黄胫小车蝗(Oedaleus infernalis Saussure)卵子发生及受精囊研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄胫小车蝗(Oedaleus infernalis Saussure)隶属直翅目(Orthoptera)、蝗总科(Acridoidae)、斑翅蝗科(Oedipodidae),是我国草地的主要害虫。近几年蝗灾在我国许多地区又不断爆发,为避免化学防治造成的环境污染,寻求防治蝗虫的新途径,以黄胫小车蝗为材料,应用细胞学、形态解剖学、组织化学、免疫组织化学等方法,对其卵子发生及受精囊的显微、超微结构,卵子发生的分期,卵子发生过程中核酸、糖复合物、蛋白质、脂肪等物质的动态变化及卵子发生的调控机制等进行研究,阐明黄胫小车蝗卵子发生、发育机制,以充实蝗虫生殖生物学理论,并为其生物防治提供理论依据。研究主要结果如下:
     1.通过对黄胫小车蝗卵子发生的显微和超微结构的研究,将黄胫小车蝗卵子发生过程划分为3个时期10个阶段。卵黄发生前期、卵黄发生期和卵壳形成期。
     黄胫小车蝗卵黄形成是自体合成与异体合成同时存在。首次在昆虫中发现线粒体参与卵黄形成。首次在直翅目昆虫卵子发生过程发现卵母细胞凋亡,这种凋亡是对其生活环境的适应对策。
     在卵子发生的过程中,滤泡细胞包围在卵母细胞周围,为其发育提供一个小环境,不仅为卵母细胞分泌卵黄膜及卵壳,并参与卵母细胞的发育调控。
     2.黄胫小车蝗卵子发生过程中,核酸呈现动态变化。卵原区卵母细胞核呈现DNA阳性反应,进入生长区后,阳性反应立即减弱至阴性,直到卵子成熟。胞质中RAN在卵原区为弱阳性,进入生长区后,RNA为强阳性。卵黄发生期,RNA阳性反应减弱。滤泡细胞在卵子发生的整个过程中呈现DNA和RNA的阳性反应,并在卵黄发生期,胞质中的RNA阳性反应增强。核酸的这种动态变化说明,卵母细胞在减数第一次分裂前期的双线期停滞,进入静止期,而RNA的活动非常活跃,使发育初期卵母细胞积累大量的RNA和蛋白质,这些RNA和蛋白可能形成母体mRNA和母体蛋白质,成为生殖质的成分,参与产生未来的原始生殖细胞。滤泡细胞在卵子发生过程中的核酸的活动,一方面形成蛋白质提供给发育中卵母细胞,更重要的是调节卵母细胞的发育。
     由蛋白质、脂类和糖的变化说明,黄胫小车蝗卵母细胞沉积的卵黄蛋白是糖脂复合蛋白质,蛋白质来源有两种,即内源性的蛋白质和外源性的蛋白质。这些蛋白质,一部分作为胚胎发育的储备,一部分参与形成生殖质。滤泡细胞不仅在卵子发生后期形成卵黄膜和卵壳,而且在卵子发生过程中也向卵母细胞提供蛋白质。
    
     3.用4种不同凝集素,对黄胶小车蝗卵子发生过程中糖复合物的分布和变化
     进行研究表明,在卵黄发生前期,卵母细胞的胞质中,有少量的糖复合物,其糖
     基有甘露糖、葡萄糖和N-乙铣胺葡萄糖;卵母细胞膜上为甘露糖、葡萄糖及N-乙
     酞胺葡萄糖;滤泡细胞膜上有甘露糖和葡萄糖.在卵黄发生期,卵黄蛋白表面上
     有甘露糖、少量葡萄糖和半乳糖糖基;卵母细胞后极有甘露糖及N-乙酞胺葡萄糖
     复合物,此时,卵母细胞表面上N-乙酞胺葡萄糖消失,出现半乳糖糖基复合物.
     滤泡细胞中糖复合物糖基有甘露糖、葡萄糖和半乳糖颗粒。成熟卵子卵黄膜上有
     甘露糖、半乳糖及葡萄糖.黄胜小车黄卵子发生过程中,卵母细胞膜表面上的糖
     复合物经过修饰,修饰与滤泡细胞的相互作用有关。而滤泡细胞中糖复合物成分
     与卵母细胞的成熟有关。
     4.首次用免疫组化方法对黄胜小车蝗卵子发生中原癌基因 c-myc和。-k i t蛋
     白表达进行研究,结果表明,这两种原癌基因蛋白在黄胜小车蝗卵子发生中的表
     达方式不同。卜k i t蛋白在卵黄发生后期的卵母细胞膜表面开始表达;c-myc蛋白
    o 在卵母细胞胞质中和滤泡细胞核中均表达。c寸it蛋白的表达与卵母细胞的受精
     及减数分裂的再启动相关;而c-myc蛋白在卵母细胞中可能作为母体蛋白参与原
     始生殖细胞的产生,而滤沧细胞中的表达则是调节滤泡细胞的生长,并通过调节
     滤泡细胞进而调节卵母细胞的发育。
     5.通过组织学、组织化学、亲和组织化学及免疫组化等方法研究表明,黄胜
     小车蝗受精囊的组织结构由内而外依次为:表皮层、上皮层、基膜、结缔组织、
     肌肉层和围脏层等.在上皮细胞边缘与表皮层接触处有大量的微缄毛,而腺细胞
     基部亦有大量的指状突起,充分满足大量物质通过的需求,再加上上皮细胞中的
     导管,使蛋白质、各种信号分子和因子等物质能够顺利地从血淋巴、上皮细胞或
     分泌细胞及受精囊腔中通过,来调节受精囊的活动。各层细胞中含有大量碳水化
     合物、蛋白质和少量的脂肪,为精子的存活、运动及改变提供营养和能量,并保
     持精子活性。受精囊中糖复合物的糖链主要有半乳糖、甘露糖、a-葡萄糖及N-
     乙酞胺葡萄糖,这些糖复合物对精子的获能和顶体反应起作用。
     首次对受精囊中原癌基因的表达做了研究,发现受精囊在受精后,出现原癌
Oedaleus infernalis Saussure (Orthoptera: Acridoidae) is one of many pest insects in our country. In recent years, plagues of grasshoppers have broken out on many regions. In order to avoid environment pollution from insecticide. Some effective methods about control the pest expect to be produced. At present, Oogenesis and spermatheca of O. infernalis have been investigated by histology, histochemistry, lectin histochemistry and immunohistochemistry methods on the level of microstructure, ultrastructure, which may offer useful materials for Biology of Reproduction and Biology Harness. The main results describe as follows:
    1. Three stages can be covered by the oogenesis of O. infernalis in morphology aspect, i.e. previtellogenic stage one, vitellogenic stage two and Chorionation stage three. Vitellogenesis of O. infernalis is autosynthetic and heterosynthetic process. Mitochondrias adding the procedure of vitellogenesis, Germ-cell apoptosis occurred in the oogenesis of O. infernalis, this programmed cell death (PCD) is an adaptation strategy to its habitat.
    During the oogenesis of O. infernalis, the follicle cells form a monolayer epithelial cells surround the oocyte and provide a microenvironment for the oocyte growth. Not only the follicle cells secrete the vitelline membrane and the chorion, but also regulate the growth of the oocyte.
    2. In the procedure of oogenesis of O. infernalis, the quantity of nucleic acid changed actively. In germarium, the nucleus of the oocyte shows a Feulgen positive mark and in the vitellarium, the Feulgen positive mark begins to decrease with the oocyte growth and finaly appeared to negative. The cytoplasm of the oocyte exhibits weak UNA positive in germarium and the RNA show strong RNA positive in vitellarium. During the vitellogenesis RNA positive decreases. The follicle cells possess DNA and RNA positive during the oogenesis of O. infernalis, RNA positive increase in the cytoplasm during the vitellogenesis. This active change shows that the oocyte halts in prophase of meiosis I and becomes silent. But the transcription of RNA is active, and a phenomenon-concerned accumulation of RNA and protein may be observed during the
    in
    
