日本血吸虫性相关Tsunagi基因的克隆、表达及初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血吸虫病是一种分布广泛、危害严重的人兽共患寄生虫病。血吸虫致病主要是由于性成熟雌虫所产虫卵在人畜肝脏大量沉积形成的虫卵肉芽肿和纤维化,而沉积在肠壁的虫卵排出体外是该病流行传播的重要途径。另一方面,血吸虫雌雄合抱是雌虫生殖系统正常发育和产卵的前提条件,雌虫的发育成熟又是雄虫依赖性的。因此,控制血吸虫性别分化、性成熟及雌虫产卵成为防治血吸虫病的重要策略。
     Mago nashi基因在模式生物如果蝇和秀丽隐杆线虫中是调节雌雄同体性别决定基因即决定生殖细胞雄性化作用的基因,该基因的蛋白产物与Tsunagi(或Y14)蛋白结合成复合物共同行使功能。已有实验报道这两种蛋白在进化过程中均高度保守表达。本课题组在前期工作中已经用RNAi方法研究了日本血吸虫Mago nashi基因(登录号BM735619)干扰后血吸虫的表型变化,发现部分实验组雄虫睾丸小叶中的精母细胞表现出泛雄性化表型。但是日本血吸虫Tsunagi基因至今未有报导,本文旨在获得日本血吸虫Tsunagi基因序列并对该基因的功能进行初步鉴定。
     根据遗传密码的简并性,本文利用黑腹果蝇和秀丽隐杆线虫Tsunagi蛋白高度保守的60个氨基酸序列,使用blastp,blockmarker,CodeHop等网络工具及数据库设计一对简并引物,从日本血吸虫成虫cDNA中扩增出了一段长180bp的PCR产物,测序后经blastx检索GenBank,发现这段基因的氨基酸序列与黑腹果蝇和秀丽隐杆线虫Tsunagi蛋白的氨基酸序列高度同源。然后利用5’端和3’端锚定PCR方法分别从日本血吸虫童虫cDNA文库中扩增出日本血吸虫Tsunagi蛋白基因上、下游的未知序列。再根据锚定PCR产物序列设计一对特异性引物,并在引物5’端分别引入BamⅠ和XhoⅠ酶切位点,从日本血吸虫童虫cDNA文库和日本血吸虫成虫cDNA中均扩增出了日本血吸虫Tsunagi基因的开放阅读框(Open reading frame, ORF)。经基因测序分析后该cDNA长度为531bp,编码177个氨基酸,蛋白的理论分子量为20.078 KD,等电点为6.195。SjTsunagi基因同源性比对后发现其编码的氨基酸序列与其它物种的Tsunagi蛋白有很高的相似性:与黑腹果蝇Tsunagi蛋白的氨基酸序列有55.9%的同源性和67.2%的相似性;与秀丽隐杆线虫Tsunagi蛋白的氨基酸序列有40.6%的同源性和51.4%的相似性。蛋白功能分析预测该蛋白含有一个保守的RNA识别模序,理论上是RNA结合蛋白。将获得的日本血吸虫Tsunagi基因的完整ORF亚克隆入原核表达载体pET28a(+)中,构建的重组质粒pET28a-SjTsunagi在大肠杆菌中获得了可溶性表达。用纯化后的融合蛋白免疫小鼠,经ELISA鉴定获得的多克隆抗体效价为1: 51200,免疫印迹证实抗体可特异性识别目的蛋白。
     为了观察天然Tsunagi蛋白在日本血吸虫体内的定位,我们首先制备了日本血吸虫成虫HE染色切片,掌握了日本血吸虫成虫在光学显微镜下的形态特点后,用间接免疫荧光法观察到日本血吸虫Tsunagi蛋白仅在雌虫卵巢的卵母细胞内高表达。利用免疫印迹观察SjTsunagi蛋白在虫卵、雌虫、雄虫和混合成虫等不同阶段的表达水平,结果发现该蛋白也仅在雌虫阶段表达,提示Tsunagi蛋白可能是血吸虫的性别相关基因。利用Pull-down和免疫共沉淀实验,证实了日本血吸虫Tsunagi和Mago nashi蛋白的相互作用关系。
     本论文率先开展了血吸虫Tsunagi基因的研究,首次获得编码Tsunagi蛋白的基因,成功将Tsunagi基因在大肠杆菌中进行表达并获得了特异性的多克隆抗体;免疫荧光观察到天然Tsunagi蛋白在雌虫的卵母细胞内高表达;免疫印迹发现该蛋白仅在雌虫阶段表达;Pull-down和免疫共沉淀实验证实Tsunagi与Mago nashi蛋白的相互作用,提示这两种保守表达的蛋白在日本血吸虫中可能与模式生物一样也是性别发育相关基因。
Schistosomiasis is known as a debilitating disease in human. The life cycle of schistosomes is complex and involves both a snail intermediate host and a mammalian definitive host in which they become adult worms that are reproductively active for years. The eggs produced by female worms are the agent of schistosomiasis transmission. Meanwhile, the pathogenesis of this disease is the granulomatous reaction evoked by the soluble egg antigens. Controlling sexual maturation, sexual dimorphism and labour division may be effective in prevention of schistosomiasis.
