盐胁迫诱导的耐盐天才菌株次生代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐盐微生物是一类在含盐介质中仍能生长的极端微生物,广泛存在于海洋、盐湖、盐场等环境样品中,由于其拥有独特的生态学分布、特异的生理机制以及广泛的应用,近年来逐渐成为研究的热点资源之一。研究表明,高盐所造成的高渗透压和营养剥夺可激活微生物体内的沉默基因,进而诱导出独特的生物代谢途径。“天才菌株”是指代谢产量较大、且能够产生系列新化合物的生物活性菌株。因此,从盐胁迫诱导的耐盐天才菌株次生代谢产物中,必将发现新的活性物质。本论文从采自福建莆田盐场和红树林等高盐环境的样品中获得4株耐盐天才菌株,对其在盐胁迫条件下产生的次生代谢产物进行了系统研究,并就盐胁迫对耐盐天才菌株代谢产物化学多样性的影响做了初步探讨。
     研究内容主要包括以下3个方面:
     1.耐盐天才菌株的筛选。从来源于莆田盐场等高盐环境的样品中分离纯化获得120株耐盐菌株。以海虾生物致死、P388肿瘤细胞增殖抑制、抑菌试验等作为生物活性筛选模型,TLC薄层色谱和HPLC指纹图谱等作为化学筛选模型,采用生物活性和化学评价相结合的集成筛选模式,最终获得4株耐盐天才菌株。
     2.盐胁迫诱导下的4株耐盐天才菌株次生代谢产物的研究。对耐盐天才菌株进行发酵条件摸索,如培养基、发酵天数、盐度等,选择最佳培养条件进行大发酵,获得活性浸膏。通过薄层色谱、硅胶柱色谱、Sephadex LH-20柱色谱、反相高效液相色谱等分离方法,从盐胁迫诱导的4株耐盐天才菌株次生代谢产物中,共分离得到86个单体化合物;应用波谱解析(UV, IR, NMR, MS, X-Ray等)并结合化学方法鉴定了80个单体化合物的化学结构(Fig.0-1)。其中新化合物32个:从耐盐天才菌株Aspergillus sclerotiorum PT06-1寡营养高盐条件代谢产物中获得了两个结构新颖的活性环六肽(1和2),该菌在富营养高盐条件下得到了12个棕曲菌素类环三肽(10-21)和1个线性二肽衍生物(23);从Aspergillus terreus PT06-2高盐条件代谢产物中得到2个邻氨基苯甲酸聚合物(29-30)和1个二苯基-γ-丁内酯类化合物(33);从Aspergillus flocculosus PT05-1高盐条件代谢产物中得到3个麦角甾醇类似物(47-49)和1个吡咯色素(51);从Aspergilluscandidus 085241低盐条件代谢产物中得到10个补身烷型倍半萜(58,59,66-73)。其它已知化合物的结构类型还涉及多种生物碱、青霉酸内酯类似物、神经鞘胺醇糖苷、苯衍生物等。运用体外生物活性筛选模型,初步评价了单体化合物的肿瘤细胞增殖抑制活性、抗病毒活性和抑菌活性。肿瘤细胞增殖抑制活性测试表明:化合物2、3、32、47、48对HL-60细胞均有弱的抑制活性(IC50,分别为56,36,58,14,12μM);此外48对BEL-7402肿瘤细胞株也具有弱的抑制活性(IC50,18μM)。抑菌活性结果表明:麦角甾醇48、49对白色念珠菌、铜绿假单胞菌、产气杆菌均具有较强的抑制作用(MIC,1.6-7.5μM);环肽类化合物1、2、10、13、16、18、20对白色念珠菌具有抑制活性(MIC,分别为7.0,3.5,30,3.8,6.7,30,7.5μM);此外,化合物2还对铜绿假单孢菌具有弱的选择性的抑制活性(MIC,38μM),29和31对金黄色葡萄球菌具有具有弱的抑制活性(MIC,分别为64μM和54μM),30和47对产气杆菌具有弱的抑制活性(MIC,分别为34μM和15μM)。抗病毒测试表明:青霉酸内酯3和土曲霉素43对H1N1流感病毒具有强的抑制活性,体外测试IC50值分别为4.6和6.6μM,与阳性对照利巴韦林相当,43的动物体内实验评价有效。
     3.初步评价了盐胁迫对耐盐菌株代谢产物化学多样性的影响。通过比较代谢产量、TLC、HPLC指纹图谱及生物活性等方法,就高盐胁迫对9株耐盐菌株的次生代谢产物的影响做了分析,利用该方法得到了一株在高盐条件下大量产生生物活性penicillenol A (81)的工程菌。首次尝试在培养基中加入不同浓度、不同种类的卤盐,并初步探讨了其对PT06-1代谢产物化学多样性的积极影响,证实了微生物的次生代谢存在卤盐效应。
     综上所述,通过对耐盐天才菌株在盐胁迫条件下次生代谢产物的系统研究,证明盐胁迫能增加耐盐微生物的化学多样性,产生新的活性代谢产物,高盐胁迫是诱导耐盐微生物产生含氮化合物的有效策略。我们推测其产生可能与耐盐微生物缓解并对抗环境压力有关。上述研究为充分利用耐盐微生物资源获得活性新化合物提供了有益的参考。
Halotolerant microorganism has been considered as an important and promising type of extremophiles, possessing special ecology, specific physiological mechanism and extensive utilization. The special hypersaline environment where they lived could active silent gene and induces other specific metabolic pathway. Therefore, we planned to obtain more novel bioactive compounds from the secondary metabolites of halotolerant talented strains under salt stress. Studies include the screening for halotolerant talented strains, isolation and structural elucidation of secondary metabolites, preliminary bioactivity evaluation, and the salt effects on the chemodiversity of secondary metabolites.
     1. Screening for the halotolerant talented strains.
     120 strains of halotolerant fungi have been isolated from salt sediments in Putian sea salt field, Fujian and mangrove environment, Hainan. The EtOAc extracts of these fungi were evaluated with the combinatory method of chemical and bioactive screening.4 of them were determined as halotolerant talented strains of cytotoxicity or antibiotic activities.