    
    
    initial stage of the oocyte development. These RNA and the protein involved in the germ plasm and form primordial germ cells (PGCs). The active changes of the nucleic acid jn the follicle cell show that the follicle cells produce the protein to developing the oocyte, meanwhile adjust development of the oocyte.
    The variations of the protein, lipid and carbohydrate indicated that yolk granules is gly-lipid-protein complex. There are two kinds of proteins, including endogenous and exogenous proteins. A part of these proteins to store up for the embryogenesis, the others may take part in the germplasm component. The carbohydrate provides energy for embryogenesis.
    3. 4 lectins binding glycoconjugates on the oocyte of O. infernalis were detected with lectin histochemical for better understanding of distribution of glycoconjugates during the oogenesis. In previtellogenic stage, the ooplasm contains litter glycoconjugates, which is GlcNAc, Man, and Glc; the oocyte surface possesses Man, Glc and GlcNAc. The follicle cells membrane own Man and Glc. In vitellogenesis, the surface of the yolk granules hold Man, Glc and Gal, there are Man and GlcNAc in posterior pole, meanwhile GlcNAc is replaced by Gal. On the mature oocyte surface, there are Man, Gal and Glc. The change of the distribution shows that the glycoconjugate on the oocyte surface was modificated and this modification is related with the follicle cells interaction. The glycoconjugate in follicle cell is involved in the oocyte mature.
    4. Protooncogene c-kit and c-myc protein expression during the oogenesis of O. infernalis were firstly studied by means of immunohistochemistry in our experiment. The patterns of those two-protooncogene expressions are different. At the late vitellogenesis, the c-kit protein initiates expression on the o
引文
[1]任淑仙,李燕婷,徐筠,七星瓢虫卵子发生的观察。昆虫学报,1981,24(3):57~59。
    [2]刘玉素等,东亚飞蝗(Locusta migratoria manilensis Meyen)生殖系统的解剖和组织构造。昆虫学报,1959,9(1):7~11。
    [3]刘志斌,郑哲民,100种蝗虫受精囊分类学价值的研究.。陕西师大学报(自然科学版),1988,16(增刊):33~42。
    [4]孙少轩,牟吉元,粘虫卵子发生的组织化学研究。山东农业大学学报,1986,17(3):32~42。
    [5]张连峰,雷薇,癌基因与发育。见:陈吉龙、马海飞主编发育生物学进展。北京:高等教育出版社,1994,151~171。
    [6]张宗炳等,家蝇卵子发生的研究。昆虫学报,1965,14(6):523~533
    [7]李乾君,龚和,管致和,昆虫卵黄发生研究进展。昆虫学报,1995,38(2):237~251。
    [8]陈吉龙,周占祥,精子与卵子膜上凝集素受体及其在生殖中的功能。见:陈吉龙、马海飞,发育生物学进展。北京:高等教育出版社,1994,23~35。
    [9]应学萍,杨万喜,泥螺卵黄发生过程中线粒体的变化。动物学研究,2001,22(5):379-382。
    [10]郑月慧,徐斯凡,方廉,癌基因与性腺功能。生理科学进展,1996,27(4):344~346。
    [11]奚耕思,杨月红,郑哲民,蟋蟀精于表面LCA及ConA结合糖复合物的分布变化。动物学报,2002,48(1):125~130。
    [12]龚和,翟启慧,昆虫卵黄蛋白和卵黄发生。昆虫学报,1979,22(2):218~236。
    [13]龚和,邱威,郑文惠,李乾君,家蝇卵巢摄取黄蛋白的机理。昆虫学报,1994,37(1):8~14。
    [14]龚和,昆虫卵母细胞对卵黄物质的摄取过程。细胞生物学杂志,1990,12(4):161~165。
    [15]韩之明,庄大中,高绍荣,宋祥芬,陈大元,小鼠精于在附睾成熟过程中质膜糖蛋白的变化。动物学报,1999,45(1)。
    [16]翟中和,王喜中,丁明孝主编,细胞生物学,高等教育出版社,2000年8月。
    [17]Abrieu,A.,Fisher,D.,Simon,M.N.et al.,MAPK inactivation is required for the
    
    G2 to M-phase transition of the first mitotic cell-cycle. EMBO. J., 1997, 16:6407-6413.
    [18] Abu-Hakima, R. & Davey, K. G., The action of juvenile hormone on follice cells of Rhodnius prolixus in vitro: the effect of colchinine and cytochalasin B. Gen. Comp. Endocr. 1977,32:360-70.
    [19] Abu-Hakima, R., Vitellogenin synthesis induced in locust fat body by juvenile hormone analog in vitro. Experientia, 1981, 37:1309-11.
    [20] Adams, T. S. & P. A. Filipi, Interaction between JH, 20-hydroxyeodysone the corpus-allatum complex and ovaries in regulation vitellogenin levels in the housefly, Musca domestica. J. Insect Physiol., 1988, 34:11-9.
    [21] Adams, T. S. & P. E. Eide, A method for the in vitro stimulation of house fly egg development with ajuvenile hormone analog. Gen. Comp. Endocr., 1972, 18:12-21.
    [22] Adams, T. S., The role of juvenile hormone in housefly ovaries follical morphogensis. J. Insect Physiol., 1974, 20: 263-74.
    [23] Adams, T. S. et al., Hamolymoh ecdysteroid in the housefly, Musca domestica, during oogenesis and its relationship with vitellogenin levels. J. Insect Physiol., 1985,31:91-7.
    [24] Ahmed L., Gillot C., The spermatheca of Melanoplus sanguinipes(fabr.) I . Morphology, histology and histochemistry. International journal of Invertebrate Reproduction, 1982a, 4: 281-295
    [25] Ahmed L, Gillot C., The spermatheca of Melanoplus sanguinipes(fabr.) II . Ultrastructure. International journal of Invertebrate Reproduction, 1982b, 4: 297-309
    [26] Ahuja K. K, In vitro inhibition of the block to plospermy of hamster eggs by tertiary amine local anesthetics. J. Reprod. Pert., 1982,65:15-22.
    [27] Alexander S. R., T. S. Dhadialla, Accumulation of yolk proteins in insect oocytes. Ann. Rev. of Entomology, 1992, 37: 217-251.
    [28] Andeo L et al., 1993 Characterization and expression of a Xenopus ras during oogenesis and development. Dev. Biol., 139(1) :24-34.
    [29] Anderson E., Comparative aspects of the ultrastructure of female gamete. Int. Rev. Cytol, 1974,4(Supll.): 1-64.
    [30] Anderson L. M,and Telfer, W. H., Extracellular concentrating of protein in the cecropia moth follicle. J.cell. physiol., 1970, 76:37-53.
    
    
    [31] Anderson, W A, and Spielman, A., Permeability of the ovarian follicle of Aedes aegypti mosquitoes., J. Cell Biol., 1971 ,50:201-220.
    [32] Applebaum S. W. et al., The preparation and charaterization of lo'cust vitellogenin messenger RNA and the synthesis of its complementary DNA. Biochem. J., 1981, 193:209-16.
    [33] Alves A.P., Mulloy B; Moy GW; Vacquier VD; Mourao PA., Females of the sea urchin Strongylocentrotus purpuratus differ in the structures of their egg jelly sulfated fucans. Glycobiology, 1998, 8(9) :939-46
    [34] Aviles M., Castells MT; Abascal I; Martinez-Menarguez JA; Draber P; Kan FW; Ballesta J., Cytochemical localization of GalNAc and GalNAcbetal,4Galbetal,4 disaccharide in mouse zona pellucida. Cell Tissue Res., 1999, 295(2) : 269-77
    [35] Aviles M., Jaber L., Castells M.T., Ballesta J; Kan FW., Modifications of carbohydrate residues and ZP2 and ZP3 glycoproteins in the mouse zona pellucida after fertilization. Biol. Reprod, 1997, 57(5) : 1155-63
    [36] Bachvarova R. F., Manova K.and Besmer P., Role in gametogenesis of c-kit encoded at the W locus of mice. In Bermfield, M.(ed.), Molecular Basis of Morphogenesis. Wiley-Liss, New York, NY, 1993
    [37] Bakker G. T. et al, A quantitative description of vitellogenesis in Locusta migratoria migratoria. J. Insect Physiol., 1977, 23:259-63.
    [38] Banm E. B. et al., Ras oncogene expression in Xenopus laevis. Oncogene, 1990, 5(5) : 763-767.
    [39] Bardsley A., McDonald K. and Boswell R. E., Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development, 1993, 119:207-219.
    [40] Bassemir U., Ultructural differentiations in the developing follicle cortex of Locusta migratoria, with special reference to vitelline membrane formation. Cell Tiss. Res., 1977, 185(2) : 247-262.
    [41] Beams H. W., Kessel R. G., Election microscope studies on developing crayfish oocytes with special reference to the origin of yolk. J. Cell. Biol., 1963, 18:621-649.
    [42] Beams H. W., Kessel R. G., Synthesis and deposition of oocyte envelopes (vitelline membrane, chorion) and the uptake of yolk in the dragonfly (Odonata: Aeschnidae). J. Cell Sci., 1969,4:241-264.
    [43] Bennett D., Developmental analysis of a mutation with pleiotropic effects in the
    
    mouse. J. Morphol., 1956,98:199-299.
    [44] Benoff S., Carbohydrates and fertilization: an overview. Mol. Hum. Reprod., 1997, 3(7) : 599-637.
    [45] Bemfield M., Gotte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J. and Zako M., Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochera, 1999, 68(1) : 729-777.
    [46] Besmer P., Manova K., Duttlinger R. et al., The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Development, 1993 ,(Suppl.):125-137.
    [47] Bilinski S. M. and Jaglarz M. K., Organization and possible function of microtubule cytoskeleton in hymenoperan nurse cells. Cell Motil. Cytoskeleton., 1999, 43: 213-220.
    [48] Bitangcol J. C., Chau A. S., Stadnick E., Lohka M. J., Dicken B., Shibuya E. K., Activation of the p42 mitogen-actived protein kinase pathway inhibits Cdc2 activation and entry into M-phase in cycling Xenopus egg extracts. Mol. Biol. Cell, 1998,9:451-467.
    [49] Blades-Eckelbarger P. L., M. J. Youngbluth, The Ultrastructural of oogenesis and yolk formation in Labidocera aestiva (Copepoda, Calanoida). J. Morph., 1984,179:33-46.
    [50] Bokker-Grunwald T. and Applebaum S. W., A quantitative description of vitellogenesis in Locust migratoria migratorioides. J. Insect physiol, 1977, 23:259-63.
    [51] Bonhag P. F., Ovarian structure and vitellogenesis in insect. Ann. Rev. Entomol., 1958,3:137-61
    [52] Bohrmann J. and Haas-Assenbaum A., Gap junction in ovarian follicles of Drosophila melanogaster: Inhibition and promotion of dye-coupling between oocythe and follicle cells. Cell Tissue Res., 1993, 273:163-173.
    [53] Bowers M., Expression of the genes coding for vitellogenin (yolk protein). Ann. Rev. Entomol., 1986,31:507-531.
    [54] Boyle M. and DiNardo S., Specification, migration and assembly of the somatic cells of Drosophila gonad. Development, 1995, 121:1815-1825.
    [55] Boyle M., Bonini N. and DiNardo S., Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm
    
