家蚕胚胎发育相关基因的克隆、表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎发育是生物学研究中最重要的基本问题之一,所有的多细胞生物都是由一个单细胞——受精卵发育而来。受精卵通过一系列的分裂和分化形成不同形态和功能的细胞,然后进一步构建各种组织和器官,最后建成一个胚胎有机体。整个发育过程都是大量的基因按照一定的时间、空间和次序表达的结果,其中许多调控机制在胚胎发育阶段就已经决定,因此,研究胚胎发育调控机制对于阐明生物的生长、发育和起源进化具有重要意义。
     昆虫是目前地球上最繁盛的物种类群,了解昆虫的生活方式,探讨它们怎样成功地在地球的任何一个角落繁衍生存是一项非常重要的研究工作。家蚕是一种完全依靠人类饲养生存的经济昆虫,是重要的模式昆虫之一,有非常重要的产业价值,并且有着很好的研究基础并保持有大量的突变体及繁育系。对家蚕的胚胎发育相关基因进行研究,不仅可以加速人们对家蚕胚胎发育调控机制的分子水平研究,也可以促进人们对其它昆虫胚胎发育机制的了解,并可为昆虫分化多样性的分子机制研究提供线索。
     借鉴模式生物果蝇中的先进研究成果,利用家蚕的全基因组序列、EST以及基因芯片数据,我们对家蚕胚胎发育相关基因进行了生物信息学分析,同时采用克隆、表达、RT-PCR、免疫组织化学染色和RNA干涉等技术对部分基因的结构、转录水平及蛋白质水平的时空表达以及功能进行了分析和研究。获得的主要结果如下:
     1.家蚕发育相关基因的生物信息学分析
     基于序列的相似性,在家蚕基因组数据中检索参与果蝇胚胎发育调控级联的86个重要基因的同源基因,结果表明,除6个母性基因在家蚕中没有找出同源基因外,其余基因在家蚕中均存在同源基因,并且其中一部分具有相当高的相似性。这一结果表明参与胚胎发育调控级联的大多数基因在家蚕和果蝇间较为保守。
     利用果蝇及其它物种中已知的homeodomain序列对家蚕基因组中的homeobox同源基因进行了检索和分析,结果表明,家蚕中存在92个homeobox基因,所编码的homeodomain蛋白分属于21个不同的家族和亚家族。大多数在其它物种中得到鉴定的homeodomain家族在家蚕中都存在,如ABD-B,Antp,Lab,Cad,CUT,Ems,EN,Eve,H2.0,NK-2,ZFH,PARIED,SIX,LIM,POU,ro,msh和TALE等。其中,有23个基因所编码的homeodomain蛋白属于PARIED家族,是基因数目最多的一个家族;有12个基因所编码的homeodomain蛋白属于Antp家族,为第二大家族。同果蝇相比,家蚕中一些家族成员的数目有所增加,如果蝇的Lab亚家族只有1个基因成员,在家蚕中增加到了6个;还有些有所减少,如家蚕LIM和POU家族中的基因数目分别减少了2个和3个。
     生物信息学分析结果表明,参与果蝇胚胎发育调控的大部分基因在家蚕中都存在同源基因,推测家蚕的胚胎发育调控机制同果蝇相似。而分析所鉴定的参与家蚕胚胎发育调控级联的同源基因以及homeobox同源基因为进一步的功能研究提供了可靠的数据和信息。以此为基础,我们选择了部分基因进行克隆、表达及功能研究,其中包括两个母性基因(vasa和mago nashi),一群家蚕特异的homeobox基因和一个同源异型基因(AbdB)。
     2.家蚕vasa基因的结构和mRNA表达型研究
     Vasa mRNA和VASA蛋白都是果蝇生殖质的主要成分,其同源基因已经在许多物种中得到鉴定。利用家蚕的基因组数据和EST数据,我们对家蚕vasa基因的结构进行了分析。结果表明,家蚕vasa基因由13个外显子组成,在第二和第三外显子间插入了一个mariner型转座子,散布距离约10Kb,同黑腹果蝇的vasa基因相比增加了6个外显子,复杂度明显增加。RT-PCR检测结果表明,家蚕vasa基因在胚胎发育的各个时期均有表达,但在5龄第3天幼虫中,只在生殖腺中特异性表达,在其它组织中不表达。这一结果进一步证实了前人的研究结果,说明家蚕的vasa基因同其它物种vasa同源基因的功能相似,也是生殖系特异的成分之一。以vasa基因作为一个标志基因,我们合成地高辛标记的cDNA探针,在探索中建立了家蚕的胚胎及组织原位杂交技术体系。原位杂交结果表明,vasa基因在家蚕幼虫中只在生殖系来源的细胞中表达,在其它的组织细胞(如结缔组织)中无表达。
     3.家蚕mago nashi基因的发育表达研究
     Mago nashi是一个进化中高度保守的基因,它所编码的MAGO蛋白是EJC(exon-exon junction complex)复合体的成分之一,负责mRNA从细胞核到细胞质中的运输过程,同时也是NMD途径(nonsense-mediated mRNA decay)的重要成分之一,参与剪接后mRNA的质量控制。我们克隆了家蚕的mago nashi基因,对其结构和时空表达模式进行了分析和检测。结果表明,家蚕mago nashi基因由2个外显子组成,编码区长度为441bp,编码146个氨基酸。对EST数据的分析结果表明在其5’端可能存在选择性剪接。RT—PCR检测和组织芯片数据分析结果表明,家蚕mago nashi基因在胚胎、幼虫、蛹和蛾期都有表达,在5龄第3天幼虫的各组织中也均有表达,但在生殖腺和丝腺中的表达量高于其它组织。我们制备了家蚕MAGO蛋白的多克隆抗体,对MAGO蛋白在生殖腺和丝腺中的表达分布进行了免疫组化检测。结果表明,家蚕mago nashi基因在生殖腺和丝腺的细胞核和细胞质中均有表达,且在生殖腺细胞核中的表达强于细胞质中。推测家蚕MAGO蛋白同果蝇中的同源体功能相似,是EJC复合体的重要成分,参与mRNA的运输和定位。