     Mago nashi was a strict maternal-effect gene important for germ plasm assembly during the physiological development of the Drosophila embryo and also plays important roles in cellular differentiation. The protein encoded by Mago nashi gene interacts avidly and specifically with the Tsunagi protein (also known as Y14) among divergent organisms. In Drosophila oogenesis, both Tsunagi and Mago nashi are required for interpreting the posterior follicle cell-to-oocyte signal to define the major body axes and to localize components necessary for determination of the primordial germ cells. Moreover, the Caenorhabditis elegans homologue Ce-Y14 is essential for embryonic morphogenesis and regulation of germline sex switching. Previous studies in other laboratories have also shown the significance of Tsunagi in sexual development and its conservation among species.
     We have previously isolated the Mago nashi gene (GenBank accession number BM735619) from a Schistosomulum japonicum cDNA library and investigated its function in schistosomes by RNAi method. However, no information is available regarding the characterization of Tsunagi in Schistosoma japonicum. We hypothesized that because schistosomes undergo sexual differentiation during development, it is probable that the parasites have similar pathways to achieve this. Moreover, because Tsunagi proteins are ubiquitous and highly conserved, we reasoned that a Tsunagi homologue is also present in S. japonicum. This paper describes the identification and preliminary characterization of the Tsunagi protein from S. japonicum.
     For this purpose, we have isolated the partial gene of Tsunagi protein from adult cDNA of S. japonicum using a degenerate PCR strategy. This strategy employed the CODEHOP primer design algorithm. The sequence amplified from degenerate PCR was about 180bp, displaying strong identity to other Tsunagi proteins. The remaining cDNA sequence, including the 5’and 3’regions, was recovered by anchored PCR from a cDNA library of Schistosomulum japonicum. The whole sequence of the SjTsunagi cDNA containing ORF was amplified from the schistosomulum cDNA library and the adult cDNA, respectively. It encoded a protein of 177 amino acids with an estimated molecular weight of 20.078 KD and isoelectric point of pH6.195. The gene has 55.9% identity and 67.2% similarity at the predicted amino acid level to Drosophila melanogaster and has 40.6% identity and 51.4% similarity to C. elegans. Amino acid sequence analysis and alignment showed significant similarity to other Tsunagi proteins, including the conservation of an RNA recognition motif. The encoding ORF was amplified and inserted into pET-28a expression vector and then pET-28a-SjTsunagi recombinant protein was expressed as a 6xHis-tag fusion protein. Soluble recombinant protein used for in vitro experiments was purified by affinity column chromatography. Specific antiserum was obtained from the mice immunized with the protein. Mouse antiserum (1: 51200) was used to detect the recombinant protein by indirect ELISA.
     To investigate the distribution of SjTsunagi in tissue, immunofluorescent staining was performed on cryosections prepared from adult worms. SjTsunagi was most abundant in the ovary of female worms. Immunoblot analyses was used to determine the proteins extracted from eggs, adult females, adult males and mixed sex parasites. Proteins extracted from adult females and mixed sex parasites probed with anti-SjTsunagi polyclonal antiserum identified a single protein with an apparent molecular weight of 20 KD and revealed that SjTsunagi protein is detected in adult females only. Besides, by pull-down and co-immunoprecipitation, we therefore concluded that the interaction of Tsunagi with the mago nashi gene product is also conserved in S. japonicum. Taken together, these results suggest that SjTsunagi might be a gender-associated protein in schistosomes.