    Development, 1997,124:971-982.
    [56] Braun R. P., Wyatt G. R., Modulation of DNA-binding proteins in Locusta migratoria in relation to Juvenile hormone action. Insect Mol Biol., 1992, 1(2) : 99-107.
    [57] Breitwieser W., Markussen F. H., Horstmann H. and Ephrussi A., Oskar protein interaction with Vasa represent an essential step in polar granule assembly. Genes Dev., 1996,10:2179-2188.
    [58] Brennan M. D., Weiner A. J., Goralski T. J., Mahowald A. P., The follicle cells are a major site of vitellogenin synthesis in Drosophila melanogaster. Dev. Biol., 1982, 89:225-236.
    [59] Brookman J. J., Toosy A. T., Shashidhara L. S. and White R. A., The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development, 1992, 116:1185-1192.
    [60] Buehr M., McLaren A., Bartley A. and Darling S., Proliferation and migration of primordial germ cells in We/We mouse embryos. Dev. Dyn., 1993, 198:182-189.
    [61] Buhlman G., Hemolymph vitellogenin, juvenile hormone and Oocyte growth in the adult cockroach Nauphoeta cinerea during first pre-ovisiposit period. J. Insect physiol., 1976,22:1101-10.
    [62] Buszczak M., Freeman M. R., Carlson J. R., Bender M., Cooley L. and Segraves W. A., Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development, 1999,126:4581-4589.
    [63] Callaini G, Riparbelli M. G. and Dallai R., Pole cell migration through the gut wall of the Drosophila embryo: Analysis of cell interaction. Dev. Biol., 1995, 170:365-375.
    [64] Cavaliere V., Taddei C. and Gargiulo G., Apoptosis of nurse cells at the late stages of oogenesis of Drosophila melanogaster. Dev. Genes Evol., 1998, 208:106-112.
    [65] Chabot B., Stephenson D. A., Chapman V. M., Besmer P. and Bernstein A., The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature, 1988, 335:88-89.
    [66] Chen T. T. and Wyatt G. R., Juvenile hormone control of vitellogenin synthesis in Locusta migratoria. In: The Reglation of Insect Development and Behaviour, Ed. by Sehnal, F. et al., 1981, Pp 535-66.
    [67] Chen T. T. and L. J. Hillen, Expression of vitellogenin gene in insect. Gamete
    
    Research., 1983,7:179-96.
    [68] Chen A. C., H. R. Kim, R. T. Mayer et al, Vitellogenesis in stablefly Stomoxys calcitrans. Com. Biochem. Physiol., 1987, 886:897-903.
    [69] Chen T. T., Strahlendrof P. W., Wyatt G. R., Vitellin and vitellogenin from locust (Locusta migratoria.): Properties and post-translational modification in the fat body. J. Biol. Chem., 1978, 253:441-5.
    [70] Cheung W. W. K., Ultrastructural studies on the female reproductive system of the leafhopper Euscelidius variegates Kirschbaum (Homoptera:Cicadellidae) II .The vitellarium oocytes and follicular epithelium. Cytologia, 1995, 60(4) :3 95-405.
    [71] Cheung W.W.K., Ultrastructural Studies on the Female Reproductive System of the Leafhopper Euscelidium variegates Kirshbaum (Homopera: Cicadellidae).I. The germarium. Cytologia, 1994, 59:93-101
    [72] Chinzei Y, White B. N., Wyatt G. R., Vitellogenin mRNA in Locusta fat body dentification, isolation, and quatantiative changes induced by Juvenile hormone. Can J Biochem., 1982, 60(3) : 243-51.
    [73] Chinzei Y., Chino H., Wyatt G. R., Purification and properties of vitellogenin and vitellin from Locusta migratoria. Insect Biochem., 1981, 701-705.
    [74] Clark J., Lange A. B., The neural control of spermathecal contraction in the locust, Locusta migratoria. Journal of Insect Physiology, 2000, 46:191-201.
    [75] Clements A. N., Potter S. A., The fine structure of the spermateca and their ducts in the mosquito Aedes aegypti. Journal of Insect Physiology, 1967, 13:1825-1836.
    [76] Colledge W. H., Carlton M. B., Udy G. B. and Evans M. J., Disruption of c-mos causes parthenogenetic development of unfertilized mouse eggs. Nature, 1994, 370:65-68.
    [77] Cooley L., Drosophila ring canal growth requires Src and Tec kinases. Cell, 1998, 93:913-915.
    [78] Copeland N. D., Gilbert D. J., Cho B. C., Donovan P. J. et al., Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell, 1990, 63:175-183.
    [79] Correa L. M., Carroll E. J. Jr, Characterization of the vitelline envelope of the sea urchin Strongylocentrotus purpuratus. Dev. Growth Differ., 1997, 39(1) :69-85.
    [80] Correa L. M., Carroll E. J. Jr., Identification of a new sea urchin vitelline envelope sperm binding glycoprotein. Dev Growth Differ., 1997, 39(6) :773-86.
    
    
    [81] Cruickshank W. J., Ultrastructural modifications in the follicle cells and egg membranes during development of flour moth oocytes. J. Insect Physiol., 1972, 18:485-498.
    [82] Cummings M. R., Formation of the vitelline membrane and chorion in developing oocytes of Ephestia kuhniella. Z. Zellforsch., 1972, 127:175-188.
    [83] Cummings M. R., King R. C., The cytology of the vitellogenic stages of oogensis in Drosophila melanogaster. II .Ultrastructural investigation on the origion of protein yolk spheres. J. Morph., 1970,130:467-478.
    [84] Curtis D., Lehmann R. and Zamore P. D., Translational Regulation In Development. Cell, 1995,81:171-178.
    [85] Dallai R., Fine structure of the spermathecal Apis mellifera. Journal of Insect Physiology, 1975, 21: 89-109.
    [86] Davey K. G., Hormonal control of vitellogenin uptake in Rhodnius prolixus(Stal.). Amer. Zool., 1981, 21:701-705.
    [87] Davey K. G., Webster G. F., The structure and secretion of the spermatheca of Rhodnius prolixus Stal: A histochemical study. Canadian journal of Zoology, 1967, 45:653-657.
    [88] DeBianchi A. G., Coutinho M., Pereira S. D., Marinoni O., Targa H. J., Vitellogenin and vitellin of Musca domistica. Insect. Biochem., 1985, 15:77-84.
    [89] De Cuevas M., Lilly M. A. and Spradling A. C., Germlin cyst formation in Drosophila. Anna Rev. Genet., 1997, 31:405-428.
    [90] De Cuevas M. and Spradling A. C., Morphogenesis of the Drosophila fusome and its implications for oocyte specification. Development, 1998, 125:2781-2789.
    [91] Delidow B. C., Lynch J. P., White B. A. et al, Regulation of proto-oncogene expression and deoxyribonucleic acid synthesis in granulosa cells of perifused immatur rat ovaries. Biol. Reprod., 1992, 47:428-435.
    [92] De Loof A.and De Wilde J., The relation between hemolymph protein and vitellogenesis in the Colorado beetle Leptinotarsa decemlineata. J. Insect. Physiol., 1970a, 16: 57-69.
    [93] De Loof A. and De Wilde J., Hormonal control of synthesis of vitellogenic female protein in the Colorado beetle Leptinotarsa decemlineata. J. Insect. Physiol., 1970b, 16: 1455-66.
    [94] De Loof A., Synthesis and deposition of oocyte envelopes in the Colorado beetle,
    