     4.家蚕HOX1-like cluster(Hlc)基因的鉴定及其结构和进化分析
     在进行生物信息学分析的过程中,我们发现了scaffold001640中存在家蚕特有的一串homeobox基因,呈串联重复状,在基因组注释中的编号分别为Bmb008349,Bmb008350,Bmb008351,Bmb008352,Bmb008354和Bmb008355。这群基因的散布距离约为35Kb,每个基因编码homeodomain结构域1~3个不等,因为它们所编码的homeodomain序列同脊椎动物HOX基因群蛋白的homeodomain序列较为相似,所以将这群基因命名为HOX-like cluster(Hlc)基因,并按照基因编号的顺序,将其中的每个基因分别命名为Hlc-1,Hlc-2,Hlc-3,Hlc-4,Hlc-5和Hlc-6。除Hlc-5基因的转录方向相反外,其它5个基因的转录方向均相同。除Hlc-6~Hlc-5和Hlc-5~Hlc-6两段基因间区外,Hlc群基因的其余部分均得到了进一步的克隆验证。结合早期的染色体原位杂交定位和新完成的家蚕基因组9×覆盖度的序列拼接结果,我们分析发现这群基因位于家蚕第六染色体上传统HOX群基因Proboscipedia(Pb)和zerknüllt(zen)之间。家蚕HOX基因群的这种特殊结构在其它物种中未见报道。
     对家蚕、果蝇、按蚊、蜜蜂以及人中HOX群基因的系统发生关系进行了分析,结果表明,Hlc群基因首先自己聚为一类,然后再同其它物种来源的zen基因聚在一起,最后和其它HOX基因相聚。推测Hlc群基因起源于Bmzen基因。
     芯片数据分析及RT-PCR检测结果表明,Hlc-6基因在雌蛹的发育中有表达,在雌蛾中的表达量达最高,但在雄蛹和雄蛾以及产后的卵中检测不到任何表达,表明这一基因是一个母性基因。
     5.家蚕Abdominal-B(AbdB)基因的克隆、mRNA表达型及功能研究
     AbdB基因决定昆虫腹部体节后部及末端的分化。早期研究表明Abd-B基因在果蝇生殖腺的发育中起重要作用,并且可以调控色素基因的表达,引起雌雄个体形态上的差异。根据生物信息学分析结果,我们设计引物克隆了家蚕的AbdB基因,对其在不同发育时期的表达进行了检测,并合成RNA双链探针,采用RNAi技术对该基因的功能进行了深入研究。RT-PCR检测结果表明,家蚕AbdB基因在产卵后30h左右开始表达,并且表达量逐渐增强,在产卵后7d表达量达到最高,而后逐渐降低。利用芯片数据对家蚕AbdB基因在蛹、蛾发育时期的表达进行分析,结果表明,该基因在整个蛹、蛾发育期均有表达,且在上簇后12h和上簇后7d,在雌、雄个体之间的表达水平存在显著差异。取雌、雄蛹的生殖腺材料进一步对上簇后7d AbdB基因在雌、雄蛹中的表达差异进行了验证,结果同前面分析一致。推测AbdB基因与雌、雄蛹生殖腺的发育有关。
     制备DIG标记的AbdB RNA探针,以上簇两天的蛹输卵管为材料进行原位杂交,结果表明,AbdB基因在输卵管腔内、卵间隙内有表达,特别是在输卵管的末端有高表达,但是在正发育形成的卵中无表达。对家蚕胚胎期AbdB基因的RNAi研究结果表明,AbdB基因在家蚕胚胎发育中起重要作用,能够决定第10~13体节的特征。该基因的沉默可以引起原本不长腹足的体节产生过剩附肢,并可以影响尾角和气门的发育。突变表型的产生对探针浓度有一定的剂量依赖性。对家蚕5龄末期幼虫AbdB基因的表达进行干涉研究,发现在AbdB基因沉默的情况下,蛹输卵管不能够正常生长伸长,未发育成熟的卵粒在输卵管的末端集聚,导致形成畸形。未成熟卵中的卵母细胞和滋养细胞也发育异常,呈空泡状和碎片状。这一结果表明AbdB基因在家蚕蛹输卵管的发育中起重要作用。
Embryonic development is one of the most important basic questions in biology. All of the multicellular organisms are developed from a single cell, zygote. Zygote cleavages and differentiates into cells with different morphology and function. Various tissues and organs are subsquently formed, consquently develops a embryonic organism. The whole embryonic developmental course results from the ordinal expression of a large number of genes according time and space. Many developmental mechanisms have been determined in the embryonic stage. Therefore, study on the regulative mechanism of embryonic development is important for elucidate principles of biologic growth, development and evolution.