     2. Study on bioactive constituents of four halotolerant talented strains under salt stress
     After optimization of fermentation conditions under salt stress, these strains were fermented, respectively. The whole broths were extracted with ethyl acetate to give active extracts, which were subjected to extensive silica gel column chromatography, Sephadex LH-20 and HPLC.86 compounds were isolated from four halotolerant talented strains under salt stress,80 structures of which (see Fig.0-1) were determined by means of spectral analysis (UV, IR, NMR, MS, X-Ray) and chemical methods. Among them,32 compounds were new ones, including two novel cyclic hexapeptides (1 and 2) obtained from Aspergillus sclerotiorum PT06-1 cultured in a nutrient-limited medium containing 10% salts, twelve cyclic tripeptides (10-21) and a dipeptide derivative (23) from PT06-1 cultured in a nutrient-suffient medium containing 10% salts, two anthranilate condensation compound (29 and 30) and butyrolactone I analog (33) from Aspergillus terreus PT06-2 cultured in a hypersaline medium, three steroids (47-49) and a red pyrrole-containing pigment (51) from Aspergillus flocculosus PT05-1 cultured with 10% sea salt, ten drimane-type sesquiterpenes (58,59,66-73) from Aspergillus candidus 085241 cultured with 1% sea salt. Compounds 2,3,32,47 and 48 exhibited weak cytotoxicity against HL-60 cell line with IC50 values of 56,36,58,14, and 12μM, respectively; 48 also had weak cytotoxicity against BEL-7402 cell line with an IC50 value of 18μM. Compounds 1,2, 10,13,16,18,20,29,30,31,47,48 and 49 showed antibiotic activities against Candida albicans, Pseudomonas aeruginosa, Enterobacter aerogenes or Staphylococcus aureus with MIC values ranged from 1.6μM to 64μM. Additionally, two known compounds 3 and 43 were evaluated with significant antiviral activity against H1N1 virus in vitro with IC50 values of 4.6 and 6.6μM, respectively.
     3. Preliminary exploration of halide salt effects on chemodiversity of secondary metabolites from halotolerant strains
     To further explore the halide salt effects on chemodiversity of secondary metabolites of halotolerant talented strains, secondary metabolites from 9 halotolerant talented strains under different culture conditions containing different halide salts at different concentration were analyzed by comparing their weight, TLC, HPLC and bioactivities. The strain HK01 was found to mainly produce bioactive penicillenol (81) cultured in a hypersaline medium. In addition, we established that the different halide salts were also able to influence the secondary metabolites of halotolerant strains.
     In a word, novel bioactive compounds can be obtained from secondary metabolites of halotolerant strains under salt stress, and more nitrogen-containing compounds produced when stains cultured in the hypersaline media. It was supposed that the specific products probably be metabolized by halotolerant microorganisms to relieve or resist the salt stress from enviroment. Above studies provided a good example for obtaining bioactive novel compounds from halotolerant strains.
引文
1. 朱天骄,崔承彬,顾谦群等.海洋微生物的分离培养及抗肿瘤活性初筛.青岛海洋大学学报,2002,32:123-126.
    2.于垂亮,崔承彬,朱天骄,顾谦群,刘红兵,方玉春,韩冰,蔡兵.海洋真菌的分离、抗肿瘤活性筛选与发酵条件研究.中国海洋药物杂志,2004,23:1-6.
    3.韩小贤,崔承彬,刘红兵,朱天骄,顾谦群,李冬,温江妮.海洋微生物抗肿瘤活性菌株的分级组合筛选.中国海洋大学学报,2005,25:38-42.
    4. Grabley S., Thiericke R. Drug discovery from nature. Springer,2000, pp.124.
    5.杰利L.麦克劳林,顾哲明.两种简易的抗肿瘤活性初筛方法.中国中药杂志,1997,22:617-619.
    6. Zaika L. L. Spices and herbs:their antimicrobial activity and its determination. J. Food Safety,1988,9:97-118.
    1. Whyte A. C., GIoer J. B. Sclerotiamide:a new member of the paraherquamide class with potent antiinsectan activity from the sclerotia of Aspergillus sclerotiorum. J. Nat. Prod.1996, 59:1093-1095.
    2. Whyte A. C., Joshi B. K., Gloer J. B., Wicklow D. T., Dowd P. F. New cyclic peptide and bisindolyl benzenoid metabolites from the sclerotia of Aspergillus sclerotiorum. J. Nat. Prod. 2000,63:1006-1009.
    3. Kang S. W., Park C. H., Hong S. I., Kim S. W. Production of penicillic acid by Aspergillus sclerotiorum CGF. Bioresource Technology,2007,98:191-197.
    4. Varga J., Kevei E., Rinyu E., Teren J., Kozakiewicz Z. Ochratoxin production by Aspergillus species. Appl. Environ. Microbiol.1996,62:4461-4464.
    5. Matsukuma S., Ohtsuka T., Kotaki H., Shirai H., Sano T., Watanabe K., Nakayama N., Itezono Y., Fujiu M., Shimma N., Yokose K., Okuda T. New series of natural antifungals that inhibit P450 lanosterol C-14 demethylase. J. Antibiot.1992,45:151-159.
    6. Myokei R., Sakurai A., Chang C. F., Kodaira Y., Takahashi N., Tamura S. Structlxe of aspochracin, an insecticidal metabolite of Aspergillus ochraceus. Tetrahedron Lett.1969,10, 695-698.
    7. Hammadi A., Menez A., Genet R. E/Z-configurational assignment of N-acetyl-ot,13-dehydrotryptophan ethyl ester produced by L-tryptophan 2',3'-oxidase from Chromobacterium violaceum. Tetrahedron Lett.1996,37:3309-3312.
    8. Frisch M. J. A gaussian 03 user's reference gaussian Inc.2003, Carnegie, PA.15106, USA.
    9. Wang W. L., Lu Z. Y., Tao H. W., Zhu T. J., Fang Y. C., Gu Q. Q., Zhu W. M. Isoechinulin-type alkaloids, variecolorins A-L, from halotolerant Aspergillus variecolor. J. Nat. Prod.2007,70:1558-1564.
    10. Rudong Shana, Marc Stadlerb, Heidrun Ankeb, Olov Stemera. The reactivity of the fungal toxin papyracillic acid. Tetrahedron,1997,53:6209-6214.
    11. Zhu Feng, Lin Yongcheng. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chinese Science Bulletin,2006,51:1426-1430.
    12. Abe Masaki, Imai Tetsuya, Ishii Naoki, Usui Makio, Okuda Toru, Oki Toshikazu. Quinolactacide, a new quinolone insecticide from Penicillium citrinum Thom F1539. Bioscience, Biotechnology and Biochemistry,2005,69:1202-1205.
    13. Peixoto Christophe, Laurin Patrick, Klich Michel, Dupuis-Hamelin Claudine, Mauvais Pascale, Lassaigne Patrice, Bonnefoy Alain, Musicki Branislav. Synthesis of isothiochroman 2,2-dioxide and 1,2-benzoxathiin 2,2-dioxide gyrase B inhibitors. Tetrahedron Letters,2000, 41:1741-1745.
    14. Lu Yong Yan, Yin Qiu Xiang, Wang Jing Kang, Zhou Li Na. Dimethyl N,N'-(4-methyl-m-phenylene) dicarbamate. Acta Crystallographica,2005,61:3412-3413.