    Leptinotarsa decemlineata Say. Z. Zellforsch., 1971, 115:351-360.
    [95] Deng W. M. and Bowenes M., Patterning and morphogenesis of the follicle cell epithelium during Drosophila oogenesis. Int. J. Dev. Biol., 1998,42:541-552.
    [96] Deng W-M., Ruohola-Baker H., Laminin A is required for follicle cell-oocyte signaling that leads to establishment of the anterior-posterior axis in Drosophila Current Biology, 2000, 10(11) :683-686.
    [97] Dhadialla T. S., Cook K. E., Wyatt G. R., Vitellogenin mRNA in Locusta fat body: coordinate induction of two genes by a Juvenile hormone analog. Dev. Biol., 1987, 123(1) :108-14.
    [98] Dhadialla T. S., Wyatt G. R., Juvenile hormone-dependent vitellogenin synthesis in Locusta migratoria fat body: inducibility related to sex and stage. Dev. Biol., 1983, 96(2) : 436-44.
    [99] Dhadialla T. S., Raikhel A. S., Biosynthesis of mosquito vitellogenin. J. Biol. Chem., 1990,265:9924-9933.
    [100] Dirsh V. M., Spermatheca as a taxonomic character in Acridoidae. Proceeding of Royal Entomology society. London, 1957,32:107-114.
    [101] Donovan P. J. et al., Migratory and postmigratory mouse primordial germ cells behave differently in culture. Cell, 1986,44:831-838.
    [102] Durica D. S., Restrepo M. A., Thomas R. J. and Beckingham K., Isolation and characterization of abl gene sequences in Calliphora erythrocephala. Gene, 1987, 59:63-76.
    [103] Edwards G. C., Braun R. P., Wyatt G. R., Induction of vitellogenin synthesis in Locusta migratoria by the Juvenile hormone analog, pyriproxyfen. J. Insect Physiol., 1992, 39(7) : 609-614.
    [104] Edwards K. A. and Kiehart D. P., Drosophila nonmuscle myosin II has multip roles in imaginal disc and egg chamber morphogenesis. Development 1996, 122: 1499-1511.
    [105] Elliott R. H. and Gilliott C., Histological changes in the ovary in relation to yolk deposition, allatectomy and destruction of the median neurosectory cell in Melanoplus sannguinipes. Can. J. Zool., 1996, 54:185-92
    [106] Engelman R, Insect vitellogenin: Biosynthesis and role in vitellogenesis. Adv. Insect physiol., 1979, 14:49-108.
    
    
    [107] Engelmann F., Insect vitellogenin: identification, biosythesis and role in vitellogenesis. Ann.Rev.Entomol., 1979, 14:48-108.
    [108] Engelman F. et al, The native vitellogenin of the cockroach leucophaea maderae. Insect Biochem., 1976,6: 211-21.
    [109] Ephrussi A. and Lehamann R., Induction of germ cell formation by oskar. Nature, 1992,358:387-392.
    [110] Ezzeddine N., Paillard L., Capri M. et al., EDEN-dependent translational repression of maternal mRNA is conserved between Xenopus and Drosopila. Developmental Biology, 2001, 99(1) : 257-262.
    [111] Favard P., Carasso N., Origine et ultrasructure des plaquettes vitelline de la planorbe. Arch. Anat. Micr. Morph. Exptl., 1958,47:211-229.
    [112] Ferenz H. J., Receptor-mediated of insect yolk protein. In: Molecular Insect Science. Ed. Hagedorn, H. H. et al., Plenum Press, New York, 1990.
    [113] Ferrell J. E. Jr., Xenopus oocyte maturation: new lessons from a good egg. BioEssays, 1999, 21: 833-842.
    [114] Finkel T. et al., Activation of ras genes in human yumors does not affect localization, modification or nucleotide binding properties of p21. Cell, 1984, 37:151-158.
    [115] Fisher D. L., Abrieu A., Simon M. N., Keyes S., Verg e V., Dor e e M. and Picard A., MAP kinase inactivation is required only for G2-M phase transition in early embryogenesis cell cycles of the starfishes Marthasterias glacialls and Astropectens aranciacus. Dev. Biol., 1998, 202: 1-13.
    [116] Fisher D. L., Brassa, T., Galas S. and Dor e e M., Dissociation of MAP kinase activation and MPF activation in hormone-stimulated maturation of Xenopus oocytes. Development, 1999a, 126: 4537-4546.
    [117] Fisher D. L., Morin N. and Dor e e M., A novel role for glycogen synthase kinase-3 in Xenopus development: maintenance of oocyte cell cycle arrest by a β-catenin-independent mechanism. Development, 1999b, 126: 567-576.
    [118] Fisher D. L., Mandart E., Doree M., Hsp90 is required for c-Mos activation and biphasic MAP kinase activation in Xenopus oocytes. EMBO. J., 2000, 19(7) : 1516-1524.
    [119] Foley K. and Cooley L., Apoptosis in late stage Drosophila nurse cell does not require genes within the H99 deficiency. Development, 1998,125: 1075-1082.
    
    
    [120] Freeman G., The role of localized cell surface-associated glycoproteins during . fertilization in the hydrozoan Aequorea. Dev. Biol., 1996, 79(1) :17-26.
    [121] Furuno N., Nishizawa M., Okazaki K. et al., Suppression of DNA replication via Mos fuction during meiotic divisions in Xenopus oocytes. EMBO. J., 1994, 13:2399-2410.
    [122] Gagneux P. and Varki A., Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology, 1999, 9(8) : 747-755.
    [123] Gallant P., Shiio Y, Cheng P. F., Parkhurst S. M., Eisenman R. N., Myc and Max homologs in Drosophila. Science, 1996,274:1523-1527.
    [124] Gebauer F., Xu W., Cooper G. M. and Richater J. D., Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J., 1994, 13:5712.
    [125] Geissler E. N., Ryan M. A. and Housman D. E., The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncongene. Cell, 1988, 55:185-192.
    [126] Gellissen G. et al, Purification and properties of oocyte vitellin from the migratory locust. J. Comp. Physiol. B, 1976, 108:287-301.
    [127] Gemmill R. M. et al., Isolation of mosquito vitellogenin genes and induction of expression by 20-hydroxyecdysone. Insect Biochem., 1986, 16:761-74.
    [128] Gerin Y, Origin and evolution of some organelles during oogenesis in the mud snail Ilyanassa obsolete: I . The yolk platelets. Acta Embryol. Exoerim., 1976,1:15-26.
    [129] Geysen J., Cardoen J., DeLoof A., Distribution of yolk polypeptides in the follocle cells during the differentiation of the follicular epithelium in Sarcophaga bullata egg follicles. Development, 1987, 101:33-43.
    [130] Gilbert L. I., Changes in lipid content during the reproduction cycle of Leucophaea maderae and effect of the juvenile hormone on lipid metabolism in vitro. Comp. Biochem. Physiol., 1967, 21:237-257.
    [131] Giorgi F. and Deri P., Cell death in ovarian chambers of Drosophila melanogaster. J. Embryol. Exp. Morph., 1976, 35:521-533.
    [132] Giuffrida A., Rosati .F., Changes in sperm tail of Eyprepocnemis plorans (Insecta, Orthoptera) as a result of in vitro incubation in spermathecal extract. Invertebrate reproduction and development, 1993, 24(1) : 47-52.
    [133] Giuffrida A., Focarelli R., Lampariello R. et al., Purification and properties of a 35
    
    kDa glycoprotein from spermathecal extract of Eyprepocnemis plorans (Insecta, Orthoptera) with axonemal cytoskeleton disassembly activity. Insect Biochemistry and Molecular Biology, 1996, 26(4) : 347-354,
    [134] Giuffrida A., Focarelli R., Lampariello R., Rosati F., Glycan chains play a role in the axonemal cytoskeleton disassembly activity of the 35 kDa glycoprotein of the spermathecal extract of Eyprepocnemis plorans (Insecta, Orthoptera). Insect Biochemistry and Molecular Biology, 1997, 27(4) : 315-321.
    [135] Glass H., Emmerich H., Properties of two follicle proteins and their possible role for vitelligenesis in the Afrian locust. Wilhelm Roux Arch. Dev. Biol., 1981, 190: 22-29.
    [136] Glinka A.V., Kleiman A. M., Wyatt G. R., Roles of Juvenile hormone, a brain factor and adipokinetic hormone in regulation of vitellogenin biosynthesis in Locusta migratoria. Biochem. Mol. Biol. Int, 1995, 35(2) : 323-8.
    [137] Goff D. J., Nilson L. A., Morisato D., Establishment of dorsal-ventral polarity of the Drosophila egg requires capicua action in ovarian follicle cells. Development, 2001, 128(22) : 4553-4562.
    [138] Goldman D. S. et al., Expression of c-mos RNA in germ cells of male and female mice, Pro.c Natl. Acad. Sci., USA, 1987, 84:4509-4513.
    [139] Goldstein J. L., Brown M. S., Anderson R. G. W., Russell D. W., Schneideer W. J., Receptor-mediated endocytosis: conceptors emerging from the LDL receptor system. Annu. Rev. cell Biol., 1985, 1:1-39.
    [140] Goltzene F., Ultrastructural study of the normal development of the oocytes of the follicle cells in Locusta migratoria. Arch Anat. Histol. Embryol., 1979, 62:55-57.
    [141] Goode S., Melnick M., Chou T. B. and Perrimon N., The neurogenic genes egghead and brainiac define a novel signaling pathway essential for epithelial morphogenesis during Drosophila oogenesis. Development, 1996, 122:3863-3879.
    [142] Grace T. D. C., Establishment of four strains cells from insect tissues grown in vitro. Nature, 1962,195:778-9.
    [143] Groden M. L., Steffens W. L., Evidence of a chemotactic substance in the spermath gland of female boll weevil. Transactions of the American Microscopical Society, 1978, 97:116-120.
    [144] Grodner M. I., Fine structure of the spermathecal gland of the cotton boll weevil, Anthonomus grandis Boheman.Coleoptera: Curculionidae. International J.of Insect
    