     Insects are the most prosperous life form on the planet with wide distribution. It is interesting and important to explore the secret how they can survive and reproduce anywhere around the world. Silkworm is an important economic insect which is raised indoors, also is one of the most noted model insects with solid research basis and numerous mutant lines and breed lines. Therefore, study on silkworm embryonic development-related genes can not only accelerate researches in embryonic developmental mechanism of silkworm at the molecular level, but also promote understandings to developmental regulatory mechanism of others insects and provide clues for studies on diversity of insects.
     Learning from advanced achievements in Drosophila, we performed a homology search on embryonic development-related genes in the silkworm genome by bioinformatics analysis. The structure, mRNA and protein spatio-temporal expression profile and function of several homologous genes have been analyzed by clone and expression technique, RT-PCR, immunohistochemistry and RNAi techniques based on genomic sequence, EST and gene chip data of silkworm. The major findings are as follows.
     1. Bioinformatics Analysis of Silkworm Development-Related Genes
     According to sequence homology, homologous genes for 86 genes participating in embryonic development genetic hierarchy of Drosaphila were searched in silkworm genome, including 43 maternal genes, 12 gap genes, 9 pair rule genes, 13 segment polarity genes and 9 homeotic genes. Results show that all but 6 maternal genes have the homologues in silkworm genome and some of them have high similarity. This result implies that genes involved in developmental regulation are conservative between Drosaphila and silkworm.
     We searched homeobox homologues in silkworm genome by utilizing known homeodomain sequences discovered in Drosaphila and other species. Results show that there are 92 homeobox genes exist in silkworm genome which encoded different homeodomain proteins belong to 21 different families and sub-families. Most of these homeodomain proteins families in other species also exists in silkworm, such as ABD-B, Antp, Lab, Cad, CUT, Ems, EN, Eve, H2.0, NK-2, ZFH, PARIED, SIX, LIM, POU, ro, msh and TALE. Among these genes, 23 genes belong to PARIED family, forming the largest family; 12 genes belong to Antp family, the second largest family. Comparing with Drosaphila, the number of members in some families in silkworm varied, for example, Lab family had only one member in Drosaphila, while 6 in silkworm; 7 and 6 members in LIM and POU family in Drosaphila, respectively, while 5 and 3 in silkworm corresponding family, respectively.
     From the above, most of homologues of genes which participate in cascade regulation during the embryonic development of Drosaphila can be found in silkworm, inferring that there was a similar mechanism in their embryonic development. It provides a reliable basis for further functional researchment of silkworm genes. Based on the work, 2 maternal genes vasa and mago nashi, a group of silkworm specific homeobox genes and one homeotic gene AbdB were cloned, and their expression pattern and functions were investigated.
     2. Structure and expression pattern of silkworm vasa gene
     Both vasa mRNA and VASA protein are important components in the germ plasm of Drosaphila, and its homologous genes have been identified in many other species including silkworm. We analyzed the structure of silkworm vasa gene with silkworm genome and EST data. The results showed that silkworm vasa gene consists of 13 extrons with distribution distance of about 10 Kb. A mariner-like transposon was found between the second and the third extron. Compared with Drosaphila vasa gene, the number of extrons in silkworm vasa gene is greatly increased from 7 to 13 which indicate a higher complexity in the silkworm vasa gene. Results of RT-PCR showes that silkworm vasa gene is expressed through the embryonic development, while only in the gonad of day 3 of the fifth instar, not detected in other tissues. The result also further proved the results of previous studies. Therefore, silkworm vasa gene is one of the germ line specific genes just like its orthologous gene in other species. By taking the DIG-labeled vasa probes as a marker, we performed in situ hybridizations on embryoes and gonads of silkworm.in purpose of establishing in situ hybridization technical system. The findings showed that silkworm vasa gene expressed only in the cells originated from germ line and no expressions were detected in other tissues (for example, connective tissue).
