, 2001, 27(4): 427-430.
    57. Masuda M, Yageta M, Fukuhara H, et al. The tumor suppressor protein TSLC1 is involved in cell-cell adhesion. J Biol Chem, 2002, 277(34): 31014-31019.
    58. Gomyo H, Arai Y, Tanigami A, et al. A 22Mb sequence-ready contig map and a novel immunoglobulin superfamily gene IGSF4 in the LOH region of chromosome 11q23. 2. Genomics, 1999, 62(2): 139-146.
    59. Fukami T, Fukuhara H, Kuramochi M, et al. Promoter methylation of the TSLCl gene in advanced lung tumors and various cancer cell lines. Int J Cancer, 2003, 107(1): 53-59.
    60. Kikuchi S, Yamada D, Fukami T, et al. Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer, 2006, 106(8): 1751-1758.
    61. Fukami T, Fukuhara H, Kuramochi M, et al. Promoter methylation of the TSLC1 gene in advanced lung tumors and various cancer cell lines. Int J Cancer, 2003, 107(1): 53-59.
    62. Steenbergen RD, Kramer D, Braakhuis BJ, et al. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Nail Cancer Inst, 2004, 96(4): 294-305.
    63. Shimizu K, Itsuzaki Y, Onishi M, et al. Reduced expression of the Tslc1 gene and its aberrant DNA methylation in rat lung tumors. Biochem Biophys Res Commun, 2006, 347(1): 358-362.
    64. Shimizu K, Onishi M, Sugata E, et al. Aberrant DNA methylation of the 5’upstream region of Tslc1 gene in hamster pancreatic tumors. Biochem Biophys Res Commun, 2007, 353(2): 522-526.
    65. Tsujiuchi T, Sugata E, Masaoka T, et al. Expression and DNA methylation patterns of Tslc1 and Dal-1 genes in hepatocellular carcinomas induced by N-nitrosodiethylamine in rats. Cancer Sci, 2007, 98(7): 943-948.
    66. Wang G, Hu X, Lu C, et al. Promoter-hypermethylation associated defective expression of E-cadherin in primary non-small cell lung cancer. Lung Cancer, 2008, 62(2): 162-172.
    67. Tran NL, Nagle RB, Cress AE, et al. N-cadherin expression in human prostate cancer carcinoma cell lines. An epithelial-mesenchymal transformation mediating adhesion with stromal cells. Am J Pathol, 1999, 155(3): 787-798.
    68. Fadare O. The significance of N-cadherin expression in breast cancers: an evolvingstory. South Med J, 2008, 101(5): 459-460.
    69. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6): 3415-3428.
    70. Smith E, De Young NJ, Tian ZQ, et al. Methylation of TIMP-3 in esophageal squamous cell carcinoma. World J Gastroenterol, 2008, 14(2): 203-210.
    71. Hoque MO, Begum S, Brait M, et al. Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer. J Urol, 2008, 179(2): 743-747.
    72. Wisman GB, Nijhuis ER, Hoque MO, et al. Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer, 2006, 119(8): 1908-1914.
    73. Bachman KE, Herman JG, Corn PG, et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res, 1999, 59(4): 798-802.
    74. Kang SH, Choi HH, Kim SG, et al. Transcriptional inactivation of the tissue inhibitor of metalloproteinase-3 gene by DNA hypermethylation of the 5’-CpG island in human gastric cancer cell lines. Int J Cancer, 2000, 86(5): 632-635.
    75. Gonzalez-Gomez P, Bello MJ, Lomas J, et al. Aberrant methylation of multiple genes in neuroblastic tumours: relationship with MYCN amplification and allelic status at 1p. Eur J Cancer, 2003, 39(10): 1478-1485.
    76. Belinsky SA, Palmisano WA, Gilliland FD, et al. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Res, 2002, 62 (8): 2370-2377.
    77. Lin Q, Chen L, Tang Y, et al.The promoter hypermethylation of DAPK Gene and p16 gene in sera from Chinese non-small cell lung cancer patients.The Chinese-German Lournal of Clinical Oncology, 2006, 5(3): 184-188.
    78. Ohta M, Inoue H, Cotticelli MG, et al. The FHIT gene, spanning the chromosome 3p14.2 flagile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell, l996, 84(4): 587-597.
    79. Herman JG, Graft JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assayfor methylation status of CpG islands Proc Natl Acad Sci USA, 1996, 93(18): 821-826.
    80. Maruyama R, Sugio K, Yoshino I, et a1. Hypermethylation of FHIT as a prognostic marker in non small cell lung carcinoma. Cancer, 2004, 100(7): 1472-1477.