    15. Zhao You-Xing, Li Cheng-Sen, Luo Xiao-Dong, Yi Tie-Mei, Zhou Jun. Three new urea derivatives from Pliocene-fossil Pinus armandii. Helvetica Chimica Acta,2005,88:325-329.
    16. Donia M. S., Wang B., Dunbar D. C., Desai P. V., Patny A., Avery M., Hamann M. T. Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J. Nat. Prod.2008,71:941-945.
    17. Jarvis B. B., Wang S., Ammon H. L. Trichoverroid stereoisomers. J. Nat. Prod.1996,59: 254-261.
    18. Jarvis B. B., Midiwo J. O., Guo M. D.12,13-deoxyttichoverrins from Myrotheciun verrucaria. J. Nat. Prod.1989,52:663-665.
    19. Dugave C, Demange L. Cis-Trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev.2003,103:2475-2532.
    20. Toske S. G., Jensen P. R., Kauffman C. A., Fenical W. Aspergillamides A and B:modified cytotoxic tripeptides produced by a marine fungus of the genus Aspergillus. Tetrahedron, 1998,54:13459-13466.
    21. Liu Kun, Wood Harold B., Jones A. Brian. Total synthesis of asterriquinone B1. Tetrahedron Lett.1999,40:5119-5122.
    22. Shan Rudong, Stadler Marc, Anke Heidrun, Sterner Olov. New metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraccum (Karst.). The reactivity of the fungal toxin papyracillic acid. Tetrahedron,1997,53:6209-6214.
    23. Tachibana Miyuki, Matsui Chino, Takeuchi Yoshinori, Suzuki Eriko, Umezawa Kazuo. Inhibition of NF-kappa B activation by penicillic acid and dihydropenicillic acid isolated from fungi. Heterocycles,2008,76:1561-1569.
    24. Sakabe N., Goto T., Hirata Y. Structure of citreoviridin, a mycotoxin produced by Penicillium citreo-viride molded on rice. Tetrahedron,1977,33:3077-3081.
    25.许颂,梁华清.刺人参的蒽醌成分研究.中草药,1998,29:222-223.
    26. Li Shuming. Prenylated indole derivatives from fungi:Structure diversity, biological activities, biosynthesis and chemoenzymic synthesis. Nat. Prod. Rep.2010,27:57-78.
    27. James B. McAlpine. Advances in the understanding and use of the genomic base of microbial secondary metabolite biosynthesis for the discovery of new natural products. J. Nat. Prod. 2009,72:566-572.
    28. Michael A. Fischbach, Christopher T. Walsh. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics:logic, machinery, and mechanisms. Chem. Rev.2006,106: 3468-3496.
    29.彭师奇,于学敏.光谱立体化学.山西科学技术出版社,1993,pp18.
    1. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E., Patchett A., Monaghan R., Currie S., Stapley E., Albers-Schonberg G, Hensens O., Hirshfield J., Hoogsteen K., Liesch J., Mevinolin:a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Nat. Acad. Sci.1980,77:3957-3961.
    2. Macedo C. F., Porto A. L. M., Marsaioli A. J. Terreinol-a novel metabolite from Aspergillus terreus:structure and 13C labeling. Tetrahedron Lett.2004,45:53-55.
    3. Kim W., Cho K., Lee C., Yoo I. D. Terreulactone A, a novel meroterpenoid with anti-acetylcholinesterase activity from Aspergillus terreus. Tetrahedron Lett.2002,43: 3197-3198.
    4. Ghisalberti E. L., Narbey M. J., Rowland C. Y. J. Nat. Prod.1990,53:520-522.
    5. Yamamoto Haruo, Takahashi Shu, Moriyama Kiruko, Jinnouchi Hideaki, Takahashi Norio, Yagishita Koki. Terreic acid (5,6-epoxy-3-hydroxy-p-toluquinone) produced by a strain in Aspergillus terreus group. Production, extraction, isolation, physicochemical properties, chemical structure, biological properties, and antitumor effects. Nihon Daigaku Nojuigakubu Gijutsu Kenkyu Hokoku,1980,37:9-19.
    6. Ojima Nobutoshi, Takahashi Ikuko, Ogura Kyozo, Seto Shuichi. New metabolites from Aspergillus terreus related to the biosynthesis of aspulvinones. Tetrahedron Lett.1976,13: 1013-1014.
    7. Shim Sang Hee, Kim Ju Sun, Son Kun Ho, Bae Ki Hwan, Kang Sam Sik. Alkaloids from the roots of aconitum pseudo-laeve var. erectum. J. Nat. Prod.2006,69:400-402.
    8. Kyoto pharmaceutical industries. Anthranilic acid derivatives. Jpn. Kokai Tokkyo Koho,1981, 4 pp.
    9. Fischer P. M., Lane D. P. Inhibitors of cyclin-dependent kinases as anti-cancer therapeutics. Current Med. Chem.2000,7:1213-1245.
    10. Nitta K, Fujita N, Yoshimura T, et al. Metabolic products of Aspergillus terreus. IX. Biosynthesis of butyrolactone derivatives isolated from strains IFO 8835 and 4100. Chem. Pharm. Bull.1983,31:1528-1533.
    11. Rao K. V., Sadhukhan A. K., Veerender M. Butyrolactones from Aspergillus terreus. Chem.Pharm.Bull.1990,38:714-716.
    12. Lin Ting, Lu Chunhua, Shen Yuemao. Secondary metabolites of Aspergillus sp. F1, a commensal fungal strain of Trewia nudiflora. Nat. Prod. Res.2009,23:77-85.
    13. Rao K. V, Sadhhukhan A. K., Veerender M. Butyrolactones from Aspergillus terreus. Chem. Pharm. Bull.2000,48:559-562.
    14. Parvatkar Rajesh R., Dsouza Celina, Tripathi Ashootosh, Naik Chandrakant G. Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus. Phytochemistry, 2009,70:128-132.
    15. Kiriyama Noriki, Nitta Keiichi, Sakaguchi Yoshiaki, Taguchi Yasuhisa, Yamamoto Yuzuru. Studies on the metabolic products of Aspergillus terreus. Ⅲ. Metabolites of the strain IFO 8835 (1). Chem. Pharm. Bull.1977,25:2593-2601.
    16. Peng Fu-Chuo. Structure and anti-acetylcholinesterase activity of 4β-(Hydroxymethyl)-4β-demethylterritrem B. J. Nat. Prod.1997,60:842-843.
    17. Yang C. K. Studies on territrems from Aspergillus terreus:isolation, assay methods, molecular structure.1981,16-39 pp.