     3. Developmental expression of silkworm mago nashi gene
     Mago nashi is a highly conserved gene during evolution. MAGO, the protein it encoded, is one of the components of EJC (exon-exon junction complex) complex, responsible for transportation and localization of mRNAs from nuclear to cytoplasm and it is also one of the members in NMD (nonsense-mediated mRNA decay) pathway. We cloned the silkworm mago nashi homologous gene, and detected its temporal and spacial expression pattern in silkworm embryos and tissues from larva of 3d of fifth instar. The results showed that silkworm mago nashi consisted of 2 extrons, with coding region 441bp in length coding for 146 amino acids. Analysis of EST revealed there are probable alternative splices at its 5' end. RT-PCR detection and analysis of gene chip data showed that silkworm mago nashi gene expressed in all the stages detected during silkworm development, including embryo, larva, pupa and moth. However, higher expression could be visualized in gonads and silk gland compaired with other tissues. The expression of silkworm mago nashi gene in gonads and silk gland was examined by immunohistochemistry using MAGO polyclonal-antibody. The results showed that silkworm mago nashi expressed in both tissues. In gonads, there is a stronger signal in nuclear than cytoplasm. It is implied that the silkworm MAGO just as its homologue in Drosaphila, is one of the important component of EJC complex, and in charging of transportation and location of mRNA.
     4. Identification of HOX1-like cluster (Hlc) genes and its phylogenetic analysis
     During the previous analysis, we found a cluster of silkworm specific homeobox genes which appeared as tandem duplications in scaffold001640. Gene IDs for each of them are Bmb008349, Bmb008350, Bmb008351, Bmb008352, Bmb008354 and Bmb008355, respectively. Their distribution distance is about 35Kb, and each of them was predicted to encode 1-3 homeodomains. Because of the similarity with homeodomain sequences of mammal HOX proteins, we called this cluster genes as HOX-like cluster (Hlc), and each of them was named Hlc-1, Hlc-2, Hlc-3, Hlc-4, Hlc-5 and Hlc-6, respectively. All of the Hlc genes had the same transcription direction except Hlc-5. Almost all the sequences of Hlc genes were further validated via cloning and sequencing except 2 gaps between Hlc-4 and Hlc-5, Hlc-5 and Hlc-6. Combining with the previous FISH results and the new finished silkworm genome sequence (9×coverage), we found the Hlc genes were located on the 6th chromosome between traditional HOX genes Proboscipedia (Pb) and zerkn(u|¨)llt (zen). It is never reported in other species for such a special structure of HOX genes like silkworm. We deduce there might be a large gap existing between HOX gene labial (lab) and Pb.
     The phylogenetic relationships of HOX cluster genes from silkworm, fruitfly, mosquitio, honeybee and human were analyzed by using MEGA3 software. Resutls show that all the members of Hlc genes clustered first, and then with zen (HOX3) homologous genes, then with other HOX genes. We deduce the Hlc genes originated from Bmzen gene.
     The gene chip data and results of RT-PCR detection revealed Hlc-6 gene expressed during development of female pupa, and reached the maximum in female moth while no signals were detected in the male ones. So it might be a maternal gene.
     5. Cloning, Expression Profile and Function of silkworm Abdominal-B (AbdB) gene
     The products of AbdB gene were reported to play an essential role in determining the differentiation of abdominal posterior and terminal segments in insects. Previous studies also proved that AbdB protein is of vital importance during the development of gonad in Drosophila. Specific expression of AbdB gene in different abdominal segments could regulate the expression of pigment genes leading to the morphologic difference between the male and the female in Drosaphila. No former studies on silkworm AbdB homologous gene. Depending on the results of bioinformatics analysis, we designed primers for silkworm AbdB gene and then cloned this gene. Next, we detected its expression of different stages during silkworm development. Results of RT-PCR showed the expression of AbdB gene started around 30 h after egg laying in silkworm embryo, then its expression increased gradually, reached the maximum 7 d after egg laying, then decreased. Analysis of gene chip data revealed that the silkworm AbdB gene is expressed contiuously during the whole stages of pupa development and there is an evident difference on expression of AbdB in males and the females at 12 h after cocooning and 7 d after cocooning. This result is partially confirmed by relative real time PCR. In situ hybridization results showed that AbdB gene expressed in the oviduct and the region between eggs, especially at the end of the oviduct with strong signal, while didn't detect any signals in the developing eggs. We deduce that silkworm AbdB gene play important roles in development of embryo and pupa gonads.
     In order to know the function of silkworm AbdB gene during embryonic development and pupa, we prepared dsRNA probes and performed RNAi experiments in silkworm embryos and larva. Results revealed that AbdB gene is essential for the formation of structures in 10~(th) -13~(th) segment during embryonic development. Silence of AbdB gene could lead to excessive appendage sprout, and interfere with development of caudal horn and valve. The appearance of mutants is dose-dependent. The result of AbdB gene RNAi in late 5~(th) instar larva showed AbdB was important for development of oviduct during pupa development. Silence of AbdB gene led to abnormality of oviduct and gathering of unfledged eggs at the end of the oviduct. Nurse cells and oocytes in the unfledged eggs developed abnormally with vacuoles and fragments inside.
引文
[1] Gilbert SF. Developmental Biology. Sinauer Publ. 2000.
