小鼠骨髓间充质干细胞向平滑肌样细胞分化过程中myocardin的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:平滑肌细胞(SMC)的过度增生是血管病变发生发展中的重要环节。长久以来的观点认为动脉粥样硬化(AS)斑块中的SMC源于中膜SMC的迁移和增生。虽然对于中膜SMC的迁移和增殖的分子机制做了大量的研究工作,但是至今仍没有建立有效的阻止闭塞性血管重建的治疗方法。然而近年来有报道,骨髓细胞参与了血管疾病的发生,发展。研究发现骨髓细胞可能具有分化成血管祖细胞的潜能,这种祖细胞迁移至受损的血管,分化成平滑肌细胞或内皮细胞,参与血管的修复,重塑和病变的形成。这些发现为探索血管疾病的新疗法提供了基础。但是骨髓细胞向平滑肌方向分化的分子机制仍不清楚。然而令人兴奋的是近年来研究者发现了一个关键的促平滑肌分化因子-myocardin。目前对于myocardin的研究仍处于初步阶段。
     目地:探讨血小板源性生长因子-BB(PDGF-BB)及高浓度的胎牛血清(20%FBS)体外诱导骨髓间充质干细胞(bone marrow mesenchymal stem cell,BMSC)定向分化为平滑肌细胞的可行性及myocardin在此过程中的表达变化。
     方法:采用全骨髓贴壁分离和消化控制相结合分离小鼠BMSC,然后用PDGF-BB(50μg/L)联合高浓度胎牛血清(20%FBS)诱导BMSC,分别于诱导前及诱导4天、8天后用免疫细胞化学法检测细胞α-SMA,SM-MHC,myocardin的表达,同时在倒置相差显微镜下观察细胞的形态学变化。
     结果:从单个细胞的形态上看,诱导前BMSC呈梭形,分支状或多边形,诱导后的细胞体积略增加,仍以梭形细胞为主,但是诱导8天时细胞密集处出现束状,漩涡状排列,与SMC相似。细胞免疫组化显示:诱导前及诱导4天、8天时,α-SMA,SM-MHC,myocardin三种蛋白的表达逐渐增强,平均灰度值逐渐降低,不同时间点组组之间统计学比较有显著性差异(P<0.05)。
     结论: PDGF-BB联合高浓度的胎牛血清(20%FBS)可有效诱导BMSC向平滑肌样细胞分化。myocardin在此分化过程中起重要作用。
Background Exuberant accumulation of smooth muscle cells (SMC) plays a principal role in the pathogenesis of vascular diseases. The long-standing dogma has been that SMC in atherosclerotic lesions are derived primarily from preexisting medial SMC. Although much effort has been devoted to understanding the molecular pathways regulating migration and proliferation of medial SMC, no effective therapy to prevent occlusive vascular remodeling has been established. It was recently reported that bone marrow cells substantially contribute to the pathogenesis of vascular diseases. It was suggested that bone marrow cells may have the potential to give rise to vascular progenitor cells that home in on the damaged vessels and differentiate them into smooth muscle cells or endothelial cells, thereby contributing to vascular repair, remodeling, and lesion formation. The present findings may provide the basis for the development of new therapeutic strategies for vascular diseases. But the molecular mechanism of bone marrow cells differentiate into SMC is not unclear. However, one exciting advance for the field of SMC differentiation in recent years was the discovery of myocardin, a key transcription factor for SMC differentiation. At present, we have not known a lot about myocardin.
     Objective To investigate the feasibility of differentiation of bone marrow mesenchymal stem cells(BMSC) into SMC in vitro under PDGF-BB(50μg/L) and high concentrations of FBS(20%), and the positive effect of myocardin on BMSC differentiating into SMC.
     Methods Mouse BMSC were isolated and purifed from bone marrow by means of adhesion seperation plus digestion control, then PDGF-BB(50μg/L) and FBS(20%)were added to the BMSC. And the cells were cultuted for 4 and 8 days respectively. Immunohistochemistry assay and image analysis were used to value the expression extent ofα-SMA, SM-MHC and myocardin. Meanwhile, cell morphology was observed by inverted phase contrast microscope.
     Results In morphology, before induction, BMSC were spind-shaped, branch-shaped or polygonal. After 4、8 days induction, most cell were spind-shaped, no big changes with before. But cells were fascl and whirlpool-shaped, similar to SMC. Intensities of the three proteines immunostaining significantly increased after 4 and 8 days. And Test of One-way ANOVA showed that there was statistically significance in different times(p<0.05).
     Conclusions BMSC could be induced to differentiate into SM-like cells through adding PDGF-BB(50μg/L) and FBS(20%) with BMSC in vitro. Myocardin plays an important role in this process.