    Morphology and Embryology, 1979, 8:51-58.
    [145] Gschwentner R., Tadler A., Functional anatomy of the sperrnatheca and its duct in the seed bug Lygaeus simulans (Heteroptera: Lygaeidae). European Journal of Entomology, 2000,97(3) :305-312
    [146] Guild G. M., Connelly P. S., Shaw M. K. and Tilney L. G., Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J. Cell Biol., 1997,138:783-797.
    [147] Gupta B. L., Smith D. S., Fine structural organization of the sperrnatheca in the cockroach, Periplaneta americana. Tissue and Cell, 1969, 1:295-324.
    [148] Gutzeit H. O. and Huebner E., Comparison of microfilament patterns in nurse cells of different insects with polytrophic and telotrophic ovarioles. J. Embryol. Exp. Morph., 1986,93:291-301.
    [149] Haccard O., Sarcevic B., Lewellyn A., Hartley R., Roy L., Izumi T. and Mailer J. L., Induction of metaphase arrest in cleaving Xenopus embyos by MAP kinase. Science, 1993,262:1262-1265.
    [150] Hagedom H. H. and Judson C. L., Purification and site of synthesis of Aedes aeypti yolk protein. J. Exp. Zool., 1972, 182:367-78.
    [151] Hagedorn H. H. et al., Vitellogenin synthesis by the fat body of mosquito Aedea aegypti: evidence for transcriptional control. Dev. Biol., 1973, 31:285-94.
    [152] Hagedorn H. H., Kunkel J. G., Vitellogenin and vitellin in insects. Ann. Rev. Ent., 1979, 24:475-505.
    [153] Happ G. M., Happ C. M., Fine structure of the spermatheca of the mealworm beetle (Tenebrio molitor L.). Cell and Tissue Research, 1975,162:253-269.
    [154] Hamish D. G., Wyatt G. R., White B. N., Insect vitellins: identification of primary products of translation. J. Exp. Zool., 1982, 220:11-19.
    [155] Harnish D. G. and White B. N., Insect vitellins: identification purification, and characterization from eight orders, J. Exp. Zool., 1982,220:1-10.
    [156] Hartmann R., Loher W., Control of sexual behavior pattern 'secondary defense' in the female grasshoper Chorthippus curtipennis, J. Insect Physiol., 1974, 20:1713-z
    1728.
    [157] Hartmann R., The juvenile hormone carrier in the haemolymph of the acridine grasshopper Gomphocerus rufus (L.): blocking of the juvenile hormone 's action by means of repeated injections of an antibody to the carrier. Wilhelm Roux's Archives
    
    of Developmental Biology, 1978, 184:301-324.
    [158] Hashimoto N. et al, Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature, 1994, 370:68-71.
    [159] Hatakeyama M., Sawa M. and Oishi K., Ovarian development and vitellogenesis in the sawfly, Athalia rosae ruficornis Jakovlev (hymenoptera: tenthredinidae). Invert. Reprod. Dev., 1990, 17:237-245.
    [160] Hay B., Jan L. Y, Jan Y. N., A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell, 1988,55:577-587.
    [161] Heuser J., Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell. Biol., 1980,84:560-583.
    [162] Hill R. S., Bowen I. D., Studies on the ovotestis of the slug Agriolimax reticulates. Cell Tissue Res., 1976,173:465-482.
    [163] Hinsch G. W., Cone M. V., Ultrastructural observations of vitellogenesis in the spider crab Libinia emarginata L. J. Cell. Biol., 1969, 40:336-342.
    [164] Hopkings C. R., King P. E., An eletron-microscopical and histochemical study of the oocyte periphery in Bombus terrestris during vitellogenesis. J. Cell Sci., 1966, z
    1:201-216.
    [165] Horie K., Takakura K., Taii S., Narimoto K., Noda Y. et al., The expression of c-kit protein during oogenesis and early embryonic development. Biol. Reprod., 1991, 45:547-552.
    [166] Houseman J. G., Morrison P. E., Absence of female-specific protein in the hemolymph of stable fly Stomoxys calcitrans (Dipera: Muscidae). Arch. Insect Biochem. Physiol., 1986, 3:205-213.
    [167] Howard E. L., Charlesworth A., Welk J. and Mac Nicol A. M., The mitogen-activation protein kinasesignaling pathway stimulates mos mRNA cytoplasmic polyadenlation during Xenopus oocyte maturation. Mol. Cell Biol., 1999, 19:1990-1999.
    [168] Huang E. J., Nocka K., Beier D. R. et al., The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene prodct of the W locus. Cell, 1990,63:225-233.
    [169] Hudgin R. L. et al., Purification and characterization of an agglutinin from rabbit hepatocytes. J. Biol. Chem., 1974,249:5536-5539.
    
    
    [170] Huebner E., Spermathecal ultrastructure of the insect Rhodnius prolixus Stal. J. Morphol., 1980, 166:1-25.
    [171] Huebner E., Oocyte-follicle cell interaction during normal oogenesis and atresia in an insect. J. Ultrastructure Res., 1981, 74:95-104.
    [172] Huybrechts R., De Loof A., Similarities in vitellogenin and control of vitellogein synthesis within the genera Sacrophaga, Calliphora, Phormia and Lucilia (Diptera). Com. Biochem. Physiol., 1982, 72B:339-44.
    [173] Ikenishi K., Ger plasm in Caenorhabditis elegans Drosophila and Xenopus. Dev. Growth Differ., 1998,40:1-10.
    [174] Ikenishi K., Kotani M, Tanabe K., Ultrastructural changes associated with UV irradiation in the "germinal plasm" of Xenopus lavis. Dev. Biol., 1974, 36:155-168.
    [175] Indrasith L. S., Kindle H., Lanzrein B., Solubilization , identification, and localization of vitellogenin-binding site in follicles of the cockroach, Naephoeta cinerea. Arch. Insect Biochem. Physiol., 1990, 15:1-16.
    [176] lowett T. and Postlethwait J. H., The regulation of yolk polypeptidae synthesis in Drosophila ovaries and fat bady by 20-hydroxyecdysone and a juvenile hormon analog. Dev. Biol., 1980, 80:225-234.
    [177] Irie K., Yamashita O., Changes in vitellin and other yolk proteins during embryonic development in the silkworm, Bombyx mori. J. Insect Physiol., 1980, 26:811-817.
    [178] Iwaoki Y., Mastsuda H., Mutter G. L. et al., Differential expression of the proto-oncogenes c-abl and c-mos in developing mouse cells. Exp. Cell Res., 1993, 206:212-219.
    [179] Jaglarz M. K. and Howard K. R., The active migration of Drosophila primordial germ cells. Development, 1995, 121:3495-3503.
    [180] Jong-Brink M., de Wit A., deBoer H. H., A light and electron microscope study of oogenesis in the freshwater mpulmonate snail Biomphalaria glabrata. Cell Tissue Res., 1976,171:195-219.
    [181] Jongens T. A., Hay B., Jan L. Y. and Jan Y. N., The germ cell-less gene product: A posteriorly localized component necessary for germ cell development in Drosophila. Cell, 1992, 70:-569-584.
    [182] Kambysellis M. P., Genetic and hormonal regulation of vitellogenesis in Drosophila. Amer. Zool., 1977, 17:535-51.
    
    
    [183] Kanki J. P., Domoghue D. G., Progression from meiosis I to meiosis II in Xenopus oocytes require de. novo translation of the mos protooncogene, Proc. Natl. Acad. Sci., USA, 1991, 88:8594-8598.
    [184] Kaulenas M. S., Spermatheca and spermathecal accessory gland. In: Insect Accessory reproductive Structures. Zoophysiology 31. Springer Verlag, Berlin Heidelberg New York, 1992, pp:84-90.
    [185] Kevin J., Craig M., Ultrastructure of the ovary and oogenesis in the methane-seep mollusk Bathynerita naticoidea (Gastropoda; Neritidae) from the Louisiana Slope. Invertebrate biology, 1997,116(4) : 299-312.
    [186] Kim Ji Hyun., Jeong Sang Kim and Woo Kap Kim., Ulatrastructural studies on the oogenesis of pine moth. I, Follicle formation and vitellogenesis. Korean journal of Entomology, 23(4) :211-220.
    [187] Kissel H., Timokhina I., Hardy M. P. et al., Pint mutation in Kit receptor tyrosine kinase reveals essential roles for Kit signaling in spermatogenesis and oogenesis without affecting other Kit responses. EMBO J., 2000, 19(6) : 1312-1326.
    [188] Kobayashi S. and Okada M., Restoration of pole-cell-forming ability to u.v.-irradiated Drosophila embryo by injection of mitochondrial IrRNA. Development, 1989,107:733-742.
    [189] Kobayashi S., Kitamura T., Sasako H., Okada M., Two types of pole cells are present in the Drosophila embryo, one with and one without splicing activity for the third P-element intron. Development, 1993,117:885-893.
    [190] Koeppe J. K., and Ofengand J., Juvenile hormone-inducde biosynthesis of vitellogenin in Leucophaea maderae. Arch. Biochem. Biophys., 1976,173:100-13.
    [191] Koeppe J. K., and Ofengand J., Juvenile hormone-inducde biosynthesis of vitellogenin in organ culture of Leucophaea maderae fat bodies. In: Invertebrate Tissue Culture. Ed. by Kurstak, E. & K. Maramorosch., 1976, Pp185-194.
    [192] Koeppe J. K., Fuchs M., Chen T. T. et al., The role of juvenile hormone in reproduction. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology. Ed. by G. A. Kerkut and L. I. Gilbert, Oxford: Pergamon Press., 1985, Vol. 8. Pp 165-204.
    [193] Koller A. S., Dhadialla T. S., Raihel A. S., A study of receptor mediated endocytosis of vitellogenin in mosquito oocytes. Insect Biochem., 1989, 19:693-702.
    