    [2] Lall S, Patel NH. CONSERVATION AND DIVERGENCE IN MOLECULAR MECHANISMS OF AXIS FORMATION. Annual Review of Genetics 2001; 35(1):407-437.
    [3] van dV, I, Gloor H. Evolution of an embryo. Genetica 1968; 39(1):45-63.
    [4] Davis GK, Patel NH. Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomo12002; 47:669-699.
    [5] Sanson B. Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep 2001; 2(12): 1083-1088.
    [6] Nagy L, Riddiford L, Kiguchi K. Morphogenesis in the early embryo of the lepidopteran Bombyx mori. Dev Biol 1994; 165(1):137-151.
    [7] Monnerat AT, Machado MP, Vale BS, et al. Anopheles albitarsis embryogenesis: morphological identification of major events. Mem Inst Oswaldo Cruz 2002; 97(4):589-596.
    [8] Sato M, Tanaka-Sato H. Fertilization, syngamy, and early embryonic development in the cricket Gryllus bimaculatus (De Geer). J Morphol 2002; 254(3):266-271.
    [9] Dearden PK, Wilson MJ, Sablan L, et al. Patterns of conservation and change in honey bee developmental genes. Genome Res 2006; 16(11): 1376-1384.
    [10] Zdobnov EM, von Mering C, Letunic I, et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 2002; 298(5591): 149-159.
    [11] Xia Q, Zhou Z, Lu C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004; 306(5703): 1937-1940.
    [12] The Honeybee Genome Sequencing Consortium. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006; 443(7114):931-949.
    [13] Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster. Science 2000; 287(5461):2185-2195.
    [14] Tautz D, Sommer RJ. Evolution of segmentation genes in insects. Trends Genet 1995; 11(1):23-27.
    [15] Nakao H. Isolation and characterization of a Bombyx vasa-like gene. Dev Genes Evol 1999; 209(5):312-316.
    [16] Ueno K, Hui CC, Fukuta M, et al. Molecular analysis of the deletion mutants in the E homeotic complex of the silkworm Bombyx mori. Development 1992; 114(3):555-563.
    [17] Rabelo EM, Hobaika AB, Coelho PM, et al. Sequencing and expression analysis of a Schistosoma mansoni gene homologue to a Drosophila gene involved in germ plasm assembly. Mem Inst Oswaldo Cruz 1998; 93 Suppl 1:207-209.
    [18] Brody T. The Interactive Fly: gene networks, development and the Internet. Trends Genet 1999; 15(8):333-334.
    [19] Palacios IM. RNA processing: splicing and the cytoplasmic localisation of mRNA. Curt Biol 2002; 12(2):R50-R52.
    [20] Ephrussi A, St Johnston D. Seeing is believing: the bicoid morphogen gradient matures. Cell 2004; 116(2):143-152.
    [21] Wang C, Lehmann R. Nanos is the localized posterior determinant in Drosophila. Cell 1991; 66(4):637-647.
    [22] Gonzalez-Reyes A, Elliott H, St Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 1995; 375(6533):654-658.
    [23] Stathopoulos A, Van Drenth M, Erives A, et al. Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 2002; 111(5):687-701.
    [24] Schumpbach T, Roth S. Dorsoventral patterning in Drosophila oogenesis. Curr Opin Genet Dev 1994; 4(4):502-507.
    [25] Casanova J, Struhl G. The torso receptor localizes as well as transduces the spatial signal specifying terminal body pattern in Drosophila. Nature 1993; 362(6416):152-155.
    [26] Lawrence PA, Struhl G. Morphogens, compartments, and pattern: lessons from Drosophila?Cell 1996; 85(7):951-961.
    [27] Ziese S, Dorn A. Embryonic integument and "molts" in Manduca sexta (Insecta, Lepidoptera). J Morphol 2003; 255(2):146-161.
    [28] Dearden P, Grbic M, Donly C. Vasa expression and germ-cell specification in the spider mite Tetranychus urticae. Dev Genes Evol 2003; 212(12):599-603.
    [29] Chang CC, Dearden P, Akam M. Germ line development in the grasshopper Schistocerca gregaria: vasa as a marker. Dev Biol 2002; 252(1):100-118.
    [30] Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev 2000; 99(1-2): 139-142.
    [31] Xu H, Gui J, Hong Y. Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn 2005.
    [32] Shinomiya A, Tanaka M, Kobayashi T, et al. The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev Growth Differ 2000; 42(4):317-326.
    [33] Tanaka SS, Toyooka Y, Akasu R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 2000; 14(7):841-853.
    [34] Fabioux C, Pouvreau S, Le Roux F, et aL. The oyster vasa-like gene: a specific marker of the germline in Crassostrea gigas. Biochem Biophys Res Commun 2004; 315(4):897-904.
    [35] Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation. Mech Dev 2002; 111(1-2):167-171.
    [36] Zeeman AM, Stoop H, Boter M, et al. VASA is a specific marker for both normal and alignant human germ cells. Lab Invest 2002; 82(2): 159-166.
    [37] Braat AK, van de WS, Goos H, et al. Vasa protein expression and localization in the zebrafish. Mech Dev 2000; 95(1-2):271-274.