    81. Tzao C, Tsai HY, Chen JT, et al. 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer, 2004, 40(14): 2175-2183.
    82. Guler G, Iliopoulos D, Han SY, et al. Hypermethylation patterns in the Fhit regulatory region are tissue specific. Mol Carcinog, 2005, 43(3): 175-181.
    83. Sutherland KD, Lindeman GJ, Choongd Y, et al. Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene, 2004, 23(46): 7726-7733.
    84. Calvisid F, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/stat pathways in human HCC. Gastroenterology, 2006, 130 (4): 1117-1128.
    85. Brender C, Lovato P, Sommer VH, et al. Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNalpha. Leukemia, 2005, 19(2): 209-213.
    86. He B, You L, Uematsu K, et al. SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci USA, 2003, 100(24): 14133-14138.
    87. He B, You L, Uematsu K, et al. Cloning and characterization of a functional promoter of the human SOCS-3 gene. Biochem Biophys Res Commun, 2003, 301(2): 386-391.
    88. Weber A, Hengge UR, Bardenheuer W, et al. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene, 2005, 24(44): 6699-6708.
    89. Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res, 1999, 27(11): 2291-2298.
    90. Li S, Chiang TC, Richard-Davis G, et al. DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol, 2003, 90(1): 123-130.
    91. Liu K, Wang YF, Cantermir C, et al. Endogenous assays of DNA methyltransferases:evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo. Mol Cell Biol, 2003, 23(8): 2709-2719.
    92. Sato K, Fukata H , Kogo Y, et al. Neonatal exposure to diethylstilbestrol alters the expression of DNA methyltransferases and methylation of genomic DNA in the epididymis of mice. Endocr J, 2006, 53(3): 331-337.
    93. Wu Q, Ohsako S, Ishimura R, et al. Exposure of mouse preimplantation embryos to 2, 3, 7, 8-tetrachlorodibenzo-pdioxin (TCDD) alters the methylation status of imprinted genes H19 and Igf2. Biol Reprod, 2004, 70(6): 1790-1797.
    94. Loree J, Koturbash I, Kutanzi K, et al. Radiation-induced molecular changes in rat mammary tissue; possible implications for radiation-induced carcinogenesis. Int J Radiat Biol, 2006, 82(11): 805-815.
    95. Chan JY, Ruchirawat M, Lapeyre JN, et al. The protective role of thiol reducing agents in the in vitro inhibition of rat liver DNA methylase by direct acting carcinogens. Carcinogenesis, 1983, 4(9): 1097-1100.
    96. Cox R, Goorha S, Irving CC. Inhibition of DNA methylase activity by acrolein. Carcinogenesis, 1988, 9(3): 463-465.
    97. Poirier LA, Vlasova TI. The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect, 2002, 110(Suppl5): 793-795.
    98. Ruchirawat M, Becker FF, Lapeyre JN. Mechanism of rat liver DNA methyltransferase interaction with anti-benzo[a]pyrenediol epoxide modified DNA templates. Biochemistry, 1984, 23(23): 5426-5432.
    99. Panayiotidis MI, Rancourt RC, Allen CB, et al. Hyperoxia-induced DNA damage causes decreased DNA methylation in human lung epithelial-like A549 cells. Antioxid Redox Signal, 2004, 6(1): 129-136.
    100. Pfohl-Leszkowicz A, Fuchs RP, Keith G, et al. Enzymatic methylation of chicken erythrocyte DNA modified by two carcinogens, 2-(N-acetoxyacetylamino) fluorene and methylnitrosourea. Recent Results Cancer Res, 1983, 84: 193-201.
    101. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002, 416(6880): 552-556.
    102. Fang JY, Lu R, Mikovits JA, et al. Regulation of hMSH2 and hMLH1 expression inthe human colon cancer cell line SW1116 by DNA methyltransferase 1. Cancer Lett, 2006, 233(1): 124-130.
    103. Lin RK, Hsu HS, Chang JW, et al. Alteration of DNA methyltransferases contributes to 5’CpG methylation and poor prognosis in lung cancer. Lung Cancer, 2007, 55(2): 205-213.
    104. Kim H, Kwon YM, Kim JS, et al. Elevated mRNA levels of DNA methyltransferase-1 as an independent prognostic factor in primary non small cell lung cancer. Cancer, 2006, 107(5): 1042-1049.
    105. Damiani LA, Yingling CM, Leng S, et al. Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res, 2008, 68(21): 9005-9014.
    1. Risch A, Plass C. Lung cancer epigenetics and genetics. Int J Cancer, 2008, 123(1): 1-7.
    2. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9(6): 465-476.