引文
1. Ross R and Glomset JA. The pathogenesis of atherosclerosis. N Engl J Med 1976;295(7)/295(8): 369–377/420–425.
    2. Shinnizu K, Sugiyama S , Aikawa M , et al. Host bone-marrow cells are a source of donor intimal smooth muscle-like cells in murine aortic transplant arteropathy [ J ] . Nat Med , 2001;7(6) : 738-741.
    3. J.George, A.Afek, A.Abashidze, H. Shmilovich, V. Deutsch, J. Kopolovich, H. Miller and G. Keren. Transfer of endothelial progenitor and bone marrow cells influence atherosclerotic plaque size and composition in apolipoprotein E knockout mice, Arterioscler. Thromb. Vasc. Biol. 2005;25 (12), pp. 2636–2641.
    4. Jean-Sébastien Silvestre, Andrea Gojova, Valérie Brun,et al. Transplantation of Bone Marrow–Derived Mononuclear Cells in Ischemic Apolipoprotein E–Knockout Mice Accelerates Atherosclerosis Without Altering Plaque Composition. Circulation. 2003;108(23):2839-2842.
    5. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, and Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell .2001;105(7): 851–862.
    6. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, and Parmacek MS. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003;23(7): 2425–2437.
    7. Wang Z, Wang DZ, Pipes GC, and Olson EN. Myocardin is a master regulator of smooth muscle gene expression. Proc Natl Acad Sci USA 2003;100(12): 7129–7134.
    8. Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang D, Olson EN, and Owens GK. Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes. Circ Res 2003;92(8): 856–864.
    9. Manabe I and Owens GK. Recruitment of serum response factor and hyperacetylation ofhistones at smooth muscle-specific regulatory regions during differentiation of a novel p19-derived in vitro smooth muscle differentiation system. Circ Res 2001;88(11): 1127–1134.
    10. Jiang YH , Jahaglrdar BN , Reinhardt RL. Pluripotency of mesenchymal stem cells derived from adult marrow[J ] . Nature , 2002;418 (6893):41-49.
    11. Pittenger MF, Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science 1999;284(5411):143-147.
    12. Heger B,Weber M,Dragun DJ,et al. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells[J]. Hypertens.2005;23(6):1191-1202.
    13. Simpe D,Stalboerger PG, Panetta C J,Wang S,Caplice NM. Smooth muscle progenitor cells in human blood[J]. Circulation, 2002;106(10):1 199-204.
    14. Ball SG,Shuttleworth AC,Kielty CM. Direct cell contact influences bone marrow mesenchymal stem cell fate[J]. Int J Biochem Cell Biol,2004;36(4):714-727.
    15. Minguell J J,Erices A,Conget P. Mesenchymal stem cells.Exp Biol Med (Maywood),2001;226(6):507-520.
    16.刘品端,王伟,梅晰凡。大鼠骨髓间充质干细胞的分离与培养。中国临床康复。2005;9(18):38-40.
    17.庄菁,谢富康,谢金卫。全反式维甲酸对大鼠骨髓间质细胞的诱导分化作用。中山医科大学学报。2002;23(1):24-26.
    18.Temple S .The development of neural stem cells [J].Nature,2001;414(6859):112-117
    19.张金明,何涛,黄红军。骨髓间充质干细胞体外诱导分化为平滑肌细胞的实验。2006;10(1):23-26.
    20.韩雅玲,康健,李少华。成年鼠骨髓间质细胞在体外培养中分化为平滑肌细胞。中华医学杂志。2005;83(9):778-781.
    21.张金明,何涛,黄红军。肌源性干细胞分离培养及诱导分化为平滑肌细胞的研究。中华实验外科杂志。2006;23(8):1003-1004.
    22.朱哲,潘骏,李现铎。孕中期羊水来源胎儿间充质干细胞体外诱导为平滑肌细胞的研究。中华小儿外科杂志。2006;27(12):617-620.
    23.邓蔓菁,金岩,史俊南。转化生长因子β促进面突外胚间充质干细胞向平滑肌细胞分化。华西口腔医学杂志。2004;22(6):460-462.
    24.晋军。血小板源生长因子在血管平滑肌细胞异常增殖中的作用[J ]。国外医学生理、病理科学分册。2001;21(4) :286-288.
    25. Li J ,Huang SL ,Guo ZG. Platelet derived growth factor stimulated vascular smooth muscle cell proliferation and its molecular mechanism[J ] . Scta Phamacol Sin ,2000;21 (37) :340-344.
    26.Yoshida T,Gan Q,Shang Y.Platelet-derived growth factor-BB represses smooth muscle cell marker genes via changes in binding of MKL factors and histone deacetylases to their promoters. Am J Physiol Cell Physiol. 2007;292(2):C886-895.