    [38] Ikenishi K, Tanaka TS. Spatio-temporal expression of Xenopus vasa homolog, XVLG1, in oocytes and embryos: the presence of XVLG1 RNA in somatic cells as well as germline cells. Dev Growth Differ 2000; 42(2):95-103.
    [39] Lee GS, Kim HS, Lee SH, et al. Characterization of pig vasa homolog gene and specific expression in germ cell lineage. Mol Reprod Dev 2005; 72(3):320-328.
    [40] Yoshizaki G, Sakatani S, Tominaga H, et al. Cloning and characterization of a vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol Reprod Dev 2000; 55(4):364-371.
    [41] Fujiwara Y, Komiya T, Kawabata H, et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA 1994; 91(25):12258-12262.
    [42] Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ 1998; 40(1):1-10.
    [43] Abdelhaleem M. RNA helicases: regulators of differentiation. Clin Biochem 2005; 38(6):499-503.
    [44] Hay B, Jan LY, Jan YN. Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 1990; 109(2):425-433.
    [45] Liang L, Diehl-Jones W, Lasko P. Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 1994; 120(5):1201-1211.
    [46] Hayashi Y, Hayashi M, Kobayashi S. Nanos suppresses somatic cell fate in Drosophila germ line. Proc Natl Acad Sci U S A 2004; 101 (28): 10338-10342.
    [47] Tinker R, Silver D, Montell DJ. Requirement for the vasa RNA helicase in gurken mRNA localization. Dev Biol 1998; 199(1): 1-10.
    [48] Van Doren M, Williamson AL, Lehmann R. Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol 1998; 8(4):243-246.
    [49] Cavey M, Hijal S, Zhang X, et al. Drosophila valois encodes a divergent WD protein that is required for Vasa localization and Oskar protein accumulation. Development 2005; 132(3):459-468.
    [50] Breitwieser W, Dockendorff TC, Leatherman JL, et al. germ cell-less is required only during the establishment of the germ cell lineage of Drosophila and has activities which are dependent and independent of its localization to the nuclear envelope. Dev Biol 1999; 215(2):288-297.
    [51] Breitwieser W, Markussen FH, Horstmann H, et al. Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev 1996; 10(17):2179-2188.
    [52] Nakao H, Hatakeyama M, Lee JM, et al. Expression pattern of Bombyx vasa-like (BmVLG) protein and its implications in germ cell development. Dev Genes Evol 2005; 1-6.
    [53] Miya K. Studies on the embryonic development of the gonad in the silkworm, Bombyx mori 1.1. Differentiation of germ cells. Journal of the Faculty of Agriculture 1958;(3):436-467.
    [54] Zhao XF, Colaizzo-Anas T, Nowak NJ, et al. The mammalian homologue of mago nashi encodes a serum-inducible protein. Genomics 1998; 47(2):319-3122.
    [55] Boswell RE, Prout ME, Steichen JC. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development 1991; 113(1):373-384.
    [56] Li W, Boswell R, Wood WB. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev Biol 2000; 218(2):172-182.
    [57] Pozzoli O, Gilardelli CN, Sordino P, et al. Identification and expression pattern ofmago nashi during zebrafish development. Gene Expr Patterns 2004; 5(2):265-272.
    [58] Swidzinski JA, Zaplachinski ST, Chuong SD, et al. Molecular characterization and expression analysis of a highly conserved rice mago nashil homolog. Genome 2001; 44(3):394-400.
    [59] Newmark PA, Boswell RE. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development 1994; 120(5): 1303-1313.
    [60] Hachet O, Ephrussi A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr Biol 2001; 11 (21):1666-1674.
    [61] Mohr SE, Dillon ST, Boswell RE. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev 2001; 15(21):2886-2899.
    [62] Micklem DR, Dasgupta R, Elliott H, et al.The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr Biol 1997; 7(7):468-478.
    [63] Newmark PA, Mohr SE, Gong L, et al. Mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 1997; 124(16):3197-3207.
    [64] Zhao XF, Nowak NJ, Shows TB, et al. MAGOH interacts with a novel RNA-binding protein. Genomics 2000; 63(1):145-148.
    [65] Bono F, Ebert J, Unterholzner L, et al. Molecular insights into the interaction of PYM with the Mago-Y 14 core of the exon junction complex. EMBO Rep 2004; 5(3):304-310.
    [66] Fribourg S, Gatfield D, Izaurralde E, et al. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struet Biol 2003; 10(6):433-439.
    [67] Lau CK, Diem MD, Dreyfuss G, et al. Structure of the Y14-Magoh core of the exon junction complex. Curr Biol 2003; 13(11):933-941.
    [68] Shi H, Xu RM. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev 2003; 17(8):971-976.
    [69] Le Hir H, Gatfield D, Braun IC, et al. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep 2001 ; 2(12): 1119-1124.
    [70] Palacios IM, Gatfield D, St Johnston D, et al. An eIF4AⅢ-containing complex required for mRNA localization and nonsense-ruediated mRNA decay. Nature 2004; 427(6976):753-757.