    3. Manel Esteller. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8(4): 286-298.
    4. Greenberg AK, Lee MS. Biomarkers for lung cancer: clinical uses. Curr Opin Pulm Med, 2007, 13(4): 249-255.
    5. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA, 1998, 95(20): 11891-11896.
    6. Georgiou E, Valeri R, Tzimagiorgis G, et al. Aberrant p16 promoter methylation among Greek lung cancer patients and smokers: correlation with smoking. Eur J Cancer Prev, 2007, 16(5): 396-402.
    7. Baryshnikova E, Destro A, Infante MV, et al. Molecular alterations in spontaneous sputum of cancer-free heavy smokers: results from a large screening program. Clin Cancer Res, 2008, 14(6): 1913-1919.
    8. de Fraipont F, Moro-Sibilot D, Michelland S, et al. Promoter methylation of genes in bronchial lavages: a marker for early diagnosis of primary and relapsing non-small cell lung cancer? Lung Cancer, 2005, 50(2):199-209.
    9. Feng Q, Hawes SE, Stern JE, et al. DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomarkers Prev, 2008, 17(3): 645-654.
    10. Tzao C, Tsai HY, Chen JT, et al. 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer, 2004, 40(14): 2175-2183.
    11. Konno S, Morishita Y, Fukasawa M, et al. Anthracotic index and DNA methylation status of sputum contents can be used for identifying the population at risk of lung carcinoma. Cancer, 2004, 102(6): 348-354.
    12. Grote HJ, Schmiemann V, Kiel S, et al. Aberrant methylation of the adenomatous polyposis coli promoter 1A in bronchial aspirates from patients with suspected lung cancer. Int J Cancer, 2004, 110(5): 751-755.
    13. Honorio S, Agathanggelou A, Schuermann M, et al. Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene, 2003, 22(1): 147-150.
    14. Hsu HS, Chen TP, Hung CH, et al. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer, 2007, 110(9): 2019-2026.
    15. Grote HJ, Schmiemann V, Geddert H, et al. Methylation of RAS association domain family protein 1A as a biomarker of lung cancer. Cancer, 2006, 108(2): 129-134.
    16. Shivapurkar N, Stastny V, Suzuki M, et al. Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Lett, 2007, 247(1): 56-71.
    17. Kim JS, Han J, Shim YM, et al. Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary non small cell lung carcinoma. Cancer, 2005, 104(9): 1825-1833.
    18. Kim DS, Kim MJ, Lee JY, et al. Aberrant methylation of E-cadherin and H-cadherin genes in non small cell lung cancer and its relation to clinicopathologic features. Cancer, 2007, 110(12): 2785-2792.
    19. Anglim PP, Galler JS, Koss MN, et al. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer, 2008, 7: 62.
    20. Tsou JA, Galler JS, Siegmund KD, et al. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma. Mol Cancer, 2007, 6: 70.
    1. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 2007, 8(4): 286-298.
    2. Dahl C, Guldberg P. DNA methylation analysis techniques. Biogerontology, 2003, 4(4): 233-250.
    3.武立鹏,朱卫国. DNA甲基化的生物学应用及检测方法进展.中国检验医学杂志, 2004, 27(7): 468-474.
    4. Riggs AD, Jones PD. 5-methylcytosine, gene regulation and cancer. Adv Cancer Res, 1983, 40: 1-30.
    5. Bird AP. CpG-rich islands and the function of DNA methylation. Nature, 1986, 321(6067): 209-213.
    6. Cottrell SE. Molecular diagnostic applications of DNA methylation technology. Clin Biochem, 2004, 37(7): 595-604.
    7. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002, 3(6): 415-428.
    8. Monk M. Epigenetic programming of differential gene in development and evolution. De Genet, 1995, 17(3): 188-197.
    9. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest, 2000, 105(4): 401-407.
    10.黄庆,郭颖,府伟灵.人类表观基因组计划.生命的化学, 2004, 24(2): 101-102.
    11. Kuo KC, McCune RA, Gehrke CW, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res, 1980, 8(20): 4763-4776.
    12. Fraga MF, Uriol E, Borja DL, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2’-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis, 2002, 23(11): 1677-1681.
    13. Wu J, Issa J, Hermen J, et al. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH3T3 cells. Proc Natl Acad Sci USA, 1993, 90(19): 8891-8895.
    14. Oakeley EJ, Podesta A, Jost JP. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA, 1997, 94(21):11721-11725.
    15. Oakeley EJ, Schmitt F, Jost JP. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques, 1999, 27(4): 744-746, 748-750, 752.
    16. Kessler C, Neumaier PS, Wolf W. Recognition sequences of restriction endonucleases and methylases--a review. Gene, 1985, 33(1): 1-102.