    
    [194] Kunkel J. G., and M. L. Pan, Selectivity of yolk protein uptake:Comparison of vitellogesis of two insects. J. Insect Physiol., 1976, 22:809-18.
    [195] Kunkel J. G., Nordin J. H., Yolk protein. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology. Ed. by G. A. Kerkut and L. I. Gilbert, Oxford: Pergamon Press, 1985, Vol. 1. Pp83-111.
    [196] Kuroda H., Terada N., Nakayama H., Matsumoto Y., Kitamura Y., Infertility due to growth arrest of ovarian follicles in Sl/Slt mice. Dev. Biol, 1988, 126:71-79.
    [197] Kuster J. E. and Davey K. G., Mode of cerebral neueoseceretory cells on the function of the spermathecae in Rhodnius prolixus. Int. J. Invert. Rerod., 1986, 10:59-69.
    [198] Lafon-Cazal M., Gallois D., Lehouelleur J., Bockaert J., Stimulatory effects of male accessory-gland extracts on the myogenicity and the adenylate cyclase activity if the oviduct of Locusta migratoria. J. Insect Physiol., 1987, 33(6) : 909-915.
    [199] Lange A. B. Loughton B. G., An oviposition-stimulating factor in the male accessory reproduction gland of the locust, Locusta migratoria. General and Comparative Endocrinology, 1985, 57: 208-215.
    [200] Lange A. B., The prsence of proctolin in the reproductive system of Rhodnius prolixus. J. Insect Physiol., 1990, 36:345-351.
    [201] Lange A. B., The association of proctolin with the spermatheca of the locust, Locusta migratoria. Journal of Insect Physiology, 1993, 39(6) :517-522,
    [202] Lauverjat S., Szollosi A., Marcaillou C., Permeability of the ovarian follocle during oogenesis in Locusta migratoria L. (Insecta Orthoptera). J. Ultrastruct. Res., 1984,7:197-211.
    [203] Lay M., Zissler D., Hartmann R., Ultrastructural and functional aspects of the spermatheca of the African migratory locust Locusta migratoria migratorioides (Reiche and Fairmaire) (Orthoptera: Acrididae). International Journal of Insect Morphology and Embryology, 1999, 28(4) : 349-361,
    [204] Lee V. H., Dunbar B. S., Developmental expression of the rabbit 55kDa zona pellucida protein and messenger RNA in ovarian follicles. Dev. Biol., 1993, 46:1860191.
    [205] Lemaitre J. M., Bocquet S., Buckle R. and Mechali M., Selective and rapid nuclear translocation of a c-Myc-containing complex after fertilization of Xenopus laevis eggs. Molecular and Cellular Biology, 1995, 15(9) : 5054-5062.
    
    
    [206] Lin H. and Spradling A. C, Fusome asymmetry and oocyte determination in Drosophila. Dev. Genet, 1995, 16: 6-12.
    [207] Lin H., Yue L. and Spradling A. C., The Drosophila fusome, a gremline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development, 1994, 120: 947-956.
    [208] Liu X., Kim C. N., Yang J., Jemmerson R. and Wang X., Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 1996, 86: 147-157.
    [209] Lock M., White B. N., Wyatt G. R., Cloning and 5'end nucleotide sequences of two juvenile hormone-inducible vitellogenin genes of the African migratory locust. DNA, 1987,6:311-342.
    [210] Loeser C. R., Tulsiani D. R., The role of carbohydrates in the induction of the acrosome reaction in mouse spermatozoa. Biol. Reprod., 1999, 60(1) :94-101 .
    [211] Longo G., Viscuso R., Sottile L., Giuffrida A, Lectin binding to the egg envelopes in Eyprepocnemis plorans (Charp.) (Orthoptera, Acrididae). Basic Appl. Histochem., 1990, 34(2) : 127-34
    [212] Lorca T, Galas S., Fesquet D., Devault A., Cavadore J. C. and Dor e e M., Degradation of the proto-oncogene product p39mos is not necessary for cyclin proteolysis and exit from meiotic metaphase: requirement for a Ca2+-calmodulin dependent event. EMBO J., 1991,10:2087-2093.
    [213] Mahajan-miklos, S. and Cooley, L. Intercellular cytoplasm transport during Drosophila oogenesis. Dev. Biol., 1994,165: 336-351.
    [214] Mahowald A. P., Fine structure of pole cells and polar granules in Drosophila melanogaster. J. Exp. Zool. 1962,151: 201-215.
    [215] Mahowald A. P., Polar granules of Drosophila II. Ultrastructural changes during early embryogenesis. J. Exp. Zool., 1968,167: 237-261.
    [216] Mahowald A. P., Ultrastructural observation on oogenesis in Drosophila. J. Morphol., 1972,137:29-48.
    [217] Mahowald A. P. and Kambysellis M. P., Oogenesis. In: " The genetics and biology of Drosophila" (M. Ashburner and T. Wright, Eds.), Vol. 2D, pp. 141-224. Academic Press, New York, 1980.
    [218] Manova K. and Bachvarova R. F., Expression of c-kit encoded at the W locus of mice in developing embryonic germ cells and presumptive melanoblasts. Dev. Biol.,
    
    1991, 146:312-324.
    [219] Manova K., Nocka K., Besmer P. and Bachvarova R. R, Gonadal expression of c-kit encoded at the W locus of mouse. Development, 1990, 110:1057-1069.
    [220] Marchiondo A. A., Meola S. M., Palma K. G. Slusser J. H. and Meola R. W., Choron formation and ultrastructure of the cat flea (Siphonatera: Pulicidae ). J. Medical Entomology, 1999,36(2) : 149-157.
    [221] Margolis J. and Spradling A., Identification and behavior of epithelial stem cell in the Drosophila ovary. Development, 1995,121:3797-3807.
    [222] Masui Y., Markert C. L., Cytoplasmic control of nuclear behavior during meiotic muturation of frog oocytes. J. Exp. Zool., 1971,177:129-146.
    [223] Matova N. and Cooley L., Comparative aspects of animal oogenesis. Developmental Biology, 2001, 231:291-320.
    [224] Matten W. T., Copeland T. D., Ahn N. G. and Vande Woude G. R, Positive feedback between MAP kinase and Mos during Xenopus oocyte maturation. Dev. Biol., 1996,179:485-492.
    [225] Maturi G., Infante V., Carotenuto R., Focarelli R., Specific glycoconjugates are present at the oolernma of the fertilizarion site in the egg of Discoglossus pictus (Anurans) and bind spermatozoa in an in vitro assay. Dev. Biol., 1998, 204:210-223.
    [226] Miller D. J., Roy L. A. X., Carbohydrates and fertilization in animals. Mol. Reprod Dev., 1990, 26: 184-198.
    [227] Mohr S. E., Dillon ST., Boswell R. E., The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes & Development, 2001,15(21) :2886-2899,
    [228] Moore L. A., Broihier H. T., Van Doren M., Lunsford L. B., Lehmann R., Identification and embryonic gonad formation in Drosophila. Development, 1998, 125:667-678.
    [229] Mozingo N. M. and Hedrick J. L., Distribution of lectin binding sites in Xenopus laevis egg jelly. Dev. Biol., 1999, 210(2) :428-439.
    [230] Mutter G. L., Wolgemuth D. L., Distinct development patterns of c-mos protooncogene express in female and male mouse germ cell. Proc. Natl. Acad. Sci., USA, 1987,84:5103-5105.
    [231] Nao N., Nagashima T. and Matsuzaki M., Ovarian structure and oogensis of the Webspinner (Embioptera, Oligotomidae). Japanese J. Entomol., 1993, 61(3) : 605-
    