    18. Ling K. H., Liou H. H., Fu T. C., Kuo L., Tasi M. C., Lin M. Y. Mechansim of action of the territrem, tremorgenic mycotoxin isolated from Aspergillus terreus.6th International IUPAC Symposium on Mycotoxins and Phcotoxins.1985,298-387 pp.
    19.赵文英,四株海洋来源微生物中生物碱类活性成分研究.中国海洋大学博士学位论文,2006.
    20. Heredia M. L., Cuesta dela E., Avendano C. Acid-promoted reactions in 1-hydroxy, 1-dimethylaminomethyl and 1-methylene-4-arylmethyl-2,4-dihydro-1H-pyrazino [2,1-β]--quinazoline-3,6-diones. Tetrahedron,2002,58:6163-6170.
    21. Gerhard Schlingmann, Deborah M. R. Absolute stereochemistry of unusual biopolymers from Ascomycete culture LL-W1278:examples that derivatives of (S)-6-Hydroxymellein are also natural fungal metabolites. Chirality,2005,17:48-51.
    22. Md. Sadequl Islam, Ken Ishigami, Hidenori Watanabe. Synthesis of (L)-mellein, (D)-ramulosin, and related natural products. Tetrahedron,2007,63:1074-1079.
    23. Avantaggiato G., Solfrizzo M., Tosi L., Zazzerini A., Fanizzi F. P., Visconti A. Isolation and characterization of phytotoxic compounds produced by Phomopsis helianthi. Natural Toxins, 1999,7:119-127.
    24. Daigo Wakana. Isolation of isoterrein from Neosartorya fischeri. Mycotoxins.2006,56:3-6.
    25. Nourse B. D., Brodbelt J. S., Cooks R. G. Nature of methyl cation bonding to dihydroxybenzenes elucidated using an ion trap mass spectrometer. Org. Mass Spec.1991,26: 575-582.
    26.胡海峰,朱宝泉,龚炳勇.微生物来源的胆固醇生物合成醇抑制剂研究:抗生素SIPI-8926-111的研究.中国医药工业杂志,1995,26:484-486.
    27. Taub D., Girotra N. N., Hoffsommer R. D. Total synthesis of the macrolide, zearalenone. Tetrahedron,1968,24:2443-2461.
    28. Shier W. T., Shier A. C., Xie W. Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon,2001,39:1435-1438.
    29.蒋亭,田黎,劳彦斌,李军,林文翰.黄海葵附生真菌Penicillium Sp化学成分的研究(I).中国海洋药物,2001,20:40-42.
    30.严小红,郭跃伟,宋国强.中国南海曲针绣球海绵Iotrochoto sinustyla化学成分的研究.天然产物研究与开发,2003,15:296-298.
    31. Pendyala Muralidhar, Muthyala Muralikrishna Kumar, Nallamothu Krishna, Chaganty Bheemasankara Rao, Desaraju Venkata Rao. New sphingolipids and a sterol from a Lobophytum species of the Indian Ocean. Chem. Pharm. Bull.2005,53:168-171.
    32. Yasunori Yaoita, Yuko Yoshihara, Rie Kakuda, Koichi Machida, Masao Kikuchi. New sterols from two edible mushrooms, Pleurotus eryngii and Panellus serotinus. Chem. Pharm. Bull.2002,50:551-553.
    33. Weihan Zhang, Wingkeung Liu, Chuntao Che. Polyhydroxylated steroids and other constituents of the soft coral Nephthea chabroli. Chem. Pharm. Bull.2003,51:1009-1011.
    34. Sachiko Tsukamoto, Shigeki Matsunaga, Nobuhiro Fusetani. Acanthosterol sulfates A-J:Ten new antifungal steroidal sulfates from a marine sponge Acanthodendrilla sp. J. Nat. Prod. 1998,61:1374-1378.
    35. Corinne Funel, Fabrice Berrue, Christos Roussakis, Rogelio Fernandez Rodriguez, Philippe Amade. New cytotoxic steroids from the Indian ocean sponge Axinella cf. bidderi. J. Nat. Prod.2004,67:491-494.
    36. Aiello A., Ciminiello P., Fattorusso E., Magno S.3β,5a-Dihydroxy-6β-methoxy-cholest--7-enes from the marine sponge Spongia agaricina. J. Nat. Prod.1988,51:999-1002.
    37. Kawagishi H., Katsumi R., Sazawa T. Cytotoxic steroids from the mushroom Agaricus blazei. Phytochemistry,1988,27:2777-2779.
    38. Tomoo Hosoea, Kazutaka Fukushimab, Kayoko Takizawab, Makoto Miyajib, Ken-ichi Kawai. Three pyrrolyloctatetraenyl-a-pyrones from Auxarthron conjugatum. Phytochemistry, 1999,52:459-463.
    39.刘仕平,曾松荣,郭仕平.中华山荷叶内生真菌的分离及其发酵产生药用成分的初步研究.中国药物与临床,2003,3:227-228.
    40.粟晓黎.中药鬼臼毒性成分HPLC/UV指纹图谱分析方法研究及与威灵仙、龙胆HPLC图谱比较.中成药,2000,22:819-824.
    41. Jiang T., Li J., Fu H., Ji Y., Lin W. New cerebroside analogues from marine fungus Aspergillus flavipes. Journal of Harbin University of Commerce Natural Sciences Edition. 2002,18:597-602.
    42. Shu R. G., Wang F. W., Yang Y. M. Antibacterial and xanthine oxidase inhibitory cerebrosides from Fusarium sp. IFB-121, an endophytic fungus in Quercus variabilis. Lipids, 2004,39:667-673.
    43. Zhu Feng, Lin Yongcheng. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin. Sci. Bull.2006,51:1426-1430.
    44. Masaki Mitsuo, Chigira Yasuhiro, Ohta Masaki. Total syntheses of racemic aspergillic acid. J. Org. Chem.1966,31:4143-4146.
    45. Yamazaki Mikio, Maebayashi Yukio; Miyaki Komei. Isolation of a new type of pyrazine metabolite from Aspergillus ochraceus. Chem. Pharm. Bull.1972,20:2274-2276.
    46. Micetich R. G., MacDonald J. C. Metabolites of Aspergillus sclerotiorum. Journal of the Chemical Society,1964,1507-1510.
    47. Stead Paul, Affleck Karen, Sidebottom Philip J., Taylor Nicholas L., Drake Christopher S., Todd Martin, Jowett Amanda, Webb Graham. Isolation and characterization of a prenylated p-terphenyl metabolite of Aspergillus candidus possessing potent and selective cytotoxic activity; studies on mechanism of action. J. Antibiot.1999,52:89-95.