    27. Holycross BJ, Blank RS, Thompson MM, Peach MJ, and Owens GK. Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circ Res 1992;71(6): 1525–1532.
    28. Li X, Van Putten V, Zarinetchi F, Nicks M, Thaler S, Heasley L, and Nemenoff RA. Suppression of smooth muscle alpha-actinexpression by platelet-derived growth factor in vascular smooth muscle cells involves Ras and cytosolic phospholipase A2. Biochem J 1997;327(3): 709–716.
    29. D. Simper, P.G. Stalboerger, C.J. Panetta, S. Wang and N.M. Caplice. Smooth muscle progenitor cells in human blood, Circulation .2002;106 (10):1120–1199.
    30. Yuji Kashiwakura, Youichi Katoh, Kenji Tamayose. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22a promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow.Circulation.2003;107(16):2078-2081.
    31.Minguell JJ,Erices A,Conget P. Mesenchymal Stem Cells. Exp Biol Med(Maywood) .2001;226(6):507-520.
    32.李红华,刘厚奇,汤淑萍等。人胚胎间充质干细胞向平滑肌细胞定向分化标志蛋白的选择[J]。第二军医大学学报。2004;25(8):822-826.
    1. N. Werner, J. Priller, U. Laufs, M. Endres, M. Bohm, U. Dirnagl and G. Nickenig, Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition, Arterioscler. Thromb. Vasc. Biol. 2002;22 (24):1567–1572.
    2. N. Werner, S. Junk, U. Laufs, A. Link, K. Walenta, M. Bohm and G. Nickenig, Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury, Circ. Res. 2003;93 (2):e17–e24.
    3. Simper D, Wang S, Deb A, Holmes D, McGregor C, Frantz R.Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis.Circulation .2003;108 (2):143-149.
    4. P.D. Lambiase, R.J. Edwards, P. Anthopoulos, S. Rahman, Y.G. Meng, C.A. Bucknall, S.R. Redwood, J.D. Pearson and M.S. Marber. Circulating humoral factors and endothelial progenitor cells in patients with differing coronary collateral support. Circulation .2004;109 (24):2986–2992.
    5. J.George, A.Afek, A.Abashidze, H. Shmilovich, V. Deutsch, J. Kopolovich, H. Miller and G. Keren. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice, Arterioscler. Thromb. Vasc. Biol. 2005;25 (12):2636–2641.
    6.章静波,宗书东,马文丽。干细胞。北京协和医科大学出版社。2003.
    7. Damiel R Mar shak,Richard L Gardner,David Gottlieb.干细胞生物学。刘景生等译。北京:化学工业出版社。2004.
    8.赵春华,艾辉胜,左萍萍等。干细胞原理、技术与临床。北京:化学工业出版社。2006.
    9. N. Uchida, D.W. Buck, D. He, M.J. Reitsma, M. Masek, T.V. Phan, A.S. Tsukamoto,F.H. Gage and I.L. Weissman. Direct isolation of human central nervous system stem cells, Proc. Natl. Acad. Sci. U.S.A. 2000 ;97 (26):14720–14725.
    10. R.I. Sherwood, J.L. Christensen, I.M. Conboy, M.J. Conboy, T.A. Rando, I.L. Weissman and A.J. Wagers. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell ,2004;119 (4): 543–554.
    11. Jean-Sébastien Silvestre, Andrea Gojova, Valérie Brun. Transplantation of Bone Marrow–Derived Mononuclear Cells in Ischemic Apolipoprotein E–Knockout Mice Accelerates Atherosclerosis Without Altering Plaque Composition. Circulation, 2003;108(23):2839-2842.
    12. George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J. Transfer of Endothelial Progenitor and Bone Marrow Cells Influences Atherosclerotic Plaque Size and Composition in Apolipoprotein E Knockout Mice. Arterioscler. Thromb. Vasc. Biol. 2005;25(12):2636-2641.
    13. Han CI, Campbell G, and Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res .2001;38(2):113–119.
    14. Xu Y, Arai H, Zhuge X, Sano H, Murayama T, Yoshimoto M. Role of Bone Marrow–Derived Progenitor Cells in Cuff-Induced Vascular Injury in Mice. Arterioscler Thromb Vasc Biol. 2004;24(3):477-482.
    15. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, and Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med .2002;8(4):403–409.
    16. Han CI, Campbell G, and Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. [J] Vasc Res. 2001;38(2):113–119.
    17 . Tanaka K, Sata M, Hirata Y, and Nagai R. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res.2003;93(8):783–790.
    18. Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, and Edwards WD. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA. 2003;100(8):4754–4759.