    612.
    [232] Nishizawa, M., Okazaki, K., Furuno, N., Watanabe, N.and Sagata, N. The 'second-codon rule ' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. EMBO J., 1992,11:2433-2446.
    [233] Noirot and Quennedey, Fine structure of insect epidermal gland. Annual Review of Entomology, 1974,19:61-80.
    [234] Okada, E., Waddington, C. H., The submicroscopic structure of the Drosophila egg. J. Embryol. Exp. Morph., 1959,7:583-597.
    [235] Okada, M., Kleimen, I. A., Schneiderman, H. A., Restoration of fertility in sterilized Drosophila eggs by transplantation of polar cytoplasm. Dev. Biol., 1974,37:43-54.
    [236] Okazaki, K., Nishizawa, M., Furuno, N., Yasuda, H., Sagata, N., Differential occurrence of CSF-like activity and transforming activity of Mos during the cell cycle in fibroblast. EMBO. J., 1992,11(7) :2447-2456.
    [237] Oliveira, P. L., De Alencar Petretski, M. D., Masuda, H., Vitellin processing and degradation during embryogenesis in Rhodnius prolixus. Insect Biochem., 1989, 19: 489-498.
    [238] Oliveira, P. L., Gondim K. C., Guedes, D. M., Uptake of yolk proteins in Rhodnius prolixus. J. Insect Physiol.,1986,32:859-66.
    [239] Packer, A., Hsu, Y. C., Besmer, P., and Bachvarova, R. F., The ligand of the c-kit receptor promotes oocyte growth. Developmental Biology, 1994,161:194-205.
    [240] Paemen L., Schoofs L., Proost P., Decock B., De Loof A., Isolation, identification and synthesis of LOM-AG-Myotropin II, a novel peptide in the male accessory reproductive glands of Lucusta migratoria. Insect Biochemistry, 1991, 21: 243-248.
    [241] Paesen G., De Loof A., The presence of a progesterone binding protein in spermathecae of the migratory locust, Locusta migratoria migratorioides R. & F. International journal of Invertebrate Reproduction, 1988, 14(2-3) :267-277,
    [242] Pal S. G. and Ghosh D., Electron microscopic study of the spermatheca of Gesonula punctifrons (Acrididae: orthoptera). Proceedings of the Indian Academy of science (Animal Science), 1982, 9. 1: 99-112.
    [243] Pan M. L. and Wyatt G. R., Control of vitellogenin synthesis in Monarch butterfly by Juvenile hormone. Dev Biol., 1976, 54: 127-34.
    [244] Pan, M. L., Bell, W. J. and Telfer, W. H., Vitellogenin blood protein synthesis by
    
    insect fat body. Science, 1969,165:393-394.
    [245] Pan, M. L., Wyatt, G. R., Juvenile hormone induces vitellogenin synthesis in the monarch butterfly. Science, 1971,174:503-505.
    [246] Papassideri, I. S., Margaritis, L.H., Gulik-Krzymicki, T., The eggshell of Drosophila melanogaster. VIII. Morphogenesis of the wax layer during oogenesis. Tissue & Cell, 1993,25(6) : 929-936.
    [247] Pepling M E, de Cuevas M, Sprading A C, Germline cysts: A conserved phase of germ cell development? Trends Cell Biol., 1999 ,9:257-262.
    [248] Picard, A., Galas, S., Peaucellier, G. and Dor e e, M. Newly assembeled cyclin B-cdc2 kinase is required to duppress DNA replication between meiosis I and II in starfish oocytes. EMBO J., 1996,15:3590-3598.
    [249] Pomerance, M., Thang, M. N., Tocque, B. and Pierre, M., The rat-GTPase-Activating protein SH3 domain is required for Cdc2 activation and Mos induction by oncogenic ras in Xenopus oocytes independently of mitogen-activated protein kinase activation. Molecular and Cellular Biology, 1996,16(6) : 3179-3186.
    [250] Postlethwait, J. H. and Kunert, C.J., Endocrine and genetic regulation of vitellogenesis in Drosophila. In: Comparative Endocrinology: Development and Directions. Ed. By Ralph, C. 1986, Alan Liss, New York, pp 33-52.
    [251] Postlethwait, J. H. and Handler, A. M., The roles of juvenile hormon and 20-hydroxyecdysone during vitellogenesis in isolated abdomens of Dorsophila melanogaster. J. Insect Physiol. 1979, 25:455-60.
    [252] Postlethwait, J.H. and Shirk, P.O., Genetic and endocrine regulation of vitellogenesis in Drosophila. Amer. zool., 1981 21:687-900.
    [253] Postlethwait, J. H., Giorgi, R, Vitellogenesis in insect. In: Developmental Biology. A Comprehensive Synthesis, ed. E. Browder, 1:85-126. , 1985 New York: Plenum.
    [254] Propst F, Vande Woude G F Express of c-mos protooncogene transcription mouse tissues, Nature, 1985,315:516-518.
    [255] Railkhel, A., Accumulation of memberane-free clathrin-like lattices in the mosquito oocyte. Eur. J. Cell BioL, 1984,35:279-283.
    [256] Railkhel, A. S. and Lea, A. O., The specific ligand, vitellogenin, directs internalized proteins into accumulative compartments of mosquito oocytes. Tissue & Cell., 1986 ,18:559-574.
    
    
    [257] Railkhel, A. S. and Lea, A. O., Control of follicular epithelium development and vitelline envelope formation in the mosquito, role of juvenile hormone and 20-hydroxyecdysone. Tissue & Cell., 1991,23:1-4.
    [258] Railkhel, A. S. and Dhadialla, T. S. Accumulation of yolk proteins in insect oocytes. Ann. Rev. Entomol. 1992,37: 217-251.
    [259] Raz T; Skutelsky E; Shalgi R., Post-fertilization changes in the zona pellucida glycoproteins of rat eggs. Histochem. Cell Biol., 1996 ,106(4) :395-403
    [260] Reid, P., Chen, T. T., juvenile hormone control of vitellogenin synthesis in the fat body of the Locust (Locusta migratoria): Isolation and characterization of vitellogenin polysome and their induction in vivo. Insect Biochem., 1981,11: 297-305.
    [261] Renshaw, M. and Hurd, H., Vitellogenin sequestration by Simulium oocytes: the effect of Onchocerca infection. Physiol. Entomol. 1994,19:70-74.
    [262] Ries, E., Die.Prozesse der Eibidung und des Eiwachstums bei Pediculiden and Mallophagen. Z. Zellforsch., 1932,16(3) :314.
    [263] Rohrkasten, A. and Ferenz, H. J., In vitro study of selective endocytosis of vitellogenin by Locusta oocytes. Roux's Arch Dev. Biol., 1985,194: 411-416.
    [264] Rongo, C., Lehmann, R., Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends in Genetics, 1996, 12(3) : 102-109.
    [265] Roth, T. F. and Porter, K. R., Yolk protein uptake in the oocyte of mosquito Aedes aegypii. J. Cell Biol., 1964, 20:313-332.
    [266] Roy, L. M., Haccard, O., Izumi, T., Lattes, B. G., Lewellyn, A. L. and Mailer, J. L., Mos proto-oncogene function during oocyte maturation in Xenopus. Oncogene, 1996,12:2203-2211.
    [267] Rubacha, A., Tucker, M. A., Valoir, T. D., Belikoff, E. J., Beckingham, K., Genes with specific functions in the ovarian follicles of Calliphora eryhrocephala (Dipera). Developmental Biology, 1988,129:449-463.
    [268] Ruberstein, E. C., The role of an epithelial occlusion zone in the termination of vitellogenesis in Hyalophora cecropia ovarian follicles. Dev. Biol., 1979,71:115-127.
    [269] Sagata, N., What does Mos do in oocytes and somatic cells? BioEssays, 1997,19:13-21.
    
    
    [270] Sagata, N., Meiotic metaphase arrest in animal oocyes: its mechanisms and biological significance. Cell Biology, 1996,6:22-28.
    [271] Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. and Vande Woude, G. F., Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature, 1988,335:519-525.
    [272] Sagata, N., Daar, I., Oskarsson, M., Showalter, S. D., Vande Woude, G. F., The product of the mos proto-oncogene as a candidate " initiator" for oocyte maturation. Science, 1989,245:643-646.
    [273] Sagata, N., Watanabe, N., Vande Woude, G. F. and Ikawa, Y., The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature, 1989,342:512-518.
    [274] Saleh, D. S., Zhang, J., Wyatt, G. R., Walker, V. K., Cloning and characterization of an ecdysone receptor cDNA from Locusta migratoria. Mol Cell Endocrinol, 1998,143(1-2) : 91-96.
    [275] Sander, K., Gutzeit, H. O. and Jackie, H., Insect embryogenesis: morphology, physiology, genetic and molecular aspects. In " Comprehensive Insect Physiology, Biochemistry and Pharmacology". 1985, 1:319-385. Pergamon, New York.
    [276] Sathe,A.A., Joshi, P.V., Comparative study on the spermatheca of some orthopteran insects. Cytologia, 1988,53(2) : 347-352.
    [277] S a ez, F. J., Madrid, J. F., Aparicio, R., Hern a ndez, F. and Alonso, E., Carbohydrate moieties of the interstitial and glandular tissues of the amphibian Pleurodeles waltl testis shown by lectin histochemistry. J. Acat, 2001,78:47-56.
    [278] Schindler, J.F., DeVries, U., Polarized distribution of binding sites for concanavalin A and wheat-germ agglutinin in the zona pellucida of goodied oocytes (teleostei). Histochemistry., 198991:413-417.
    [279] Schoeters, E., Billen, J. The importance of the spermathecal duct in bumblebees. Journal of Insect Physiology, 200046(9) : 1303-1312.
    [280] Shelley, M. E., Hossain, A., Mcdonough, P. G. et al. 1994 Differential c-jun gene expression with tonically administered steroids in rat ovary and uterus. Am. J. Obstet. Gynecol, 170:1410-1415.
    [281] Sheets, M. D., Wu, M. and Wixkens, M., Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature, 1995,374:511-516.
    [282] Shibata, H., Suganuma, N., Miyamoto, N. et al., Gonadotropin induces expression
    