    48. Takahashi Chikako, Yoshihira Kunitoshi, Natori Shinsaku, Umeda, Makoto. The structures of toxic metabolites of Aspergillus candidus. I. The compounds A and E, cytotoxic p-terphenyls. Chem. Pharm. Bull.1976,24:613-620.
    49. Kurobane Itsuo, Vining Leo C., McInnes A. Gavin, Smith Donald G.3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by proton and carbon-13 nuclear magnetic resonance spectroscopy. J. Antibiot.1979,32:559-664.
    50. Akio Kobayashi, Akira Takemoto, Koichi Koshimizu, Kazuyoshi Kawazu. p-terphenyls with cytotoxic activity toward sea Urchin Embryos. Agric. Biol. Chem.1985,49:867-868.
    51. Lafont P., Lafont J. Metabolism of aflatoxin B1 by Aspergillus candidus. Annales de Microbiologie,1974,125:451-417.
    52. Munden Jeffery E., Butterworth Denis, Hanscomb Gerald, Verrall Michael S. Production of chlorflavonin, an antifungal metabolite of Aspergillus candidus. Applied Microbiology,1970, 19:718-720.
    53. Stansly P. G., Ananenko N. H. Candidulin:an antibiotic from Aspergillus candidus. Archives of Biochemistry,1949,23:256-261.
    54. Kamigauchi T., Sakazaki R., Nagashima K., Kawamura Y., Yasuda Y., Matsushima K., Tani H., Takahashi Y., Ishii K., Suzuki R., Koizumi K., Nakai H., Ikenishi Y., Terui Y. Terprenins, novel immunosuppressants produced by Aspergillus candidus. J. Antibiot.1998,51:445-450.
    55. Alvi K. A., Pu H., Luche M., Rice A., App H., McMahon G., Dare H., Margolis B. Asterriquinones produced by Aspergillus candidus inhibit binding of the Grb-2 adapter to phosphorylated EGF receptor tyrosine kinase. J. Antibiot.1999,52:215-223.
    56. Ito Yoshitake, Ohtsubo Kohichiro, Yoshihira Kunitoshi, Sekita Setsuko, Natori Shinsaku, Tsunoda Hiroshi. Toxic effects of rice culture of Aspergillus candidus and its metabolite, xanthoascin, on Japanese quails. Japanese Journal of Experimental Medicine,1978,48: 187-191.
    57. Tatsuhiro Ogawa, Youichi Uosaki, Takeo Tanaka. RES-1149-1 and-2, novel non-peptidic endothelin type B receptor antagonists produced by Aspergillus sp. Ⅲ. Biochemical properties of RES-1149-1,-2 and structure-activity relationships. J. Antibiot.1996,49: 169-172.
    58. Lu Zhenyu, Wang Yi, Miao Chengdu, Liu Peipei, Hong Kui, Zhu Weiming. Sesquiterpenoids and benzofuranoids from the marine-derived fungus Aspergillus ustus 094102. J. Nat. Prod. 2009,72:1761-1767.
    59. Liu Hongbing, RuAngelie Edrada-Ebel, Rainer Ebel, Wang Yao, Barbara Schulz, Siegfried Draeger, Werner E. G. Muller, Victor Wray, Lin Wenhan, Peter Proksch. Drimane sesquiterpenoids from the fungus Aspergillus ustus isolated from the marine sponge Suberites domuncula. J. Nat. Prod.2009,72:1585-1588.
    60. Martin A. Hayes, Stephen K. Wrigley, Ian Chetland, Elwood E. Reynoldsll, A. Martyn Ainsworth, Didier V. Renno, Mohammed A. Latif, Xue-Min Cheng, Donald J. HuPEf, Peter Charlton, Annette M. Doherty. Novel drimane sesquiterpene esters from Aspergillus ustus var. pseudodeflectus with endothelin receptor binding activity. J. Antibiot.1996,49: 505-512.
    61. Ayer W. A., L. M. Pena-Rodriguez. Metabolites produced by Alternaria brassicae, the black spot pathogen of Canola, part 2, sesquiterpenoid metabolites. J. Nat. Prod.1987,50: 408-417.
    62. Susanne Grabley, Ralf Thiericke, M. Zerlin. New albrassitriols from Aspergillus sp. (FH-A 6357). J. Antibiot.1996,49:593-595.
    63. Liva Harinantenaina, Katsuyoshi Matsunami, Hideaki Otsuka, Masatoshi Kawahata, Kentaro Yamaguchi, Yoshinori Asakawa. Secondary metabolites of Cinnamosma madagascariensis and their r-glucosidase inhibitory properties. J. Nat. Prod.2008,71:123-126.
    64. Noriaki Kobayashi, Hidenobu Kuniyoshi, Ken Ishigami, Hidenori Watanabe. Synthesis of FF8181-A. Biosci. Biotechnol. Biochem.2008,72:2708-2715.
    1. Hasan H. A. Studies on toxicogenic fungi in roasted foodstuff (salted seed) and halotolerant activity of emodin-producing Aspergillus wentii. Folia Microbiol.1998,43:383.
    2. Mejanelle L., Lopez J. F., Grimalt J. O. Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J. Lipid Res.2001,42:352.
    3. Wang Wen-Liang, Lu Zhen-Yu, Tao Hong-Wen, Zhu Tian-Jiao, Fang Yu-Chun, Gu Qian-Qun, Zhu Wei-Ming. Isoechinulin-type Alkaloids, Variecolorin A-L, from Halotolerant Aspergillus variecolor. J. Nat. Prod.2007,70:1558-1564.
    4. Wenliang Wang, Tianjiao Zhu, Hongwen Tao, Zhenyu Lu, Yuchun Fang, Qianqun Gu, Weiming Zhu. Two New Cytotoxic quinone type Compounds from the Halotolerant Fungus Aspergillus variecolor. J. Antibiot.2007,60:603-607.
    5. Wenliang Wang, Tianjiao Zhu, Hongwen Tao, Zhenyu Lu, Yuchun Fang, Qianqun Gu, Weiming Zhu. Variecolortide A-C, three Novel Oxa-spiro-cyclodipeptides from the Halotolerant Fungus strain Aspergillus variecolor B-17. Chemistry & Biodiversity,2007,4: 2913-2919.
    6. Wang Wenliang, Wang Yi, Tao Hongwen, Peng Xiaoping, Liu Peipei, Zhu Weiming. Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J. Nat. Prod.2009,72:1695-1698.
    7. Lin Zhenjian, Zhu Tianjiao, Fang Yuchun, Gu Qianqun, Zhu Weiming. Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum. Phytochemistry,2008,69:1273-1278.
    8. Du Lin, Zhu Tianjiao, Fang Yuchun, Liu Hongbing, Gu Qianqun, Zhu Weiming. Aspergiolide A, a novel anthraquinone derivative with aphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus. Tetrahedron,2008,64: 4657.