    19 .A. Zulli, B.F. Buxton, M.J. Black and D.L. Hare. CD34 Class III positive cells are present in atherosclerotic plaques of the rabbit model of atherosclerosis, Histochem. Cell. Biol. 2005;124 (6): 517–522.
    20. Teruko Soda, Hiroshi Suzuki, Yoshitaka Iso. Bone marrow cells contribute to neointimal formation after stent implantation in swine. International Journal of cardiology .2007,121(1):44-52.
    21. Heger B,Weber M,Dragun DJ,et al. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells[J]. Hypertens.2005;23(6):1191-1202.
    22. Y. Kashiwakura, Y. Katoh, K. Tamayose, H. Konishi, N. Takaya, S. Yuhara, M. Yamada, K. Sugimoto and H. Daida. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow, Circulation .2003;107 (16) : 2078–2081.
    23. Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, DietrichH, and Xu Q. Smooth muscle cells in transplant atheroscleroticlesions are originated from recipients, but not bone marrow progenitor cells. Circulation,2002;106(14): 1834–1839.
    24. Vassilopoulos G, Wang PR, and Russell DW. Transplanted bone marrow regenerates liver by cell fusion. N Engl J Med .2003;422(24): 901–904.
    25. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al Dhalimy M, Lagasse E, Finegold M, Olson S, and Grompe M. Cell fusion is the principal source ofbone-marrow-derived hepatocytes. N Engl J Med.2003;422(24): 897–901.
    26. Ianus A, Holz GG, Theise ND, and Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003;111(6): 843–850.
    27. LaBarge MA and Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 2002;111(4): 589–601.
    28. J.N. Wilcox, R. Waksman, S.B. King and N.A. Scott. The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation, Int. J. Radiat. Oncol. Biol. Phys. 1996;36 (4): 789–796.
    29. Y. Shi, J.E. O’Brien, A. Fard, J.D. Mannion, D. Wang and A. Zalewski. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries, Circulation 1996;94 (7):1655–1664.
    30. Y. Shi, J.E. O’Brien Jr., J.D. Mannion, R.C. Morrison, W. Chung, A. Fard and A. Zalewski. Remodeling of autologous saphenous vein grafts: the role of perivascular myofibroblasts, Circulation .1997;95 (12):2684–2693.
    31. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, and Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent by stander to active participant. Circ Res. 2001;89(12): 1111–1121.
    32. Y. Hu, Z. Zhang, E. Torsney, A.R. Afzal, F. Davison, B. Metzler and Q. Xu, Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in apoE-deficient mice. J Clin Invest. 2004;113 (9):1258–1265.
    33. D. Simper, P.G. Stalboerger, C.J. Panetta, S. Wang and N.M. Caplice. Smooth muscle progenitor cells in human blood, Circulation .2002;106 (10):1120–1199.
    34. Paranya G, Vineberg S, Dvorin E, Kaushal S, Roth S, Rabkin E, Schoen F, Bischoff J. 2001. Aortic valve endothelial cells undergo transforming growth factor-beta-mediatedand non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am J Pathol 2001;159(4):1335–1343.
    35. Frid M, Kale V, Stenmark K. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res 2002;90(11):1189–1196.
    36. Ishisaki A, Hayashi H, Li A, Imamura T. Human umbilical vein endothelium-derived cells retain potential to differentiate into smooth muscle-like cells. J Biol Chem .2003;278(2):1303–1309.
    37. Kraues DS , Theise ND , Collector ML , et al. Multi-organ , multi-Lineage engraftment by a single bone marrow derived stem cell[J ] . Cell , 2001;105(3) : 369-377.
    38. Wang J S , Shum TD , Chedrawy E , et al. The coronary delivery of marrow stromal cells for myocardial regeneration :pathophysiologic and therapeutic implications[J ] . J Thorac Cardiovasc Surg. 2001;122(4) : 699-705.
    39. Tosh D , Slack JM. How cells change their phenotype[J ] . Nature Rev Mol Cell Biol , 2002 , 3(3) :187-194.
    40. Newby AC. An overview of the vascular response to injury : a tribute to the late Russell Ross [ J ] . Toxicol lett , 2000;112-113 :519-529.
    41. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their function [J ] . Cardiovasc Res .2001;52(3) :372-386.
    42. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, and Olson EN. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell.2001;105(7): 851–862.
    43. Du KL, Ip HS, Li J, Chen M, Dandre F, Yu W, Lu MM, Owens GK, and Parmacek MS. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation. Mol Cell Biol 2003;23(7): 2425–437.
    44. Yoshida T, Sinha S, Dandre F, Wamhoff BR, Hoofnagle MH, Kremer BE, Wang D,Olson EN, and Owens GK. Myocardin is a key regulator of CarG-dependent transcription of multiple smooth muscle marker genes. Circ Res. 2003;92(8): 856–864.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700