    [71] Hachet O, Ephrussi A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 2004; 428(6986):959-963.
    [72] Banerjee-Basu S, Ferlanti ES, Ryan JF, et al.The Homeodomain Resource: sequences, structures and genomic information. Nucleic Acids Res 1999; 27(1):336-337.
    [73] Banerjee-Basu S, Moreland T, Hsu BJ, et al. The Homeodomain Resource: 2003 update. Nucleic Acids Res 2003; 31(1):304-306.
    [74] Driever W, Siegel V, Nusslein-Volhard C. Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development 1990; 109(4):811-820.
    [75] de Rosa R, Grenier JK, Andreeva T, et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 1999; 399(6738):772-776.
    [76] Patterson LT, Potter SS. Hox genes and kidney patterning. Curr Opin Nephrol Hypertens 2003; 12(1):19-23.
    [77] Kuroiwa A. Homeotic genes and the homeobox. Seikagaku 1987; 59(2):45-68.
    [78] Duan J, Nilsson L. The role of residue 50 and hydration water molecules in homeodomain DNA recognition. Eur Biophys J 2002; 31 (4):306-316.
    [79] Ades SE, Sauer RT. Specificity of minor-groove and major-groove interactions in a homeodomain-DNA complex. Biochemistry 1995; 34(44): 14601-8.
    [80] Banerjee-Basu S, Baxevanis AD. Molecular evolution of the homeodomain family of transcription factors. Nucleic Acids Res 2001; 29(15):3258-3269.
    [81] Vollbrecht E, Veit B, Sinha N, et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 1991; 350(6315):241-243.
    [82] Holland RW, Garcia-Fernandez J. Hox genes, developmental evolution and the origin of vertebrates. Ontogenez 1996; 27(4):273-279.
    [83] Duncan I. The bithorax complex. Annual Review of Genetics 1987;(21):285-329.
    [84] Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276(5688):565-570.
    [85] Nagata T, Suzuki Y, Ueno K, et al. Developmental expression of the Bombyx Antennapedia homologue and homeotic changes in the Nc mutant. Genes Cells 1996; 1(6):555-568.
    [86] Ueno K, Nagata T, Suzuki Y. in Molecular model systems in the lepidoptera, Goodsmith, M.R. A S Wilkins, Eds (Cambridge University Press, Cambridge, 1995) 1995;165-180.
    [87] Goldsmith MR, Shimada T, Abe H. The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 2005; 50:71-100.
    [88] Ruddle FH, Bartels JL, Bentley KL, et al. Evolution of Hox genes. Annu Rev Genet 1994; 28:423-442.
    [89] Martinez P, Amemiya CT. Genomics of the HOX gene cluster. Comp Biochem Physiol B Biochem Mol Biol 2002; 133(4):571-80.
    [90] Hughes CL, Kaufman TC. Hox genes and the evolution of the arthropod body plan. Evol Dev 2002; 4(6):459-99.
    [91] Vervoort M. Functional evolution of Hox proteins in arthropods. Bioessays 2002; 24(9):775-9.
    [92] Averof M. Arthropod Hox genes: insights on the evolutionary forces that shape gene functions. Curr Opin Genet Dev 2002; 12(4):386-92.
    [93] Yasukochi Y, Ashakumary LA, Wu C, et al. Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect. Dev Genes Evol 2004.
    [94] Walldorf U, Binner P, Fleig R. Hox genes in the honey bee Apis mellifera. Dev Genes Evol 2000; 210(10):483-492.
    [95] Balavoine G, de Rosa R, Adoutte A. Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 2002; 24(3):366-73.
    [96] Dubrulle J, Pourquie O. From head to tail: links between the segmentation clock and antero-posterior patterning of the embryo. Current Opinion in Genetics & Development 2002; 12(5):519-523.
    [97] Aboobaker A, Blaxter M. Hox gene evolution in nematodes: novelty conserved. Current Opinion in Genetics & Development 2003; 13(6):593-598.
    [98] Prince V. The Hox Paradox: More complex(es) than imagined. Dev Biol 2002; 249(1):1-15.
    [99] Taylor HS. Transcriptional regulation of implantation by HOX genes. Rev Endocr Metab Disord 2002; 3(2): 127-32.
    [100] Maeda RK, Karch F. The ABC of the BX-C: the bithorax complex explained. Development 2006; 133(8): 1413-1422.
    [101] Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006; 22(3): 165-173.
    [102] Chopra VS, Mishra RK. "Mir"acles in hox gene regulation. Bioessays 2006; 28(5):445-448.
    [103] Tanzer A, Amemiya CT, Kim CB, et al. Evolution of microRNAs located within Hox gene clusters. J Exp Zoolog B Mot Dev Evol 2005; 304(1):75-85.
    [104] Mannervik M. Target genes of homeodomain proteins. Bioessays 1999; 21 (4):267-270.
    [105] Angelini DR, Liu PZ, Hughes CL, et al. Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol 2005; 287(2):440-455.