    9. Du Lin, Zhu Tianjiao, Liu Hongbing, Fang Yuchun, Zhu Weiming, Gu Qianqun. Cytotoxic polyketides from a marine-derived fungus, Aspergillus glaucus. J. Nat. Prod.2008,71: 1837-1842.
    10. Du Lin, Yang Xinying, Zhu Tianjiao, Wang Fengping, Xiao Xiang, Park Hyun, Gu Qianqun. Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp. Chem. Pharm. Bull.2009,57:873-876.
    11. MacDonald J. C., Micetich R. G. Haskins R. H. Antibiotic activity of neoaspergillic acid. Canadian Journal of Microbiology,1964,10:90-92.
    12. Aoki S., Higuchi K., Ye Y, Satari R., Kobayashi M. Tetrahedron,2000,56:1833-1856.
    13. Lin Zhenjian, Lu Zhenyu, Zhu Tianjiao, Fang Yuchun, Gu Qianqun, Zhu Weiming. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum. Chem. Pharm. Bull.2008,56:217-221.
    1. Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D. W., Bokesch H., Kenney S., Boyd M. R. New colorimetric cytotoxicity assay for anticancer drug screening. J. Natl. Cancer Inst.,1990,82:1107-1112.
    2. Voigh W. Sulforhodamine B assay and chemosensitivity. Methods Mol. Med.2005,110: 39-48.
    3. Mossman T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assay. J. Immunol. Meth.1983,65:55-63.
    4. Patricia L., Judson M. D., Linda Van Le M. D. Flow cytometry. Oncology Update,1997,4: 87-91.
    5. Solis P. N., Wright C. W., Anderson M. M., Gupta M. P., Phillipson J. D. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta. Med.1993,59:250-252.
    6. Meyer B. N., Ferrigni N. R., Putnam J. E., Jacobsen L. B., Nichols D. E., McLaughlin J. L. Brine Shrimp:a convenient general bioassay for active plant constituents. Planta. Med.1982, 45:31-34.
    7.张永杰,王建锋,黄耀坚等.4种裸子植物内生真菌抗肿瘤菌株的筛选.厦门大学学报,2002,41:804-809.
    8.杰利L.麦克劳林,顾哲明.两种简易的抗肿瘤活性初筛方法.中国中药杂志,1997,22:617-619.
    9. Zaika, L. L. Spices and herbs:their antimicrobial activity and its determination. J. Food Safety,1988,9:97-118.
    1. Wenger R. M. Cyclosporin A. Biomed. J.1982,3:19-31.
    2.杨再,陈佳铭.植物源天然活性肽的研究状况New Feed,2006,8:47-49.
    3. Kimura Kenichi. Diversity of cyclic peptides generated from microorganisms:elucidation of structures, diversity of biological activities, and biosynthetic mechanism. Kagaku to Seibutsu, 2007,45:374-376.
    4. Tan N. H., Zhou J., Zhao S. X. Progress in the chemistry of cyclopeptides in plants. Acta Pharm. Sin.1997,32:388-399.
    5. Alicia B. P., Miguel E. B., Arturo A. V. Naturally-occurring cyclopeptides:structures and bioactivity. Curr. Org. Chem.2006,10:2075-2121.
    6. Kelecom A. Secondary metabolites from marine microorganisms. An. Acad. Brasileira Cienc. 2002,74:151-170.
    7. Faulkner D. J. Marine natural products. Nat. Prod. Rep.2000,17:7-55.
    8. Tan N. H., Zhou J. Plant cyclopeptides. Chem. Rev.2006,106:840-895.
    9. El-Seedi H. R., Gohil S., Perera P., Torssell K. B., Bohlin L. Cyclopeptide alkaloids from Heisteria nitida. Phytochemistry,1999,52:1739-1744.
    10. Suksamrarn S., Suwannapoch N., Aunchai N., Kuno M., Ratananukul P., Haritakun R., Jansakul C., Ruchirawat S. Ziziphine N, O, P and Q, new antiplasmodial cyclopeptide alkaloids from Ziziphus oenoplia var. brunoniana. Tetrahedron,2005,61:1175-1180.
    11. Zhou J., Tan N. H. Application of a new TLC chemical method for detection of cyclopeptides in plants. Chin. Sci. Bull.2000,45:1825-1831.
    12. Govaerts C., Rozenski J., Orwa J., Roets E., Vanschepdael A., Hoogmartens J. Mass spectrometric fragmentation of cyclic peptides belonging to the polymyxin and colistin antibiotics studied by ion trap and quadrupole/orthogonalacceleration time-of-flight technology. Rapid Commun. Mass Spectrom.2002,16:823-833.
    13. Morita H.; Sato Y.; Kobayashi J. Tetrahedron,1999,55:7509-7518.
    14. Donia M. S., Wang B., Dunbar D. C., Desai P. V., Patny A., Avery M., Hamann M. T. Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J. Nat. Prod.2008,71:941-945.
    15. Meirovitch Hagai. Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Current Opinion in Structural Biology,2007,17:181-186.
    16. Dahiya Rajiv, Kumar Akhilesh, Gupta Rajul. Synthesis, cytotoxic and antimicrobial screening of a proline-rich cyclopolypeptide. Chem. Pharm. Bull.2009,57:214-217.
    17. Dahiya Rajiv. Synthesis of a phenylalanine-rich peptide as potential anthelmintic and cytotoxic agent. Acta poloniae pharmaceutica,2007,64:509-516.
    18. Wang You, Lai Yi-sheng, Zhang Yi-hua. Advances in the research on synthesis and bioactivity of cyclic peptides. Yaoxue Jinzhan,2008,32:440-446.
    19.孙雪文,邓洪渊,谭红.环肽的分析方法与研究.世界科技研究与发展,2005,27:72-78.
    20.唐艳春,田桂玲,叶蕴华.环肽合成方法的研究进展.高等学校化学学报,2000,21:1056-1063.
    21.蒋志龙,郄建坤,刘克良.生物活性环肽研究进展.中国药物化学杂志,2004,14:122-128.
    22.王涛,向清祥,李正凯,游劲松,余孝其,闫乾顺,谢如刚.环肽研究新进展.化学研究与应用,2002,14:3-8.
    23. Goto Yuki, Murakami Hiroshi, Suga, Hiroaki. Ribosomal synthesis of peptides containing various unusual structures and its application to the synthesis of cyclic peptides. Peptide Science,2007,44:39-40.
    24. Watanabe Kenji, Oguri Hiroki, Oikawa Hideaki. Enzymatic synthesis of molecular skeletons of complex antitumor antibiotics with non-ribosomal peptide synthetases. Yuki Gosei Kagaku Kyokaishi,2009,67:1152-1160.