    of c-fos and c-jun genes in rat ovaries. Endocrinol. Jpn., 1992,39:455-460.
    [283] Shulman, J. M., Benton, R., St. Johnston, D., The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell, 2000,101:377-388.
    [284] Slifer, E. H., The internal genitalia of female Acridinae, Oedipodinae and Pauliniinae (Orth. Acridiae). Journal of Morphology, 1939, 65: 437-467.
    [285] Slifer, E. H., The internal genitalia of female Thrinchinae, Batrachoteriginae, Pamphaginae and Pyrgomorphinae (Orth. Acridiae). J. Morpho., 1940a, 66: 175-195.
    [286] Slifer, E. H., The internal genitalia of female Ommexechinae and Cyrtacanthacridinae (Orth. Acridiae). J. Morphol., 1940b ,67: 199-239.
    [287] Slifer, E. H., The internal genitalia of some previously unstudied species of female Acridinae (Orth. Acridiae). Journal of Morphology, 1943,72: 225-237.
    [288] Smith, L, D., The role of a "germinal plasm" in the formation of primordial germ cells in Rana pipienens. Dev. Biol., 1966,14:330-347.
    [289] Spradling, A., Developmental genetics of oogenesis. In: " The Development of Drosophila melanogaster " (M. Bate and A. Martinez-Arias, Eds.), pp.1-70. 1993 ,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
    [290] Suzuki, A. C. and Nishimura, K., Multilaminar/vesicular bodies accumulating glycoconjugates in primary spermatocytes of cricket, Gryllus bimaculatus. Zoological Science, 1998,15:93-96.
    [291] Szczepan Bilinski, Oogenesis in Acerentomon gallicum Jonescu. Cell Tiss. Res., 1977,179:401-412
    [292] Tata, J. A. and Smith, D. R, Vitellogenesis: A versatile model for hormone regulation of Gene expression. Recent progress in hormone research, 1979, 35: 47-94.
    [293] Telfer, W. H., Immunological studies of insect metamorphosis II .The role of a sex-limited blood protein in egg formation by the cecropia silkworm. J. Gen. Physiol. 1954,37:539-558.
    [294] Telfer, W. H., The selective accumulation of blood proteins by the oocytes of saturniid moths. Biol. Bull. Mar. Biol. Lab. Woods Hole., 1960,118:338-51.
    [295] Telfer, W. H., The route of entry and localization of blood proteins in the oocytes of satumiid moths. J. Biophs. Biochem. Cytol., 1961, 9:747-759.
    
    
    [296] Telfer, W. H., The mechanism and control of yolk formation. Anna. Rev. Entomol., 1965,10:161-184.
    [297] Telfer, W. H., Smith, D. S., Aspects of egg formation. In : Insect infrastructure (A. C. Neville, ed.), Roy. Ent. Soc. Sympos. 5. 1970, Oxford: Blackwell.
    [298] Telfer, W. H., Sulfate and glucosamine labelling of the intercellular matrix in vitellogenic follicles of a moth. Wilhelm Roux. Arch. Dev. Biol., 1979,185:347-362.
    [299] Telfer, W. H., Huebner, E., Smith, S. D., The cell biology of vitellogenic follicles in Hyalophora and Rhodnius. In Insect Ultrastructure. Ed. R. C. King, H. Akai, 1982,pp.118-149. New York/London; Plenum.
    [300] Usmani, M. K. and Shafee, S. A., Female genitalia in some Indian species of Pyrgomorphinae (Orth. Acridiae). Journal of entomology Research, 1980, 4(1) : 41-44.
    [301] Van Doren, M., Broihier, H. T., Moore, L. A., Lehmann, R., HMG-CoA reductase guides migrating primordial germ cells. Nature, 1998,396: 466-469.
    [302] Varkey, J., Chen, P., Jemmerson, R. and Abrams, J. M., Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell Biol., 1999,144: 701-710.
    [303] Villavaso, E. J., The role of the spermathecal gland of the boll weevil, Anthonomus grandis. J. Insect Physiol., 1975, 21:1457-1463.
    [304] Walter, S. A., Guadagno, T. M. and Ferrell, J. E. J., Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase. Mol. Biol. Cell, 1997,11:2157-2169.
    [305] Ward R. T., The origin of protein and fatty yolk in Rana pipiens: II. Electron microscopical and cytochemical observations of young and mature oocytes. J. Cell Biol, 1962,14:309-341.
    [306] Waring, G. L., Allis, C. D., Mahowald, A. P., Isolation of polar granules and the identification of polar granules-specific protein. Dve. Biol., 1978 66:197-206.
    [307] Warrior, R., Primordial germ cell migration and the assembly of the Drosophila embryonic gonald. Dve. Biol., 1994,166:180-194.
    [308] Wassarman, P. M., Mouse gamete adhesion molecules. Biol. Reprod., 1992 46:186-191.
    [309] Watanabe, N., Hunt, T., Ikawa, Y. and Sagata, N., Independent inactivation of MPF and cytostatic factor (Mos) upon fertilization of Xenopus eggs. Nature,
    
    1991,352:247-248.
    [310] Wheatlet, S., Kulkarni, SL and Karess, R., Drosophila nonmuscle myosin II is requried for rapid cytoplasmic trasport during oogenesis and for axial nuclear migration in early embryos. Development, 1995 ,121: 1937-1946.
    [311] Williamson, A. and Lehmann, R., Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol.,1196,12:365-391.
    [312] Wilsch-brauninger, M., Schwarz, H., N u sslein-Volhard, C, A sponge-like structure involved in the association and transport of maternal products during drosophila oogenesis. J. Cell Biol., 1997,139:817-829.
    [313] Winterton, S. L., Merritt, D. J., O'Toole, A. et al., Morphology and histology of the spermathecal sac, a novel structure in the female reproductive system of Therevidae (Diptera: Asiloidea). Internal. J. Insect Morphol. Embryol., 1999, 28(4) : 273-279.
    [314] Woodruff, R. I., Telfer, W. H., Activation of a new physiological state at the onset of vitellogenesis in Hyalophora follicles. Dev. Biol., 1990,138:410-420.
    [315] Woodruff, R. L. and Tilney, L. G. Intercellular bridges between epithelial cells in the Drosophila ovarian follicle: A possible aid to localized singaling. Dev. Biol., 1998,200: 82-91.
    [316] Wyatt, G. R., Vitellogenin synthesis and the analysis of juvenile hormone action in Locusta fat body. Can. J.Zool. 1988,66:2600-10.
    [317] Wyatt, G. R., Developmental and juvenile hormone control of gene expression in locust fat body, pp 163-172. In: Molecular Insect Science. Ed. by Hagedorn H. H. et al. 1990, Plenum Press, New York.
    [318] Wyatt, G. R. et al., The vitellogenin genes of Locusta migratoria and other insects. Adv. Invertebr. Reprod. 1984, 3:73-80.
    [319] Wyatt, G. R., and Pan, M. L., Insect plasma proteins. Ann. Rev. Biochem. 1978,47:779-817.
    [320] Wyatt, G. R., Cook, K. E., et al, Juvenile hormone action on fat body. Insect Biochem. 1987 ,17(7) : 1070-1073.
    [321] Wyatt, G. R., et al., Juvenile hormone-induced vitellogenin synthesis in locust fat body in vitro. In: Invertebrate Tissue Culture. Ed. by Kurstak, E. and Maramorosch, k. 1976,Ppl95-202.
    [322] Yi, S. X., Gillott, C., Effects of tissue extracts on oviduct contraction in the migratory grasshoper, Melanopus sanguinipes. J. Insect Physiol., 2000, 46: 519-
    
    525.
    [323] Yoshinaga, K., Nishikawa, S., Ogawa, M. et al., Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development, 1991,113:689-699.
    [324] Yurewicz, E. C. et al., Generation and characterization of site-directed antisera against an aminoterminal segment of a 55kD sperm adnesive glycoprotein ffrom zona pellucida of pig oocytes. J. Reprod Pert., 1993 ,98:1470152.
    [325] Zhai, Q. H. et al., Vitellogenin synthesis in the lady beetle Coccinella septempunctata. Insect Biochem., 1984,14: 299-305.
    [326] Zhai, Q. H. et al., Regulation of vitellogenin synthesis by juvenile hormone analogue in Coccinella septempunctata. Insect Biochem., 1987, 17:1059-64.
    [327] Zhang, N., Zhang, J., Cheng, Y, Howard, K., Identification and genetic analysis of wunen, a gene guiding Drosophila melanogaster germ cell migration. Genetics, 1996, 143:1231-1241.
    [328] Zhang N., Zhang J., Purcell K., Howard K., The Drosophila protein Wunen repels migrating germ cells. Nature, 1997, 385:64-67.
    [329] Zhang Y. J. and Kunkel J. G., Most egg calmodulin is a follicle cell contribution to the cytoplasm of the Blattella germanica oocyte. Developmental Biology, 1994, 161:513-521.
    [330] Zsebo K. M. et al., Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell, 1990, 63:213-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700