    [106] Kelsh R, Dawson I, Akam M. An analysis of abdominal-B expression in the locust Schistocerca gregaria. Development 1993; 117(1):293-305.
    [107] Kuhn DT, Turenchalk G, Mack JA, et al. Analysis of the genes involved in organizing the tail segments of the Drosophila melanogaster embryo. Mech Dev 1995; 53(1):3-13.
    [108] Estrada B, Sanchez-Herrero E. The Hox gene Abdominal-B antagonizes appendage development in the genital disc of Drosophila. Development 2001; 128(3):331-339.
    [109] Kuziora MA. Abdominal-B protein isoforms exhibit distinct cuticular transformations and regulatory activities when ectopically expressed in Drosophila embryos. Mech Dev 1993; 42(3):125-137.
    [110] DeFalco T, Le Bras S, Van Doren M. Abdominal-B is essential for proper sexually dimorphic development of the Drosophila gonad. Mech Dev 2004; 121(11):1323-1333.
    [111] Estrada B, Casares F, Busturia A, et al. Genetic and molecular characterization of a novel iab-8 regulatory domain in the Abdominal-B gene of Drosophila melanogaster. Development 2002; 129(22):5195-5204.
    [112] Busturia A, Bienz M. Silencers in abdominal-B, a homeotic Drosophila gene. EMBO J 1993; 12(4):1415-1425.
    [113] Barges S, Mihaly J, Galloni M, et al. The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 2000; 127(4):779-790.
    [114] Bae E, Calhoun VC, Levine M, et al. Characterization of the intergenic RNA profile at abdominal-A and Abdominal-B in the Drosophila bithorax complex. Proc Natl Acad Sci USA 2002; 99(26):16847-16852.
    [115] CopfT, Rabet N, Celniker SE, et al. Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 2003; 130(24):5915-5927.
    [116] Xu X, Xu PX, Amanai K, et al. Double-segment defining role of even-skipped homologs along the evolution of insect pattern formation. Dev Growth Differ 1997; 39(4):515-522.
    [117] Xu X, Xu PX, Suzuki Y. A maternal homeobox gene, Bombyx caudal, forms both mRNA and protein concentration gradients spanning anteroposterior axis during gastrulation. Development 1994; 120(2):277-285.
    [118] Xu Pin-Xian, Xu X., Suzuki Y. Molecular cloning of a zinc finger protein belonging to the GLI-Kruppel family and its expression in the silkgland. Dev Growth Differ 1995; 37:149-155.
    [119] Kuwana J, Takami T. Insecta. In Invertebrate Embryology 1968; ed. Kume M. and Dan K.(New York; Garland.):405-484.
    [120] Gibson G. Insect evolution: Redesigning the fruitfly. Curr Biol 1999; 9(3):R86-R89.
    [121] Shilo BZ. Signaling by the Drosophila epidermsl growth factor receptor pathway during development. Exp Cell Res 2003; 284(1):140-149.
    [122] Stephenson EC, Chao YC, Fackenthal JD. Molecular analysis of the swallow gene of Drosophila melanogaster. Genes Dev 1988; 2(12A): 1655-1665.
    [123] Schroder R. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 2003; 422(6932):621-625.
    [124] Lehmann R, Nusslein-Volhard C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 1986; 47(1):141-152.
    [125] Ephrussi A, Lehmann R. Induction of germ cell formation by oskar. Nature 1992; 358(6385):387-392.
    [126] Reich A, Shilo BZ. Keren, a new ligand of the Drosophila epidermal growth factor receptor, undergoes two modes of cleavage. EMBO J 2002; 21 (16):4287-4296.
    [127] Fabioux C, Huvet A, Lelong C, et al. Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem Biophys Res Commun 2004; 320(2):592-598.
    [128] Tsunekawa N, Naito M, Sakai Y, et al. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 2000; 127(12):2741-2750.
    [129] Ikenishi K, Tanaka TS. Involvement of the protein of Xenopus vasa homolog (Xenopus vasa-like gene 1, XVLG1) in the differentiation of primordial germ cells. Dev Growth Differ 1997; 39(5):625-633.
    [130] Sanchez D, Ganfomina MD, Gutierrez G, et al. Exon-intron structure and evolution of the Lipocalin gene family. Mol Biol Evol 2003; 20(5):775-783.
    [131] Kawano T, Kataoka N, Dreyfuss G, et al. Ce-Y14 and MAG-1, components of the exon-exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Mech Dev 2004; 121 (1):27-35.
    [132] Yoder JH, Carroll SB. The evolution of abdominal reduction and the recent origin of distinct Abdominal-B transcript classes in Diptera. Evol Dev 2006; 8(3):241-251.
    [133] Blin M, Rabet N, Deutsch JS, et al. Possible implication of Hox genes Abdominal-B and abdominal-A in the specification of genital and abdominal segments in cirripedes. Dev Genes Evol 2003; 213(2):90-96.
    [134] Quan GX, Kanda T, Tamura T. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene. Insect Mol Biol 2002; 11(3):217-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700