    25.陈祈磊,曹建明.微生物来源的环肽研究进展.国外医药抗生素分册,2005,26:195-200.
    26. Stachelhaus S. A, Mahariel M. A. Targetted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet.1998,257:308.
    27. Maria Katsara, Theodore Tselios, Spyros Deraos, George Deraos, Minos-Timotheos Matsoukas, Eliada Lazoura, John Matsoukas, Vasso Apostolopoulos. Round and round we go: cyclic peptides in disease. Curr. Med. Chem.2006,13:2221-2232.
    28. Morita Hiroshi, Nagashima Shinji, Uchiumi Yuki, Kuroki Osamu, Takeya Koichi, Itokawa Hideji. Cyclic peptides from higher plants. XXVIII. Antitumor activity and hepatic microsomal biotransformation of cyclic pentapeptides, astins, from Aster tataricus. Chem. Pharm.Bull.1996,44:1026-1032.
    29. Morita Hiroshi, Gonda Akira, Takeya Koichi, Itokawa Hideji, Hirano Toshihiko, Oka Kitaro, Shirota Osamu. Cyclic peptides from higher plants.41. Solution state conformation of an immunosuppressive cyclic dodecapeptide, cycloleonurinin. Tetrahedron,1997,53: 7469-7478.
    30. Marques M. A., Citron D. M., Wang C. C. Development of tyrocidine A analogs with improved antibacterial activity. Bioorganic & Medicinal Chemistry,2007,15:6667-6677.
    31. Morita Hiroshi, Kobata Hideyuki, Takeya Koichi, Itokawa Hideji. Cyclic peptides from higher plants. V. Pseudostellarin G, a new tyrosinase inhibitory cyclic octapeptide from Pseudostellaria heterophylla. Tetrahedron Lett.1994,35:3563-3564.
    32. Ohmi Kazuhiro, Nonomura Yoshiaki, Ueda Yoshio. Modulation of microfilament by hepatotoxic cyclic peptide, cyclochlorotin. Mycotoxins,2000,50:37-40.
    33. Lee Shoei-Sheng, Su Whei-Chuan. Cyclopeptide alkaloids from stems of Paliurus ramossisimus. Phytochemistry,2001,58:1271-1276.
    34. Brzozowski Krzysztof, Majewski Radoslaw, Jaskiewicz Anna, Legowska Anna, Klaudel Lidia, Rodziewicz-Motowidlo Sylwia, Rolka Krzysztof. Conformational studies of (Abu3,11)-SFTI-1, an analogue of the trypsin inhibitor isolated from sunflower seeds. Journal of Peptide Science,2008,14:911-916.
    35. Morita Hiroshi, Gonda Akira, Takeya Koichi, Itokawa Hideji, Iitaka Yoichi. Cyclic peptides from higher plants.36.Cycloleonuripeptide D, a new proline-rich cyclic decapeptide from Leonurus heterophyllus. Tetrahedron,1997,53:1617-1626.
    36. Kamimori Hiroshi, Hall Kristopher, Craik David J., Aguilar Marie-Isabel. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Analytical Biochemistry,2005,337:149-153.
    37. Morita H. Y., Young S., Takeya Koichi, Itokawa Hideji, Yamada Kenji. Cyclic peptides from higher plants.18. Segetalins B, C and D, three new cyclic peptides from Vaccaria segetalis. Tetrahedron,1995,51:6003-6014.
    38. Himaja M., Kumar K. H., Ramana M. V., Belagali S. L. Synthetic studies on Pseudostellarin A. Polish Journal of Chemistry,1999,73:1903-1907.
    39. Mayer Anke, Kilian Michael, Hoster Birgit, Sterner Olov, Anke Heidrun. In-vitro and in-vivo nematicidal activities of the cyclic dodecapeptide omphalotin A. Pesticide Science,1999,55: 27-30.
    40. Kelly D. J., Gilbert R. E. Compositions and therapies comprising tranilast compounds and angiotensin-converting enzyme (ACE) inhibitors and/or angiotensin receptor blockers (ARB). 2008,68pp.
    41. Alexandr J., Marian H., Miroslave S., Vladimir H. Nonribosomal cyclic peptides:specific markers of fungal infections. J. Mass Spectrom,2006,41:563-576.
    42. Stokvis E, Rosing H, Beijnen J. H. Liquid chromatography-mass spectrometry for the quantitative bioanalysis of anticancer drugs. Mass Spectrom. Rev.2005,24:887.
    43. Oh Dong-Chan, Jensen R. P., Fenical, W. Zygosporamide, a cytotoxic cyclic depsipeptide from the marine-derived fungus Zygosporium masonii. Tetrahedron Lett.2006,47: 8625-8628.
    44. Taro Amagata, Brandon I. Morinaka, Akiko Amagata, Karen Tenney, Frederick A. Valeriote, Emil Lobkovsky, Jon Clardy, Phillip Crews. A chemical study of cyclic depsipeptides produced by a sponge-derived fungus. J. Nat. Prod.2006,69:1560-1565.
    45. Luis J. Cruz, Marta Martinez Insua, Julia Perez Baz, Martha Trujillo, Ricard A. Rodriguez-Mias, Eliandre Oliveira, Ernest Giralt, Fernando Albericio, Librada M. Canedo. IB-01212, a new cytotoxic cyclodepsipeptide isolated from the marine fungus Clonostachys sp. ESNA-A009. J. Org. Chem.2006,71:3335-3338.
    46. Wenxin Gu, Mercedes Cueto, Paul R. Jensen, William Fenical, Richard B. Silverman. Microsporins A and B:new histone deacetylase inhibitors from the marine-derived fungus Microsporum cf. gypseum and the solid-phase synthesis of microsporin A. Tetrahedron,2007, 63:6535-6541.
    47. Dong-Chan Oh, Christopher A. Kauffman, Paul R. Jensen, William Fenical. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod.2007,70:515-520.
    48. Zhiguo Yu, Gerhard Lang, Inga Kajahn, Rolf Schmaljohann, Johannes F. Imhoff. Scopularides A and B, cyclodepsipeptides from a marine sponge-serived fungus, Scopulariopsis breWicaulis. J. Nat. Prod.2008,71:1052-1054.
    49. Jinkai zheng, Huajie Zhu, Kui Hong, Yi Wang, Peipei Liu, Xin Wang, Xiaoping Peng, Weiming Zhu. Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org. Lett.2009,11:5262-5265.
    50. Angela Zampella, Valentina Sepe, Paolo Luciano, Filomena Bellotta, Maria Chiara Monti, Maria Valeria DAuria, Trine Jepsen, Sylvain Petek, Marie-Therese Adeline, Olivier Laprevote, Anne-Marie Aubertin, Ce'cile Debitus, Christiane Poupat, Alain Ahond. Homophymine A, an anti-HIV cyclodepsipeptide from the sponge Homophymia sp. J. Org. Chem.2008,73:5319-5327.