    17. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA, 1992, 89(5): 1827-1831.
    18.顾婷婷,张忠明,郑鹏生. DNA甲基化研究方法的回顾与评价.中国妇幼健康研究. 2006, 17(6): 555-560.
    19. Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA, 1996, 93(18): 9821-9826.
    20.沈佳尧,侯鹏,祭美菊,等. DNA甲基化方法研究现状.生命的化学, 2003, 23(2): 149-151.
    21. Kuppuswamy MN, Hoffmann JW, Kasper CK, et al. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci USA, 1991, 88(4): 1143-1147.
    22. Gonzalgo ML, Jones PA. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res, 1997, 25(12): 2529-2531.
    23. Xiong Z, Laird PW. COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res, 1997, 25(12): 2532-2534.
    24. Maekawa M, Sugano K, Kashiwabara H, et al. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability. Biochem Biophys Res Commun, 1999, 262(3): 671-676.
    25. Colella S, Shen L, Baggerly KA, et al. Sensitive and quantitative universal Pyro- sequencing methylation analysis of CpG sites. Biotechniques, 2003, 35(1): 146-150.
    26. Dupont JM, Tost J, Jammes H, et al. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem, 2004, 333(1): 119-127.
    27. Eads CA, Danenberg KD, Kawakami K, et al. MethyLight: a high-throughput assay tomeasure DNA methylation. Nucleic Acids Res, 2000, 28(8): E32.
    28. Oefner, PJ, Bonn GK, Huber CG, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA. Chromatogr, 1992, 625(2): 331-340.
    29.邓大君,邓国仁,吕有勇,等.变性高效液相色谱法检测CpG岛胞嘧啶甲基化.中华医学杂志, 2001, 80(2): 158-161.
    30. Maekawa M, Sugano K, Kashiwabara H, et al. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability. Biochem Biophys Res Commun, 1999, 262(3): 671-676.
    31. Cariello NF, Scott J K, Kat AG, et al. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich. Am J Hum Genet, 1988, 42(5): 726-734.
    32. Abrams ES, Stanton VP. Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids. Methods Enzymol, 1992, 212: 71-104.
    33. Aggerholm A, Guldberg P, Hokland M, et al. Extensive intra- and interindividual heterogeneity of p15INK4B methylation in acute myeloid leukemia. Cancer Res, 1999, 59(2): 436-441.
    34.黄庆,府伟灵. DNA甲基化分析技术.中国实验诊断学, 2005, 9(2): 304-306.
    35. Worm J, Aggerholm A, Guldberg P. In-tube DNA methylation profiling by fluorescence melting curve analysis. Clin Chem, 2001, 47(7): 1183-1189.
    36. Clement G, Benhattar J. A methylation sensitive dot blot assay (MS-DBA) for the quantitative analysis of DNA methylation in clinical samples. Clin Pathol, 2005, 58(2): 155-158.
    37. Schouten JP, McElgunn CJ, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res, 2002, 30(12): e57.
    38. Nygren AO, Ameziane N, Duarte HM, et al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res, 2005, 33(14): e128.
    39. Yan PS, Chen CM, Shi H, et al. Dissecting comples epigenetic alterations in breastcancer using CpG island microarrays. Cancer Res, 2001, 61(23): 8375-8380.
    40. Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res, 2007, 35(6): e41.
    41. Gonzalgo ML, Liang G, Spruck CH, et al. Identification and characterization of differentially methylated regions of genomic DNA by methylation-sensitive arbitrarily primed PCR. Cancer Res, 1997, 57(4): 594-599.
    42. Costello JF, Fruhwald MC, Smiraglia DJ, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet, 2000, 24(2): 132-138.
    43. Hatada I, Hayashizaki Y, Hirotsune S, et al. A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA, 1991, 88(21): 9523-9527.
    44. Toyota M, Issa JP. Methylated CpG island amplification for methylation analysis and cloning differentially methylated sequences. Methods Mol Biol, 2002, 200: 101-110.
    45. Huang TH, Laux DE, Hamlin BC, et al. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res, 1997, 57(6): 1030-1034.
    46. Frigola J, Ribas M, Risques R A, et al. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res, 2002, 30(7): e28.
    47. Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Human Molecular genetics, 1999, 8(3): 459-470.
    48. Shiraishi M, Sekiguchi A, Oates AJ, et al. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Ana Biochem, 2004, 329(1): 1-10.
    49. Yegnasubramanian S, Lin X, Haffner MC, et al. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation. Nucleic Acids Res, 2006, 34(3): e19.
    50. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008, 30(6): 755-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700