    51. Mary R. Brennan, Catherine E. Costello, Simin D. Maleknia, George R. Pettit, Karen L. Erickson. Stylopeptide 2, a proline-rich cyclodecapeptide from the sponge Stylotella sp. J. Nat. Prod.2008,71:453-456.
    52. Erik Hedner, Martin Sjogren, Said Hodzic, Rolf Andersson, Ulf Goransson, Per R. Jonsson, Lars Bohlin. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barrette. J. Nat. Prod.2008,71:330-333.
    53. Fulvio Gala, Maria Valeria Auria, Simona De Marino, Valentina Sepe, Franco Zollo, Charles D. Smith, Staci N. Keller, Angela Zampella. Jaspamides M-P:new tryptophan modified jaspamide derivatives from the sponge Jaspis splendans. Tetrahedron,2009,65:51-56.
    54. Jan Vicente, Brunilda Vera, Abimael D. Rodriguez, Idaliz Rodriguez-Escudero, Raphael G. Raptis. Euryjanicin A:a new cycloheptapeptide from the Caribbean marine sponge Prosuberites laughlini. Tetrahedron Lett.2009,50:4571-4574.
    55. David E. Williams, Ker Yu, Hans W. Behrisch, Rob Van Soest, Raymond J. Andersen. Rolloamides A and B, cytotoxic cyclic heptapeptides isolated from the Caribbean marine sponge Eurypon laughlini. J. Nat. Prod.2009,72:1253-1257.
    56. Carmen Festa, Simona De Marino, Valentina Sepe, Maria Chiara Monti, Paolo Luciano, Maria Valeria Auria, Cecile Debitus, Mariarosaria Bucci, Valentina Vellecco, Angela Zampella. Perthamides C and D, two new potent anti-inflammatory cyclopeptides from a Solomon Lithistid sponge Theonella swinhoei. Tetrahedron,2009,65:10424-10429.
    57. Rebecca A. Medina, Douglas E. Goeger, Patrice Hills, Susan L. Mooberry, Nelson Huang, Luz I. Romero, Eduardo Ortega-Barria, William H. Gerwick, Kerry L. McPhail. Coibamide A, a potent antiproliferative cyclic depsipeptide from the Panamanian marine cyanobacterium Leptolyngbya sp. J. Am. Chem. Soc.2008,130:6324-6325.
    58. Bingnan Han, Harald Gross, Douglas E. Goeger, Susan L. Mooberry, William H. Gerwick. Aurilides B and C, cancer cell toxins from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod.2006,69:572-575.
    59. Marcelino Gutierrez, Takashi L. Suyama, Niclas Engene, Joshua S. Wingerd, Teatulohi Matainaho, William H. Gerwick. Apratoxin D, a potent cytotoxic cyclodepsipeptide from Papua New Guinea collections of the marine cyanobacteria Lyngbya majuscula and Lyngbya sordida. J. Nat. Prod.2008,71:1099-1103.
    60. Roger G. Linington, Jose Gonzalez, Luis-David Urena, Luz I. Romero, Eduardo Ortega-Barra, William H. Gerwick. Venturamides A and B:antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J. Nat. Prod.2007,70:397-401.
    61. Bingnan Han, Doug Goeger, Claudia S. Maier, William H. Gerwick. The Wewakpeptins, cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Org. Chem.2005,70:3133-3139.
    62. Daniela Muller, Anja Krick, Stefan Kehraus, Christian Mehner, Mark Hart, Frithjof C. Kupper, Krishna Saxena, Heino Prinz, Harald Schwalbe, Petra Janning, Herbert Waldmann, Gabriele M. Konig. Brunsvicamides A-C:sponge-related cyanobacterial peptides with Mycobacterium tuberculosis protein tyrosine phosphatase inhibitory activity. J. Med. Chem. 2006,49:4871-4878.
    63. Sutaporn Bunyajetpong, Wesley Y. Yoshida, Namthip Sitachitta, Kunimitsu Kaya. Trungapeptins A-C, cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod.2006,69:1539-1542.
    64. Alberto Plaza, Carole A. Bewley. Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J. Org. Chem.2006,71:6898-6907.
    65. Isabelle Bonnard, Marc Rolland, Jean-Marie Salmon, Eric Debiton, Chantal Barthomeuf, Bernard Banaigs. Total structure and inhibition of tumor cell proliferation of Laxaphycins. J. Med. Chem.2007,50:1266-1279.
    66. Sarath P. Gunasekera, Raphael Ritson-Williams, Valerie J. Paul. Carriebowmide, a new cyclodepsipeptide from the marine cyanobacterium Lyngbya polychroa. J. Nat. Prod.2008, 71:2060-2063.
    67. Kanchan Taori, Valerie J. Paul, Hendrik Luesch. Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J. Nat. Prod.2008,71:1625-1629.
    68. Ashootosh Tripathi, Jonathan Puddick, Michele R. Prinsep, Peter Peng Foo Lee, Lik Tong Tan. Hantupeptin A, a cytotoxic cyclic depsipeptide from a Singapore collection of Lyngbya majuscule. J. Nat. Prod.2009,72:29-32.
    69. Hyi-Seung Lee, Hee Jae Shin, Kyoung Hwa Jang, Tae Sik Kim, Ki-Bong Oh, Jongheon Shin. Cyclic peptides of the nocardamine class from a marine-derived bacterium of the genus Streptomyces. J. Nat. Prod.2005,68:623-625.
    70. Wimolpun Rungprom, Eric R.O. Siwu, Lynette K. Lambertd, Chutiwan Dechsakulwatana, Michael C. Barden, Udom Kokpol, Joanne T. Blanchfield, Masaki Kita, Mary J. Garson. Cyclic tetrapeptides from marine bacteria associated with the seaweed Diginea sp. and the sponge Halisarca ectofibrosa. Tetrahedron,2008,64:3147-3152.
    71. Rogelio Fernandez, Maria Jesus Martin, Raquel Rodnguez-Acebes, Fernando Reyes, Andres Francesch, Carmen Cuevas. Diazonamides C-E, new cytotoxic metabolites from the ascidian. Diazona sp. Tetrahedron Lett.2008,49:2283-2285.
    72. Wen-Jie Xu, Xiao-Jian Liao, Shi-Hai Xu, Jian-Zhong Diao, Bin Du, Xu-Long Zhou, Shan-Shan Pan. Isolation, structure determination, and synthesis of Galaxamide, a rare cytotoxic cyclic pentapeptide from a marine algae Galaxaura filamentosa. Org. Lett.2008, 10:4569-4572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700