引文
1. http://www.who.int/wormcontrol/documents/maps/en/
    2.郑江.我国血吸虫病防治的进展和面临的挑战[J].中国寄生虫学与寄生虫病杂志,2003; 21(1): 4~5
    3.周晓农,汪天平,王立英,等.中国血吸虫病流行现状分析[J].中华流行病学杂志,2004; 25(7): 555~558
    4.郭家钢,余晴.近年来我国血吸虫病的流行态势及趋势[J].中国血吸虫病防治杂志, 2005; 17(5): 321~323
    5. Muschamp JW, Fong PP. Effect of the serotonin receptor ligand methiothepin on the reproductive bahavor of the freshwater snail biomphalaria glabrata: reduction of egg laying and induction of penile erection. J Exp Zool, 2001; 15: 289(3): 202~207
    6.毛守白.血吸虫生物学与血吸虫病的防治[M].北京:人民卫生出版社, 1990: 180~184
    7. Erasmus DA. A comparative study of the reproductive system of mature, immature and "unisexual" female Schistosoma mansoni. Parasitology, 1973; 67: 165~183
    8. Den HJE, Erasmus DA. Schistosoma mansoni: DNA synthesis in males and females from mixed and single-sex infections. Parasitology, 1984; 88: 463~473
    9. Grevelding CG,Sommer G, Kunz W. Female-specific gene expression in Schistosoma mansoni is regulated by pairing. Parasitology, 1997; 115: 635~640
    10. Li WQ, Boswell R, Wood WB. Mag-1, a Homolog of Drosophila mago nashi, Regulates Hermaphrodite Germ-Line Sex Determination in Caenorhabditis elegans. Developmental Biology, 2000; 218: 172~182
    11. Kataoka N, Yong J, Kim VN, et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persist in the cytoplasm. Mol Cell, 2000; 6: 673~682
    12. Kawano T, Kataoka N, Dreyfuss G, et al. Ce-Y14 and MAG-1, components of the exon-exonjunction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Machanisms of Development, 2004; 121: 27~35
    13. Mohr SE, Dillon ST, Boswell RE. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize osker mRNA during Drosophila oogenesis. Genes Dev, 2001; 15: 2886~2899
    14. Zhao XF, Nowak NJ, Shows TB, et al. MAGOH interacts with a novel RNA-binding protein. Genomics, 2000; 63: 145~148
    15.王雅琴,汪红,杨洲.血吸虫切片标本制作新探[J].湖北民族学院学报, 2002; 19 (2): 65
    16. Boswell R, Prout M, Steichen J. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development, 1991; 113: 373~384
    17. Ephrussi A, Dickinson LK, Lehmann R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell, 1991; 66: 37~50
    18. Kim-Ha J, Smith JL, Macdonald PM. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell, 1991; 66: 23~35
    19. Rose TM, Schultz ER, Henikoff JG, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acides Research, 1998; 26: 1628~1635
    20.童畅,沈际佳,蒋作君,等.日本血吸虫中国大陆株肝期童虫cDNA文库的构建及鉴定[J],中国人兽共患病杂志, 2002; 18(4): 52~54
    21.何毅勋,马金鑫.日本血吸虫的扫描电镜观察[J].中国医学科学院学报,1980; 2(1): 38~40
    22.许世锷,陆秀君,萧永康,等.日本血吸虫的扫描电镜观察[J].广东寄报,1981; 3(1): 24~27
    23.肖树华,戴志强,张荣泉,等.日本血吸虫皮层的扫描电镜观察[J].寄生虫学与寄生虫病杂志,1983; 1(1): 23~26
    24. Ma Jinxin, He Yixun. Scanning electron microscopy of Chinese (mainland) strain Schistosoma japonicum. Chin Med J, 1981; 94 (1): 63~70
    25.周述龙,林建银.血吸虫学[M].北京:科学出版社, 1989: 69~71
    26.毛守白.血吸虫生物学与血吸虫病的防治[M].北京:人民卫生出版社, 1990: 16~21
    27. Biolchini CL, Neves RH, Hulstijn M, et al. Development of Schistosoma mansoni worms in mice analyzed by bright field and confocal microscopy. Mem Inst Oswaldo Cruz, 2006; 101(1): 261~265
    28. Maris C, Dominguez C, Allain FH.The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 2005; 272: 2118~2131
    29. Shi H, Xu RM. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev, 2003; 17: 971~976
    30. Lau CK, Diem MD, Dreyfuss G, et al. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol, 2003; 13: 933~941
    31. Fribourg S, Gatfield D, Izaurralde E, et al. Anovel mode of RBD-protein recognition in the Y14-Mago complex. Nature Struct, Biol, 2003; 10: 433~439
    32. Hir HL, Gatfield D, Braun IC, et al. The protein Mago provides a link between splicing and mRNA localization. EMBO reports, 2001; 2(12): 1119~1124
    33. Tange TO, Nott A, Moore MJ. The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol, 2004; 16: 279~284
    34. Kimura M. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, 1983
    1. Boswell RE, Prout ME, Steichen JC. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development, 1991, 113: 373~384
    2. Newmark PA, Mohr SE, Gong L, et al. mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation on Drosophila. Development, 1997, 124: 3197~3207b
    3. Zhao XF, Colaizzo-Anas T, Nowak NJ, et al. The mammalian homologue of mago nashi encodes a serum-inducible protein. Genomics, 1998, 47: 319~322
    4. Verjovski-Almedia S, DeMarco R, Martins EA, et al. Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni. Nat Genet, 2003, 35: 148~157
    5. Zhao XF, Nowak NJ, Shows TB, et al. MAGOH interacts with a novel RNA-binding protein. Genomics, 1999, 63: 145~148
    6. Kataoka N, Yong J, Kim VN, et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persist in the cytoplasm. Mol Cell, 2000, 6: 673~682
    7. Mohr SE, Dillon ST, Boswell RE. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev, 2001,15: 2886~2899
    8. Maris Ch, Dominguez C, Allain FH-T. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005, 272: 2118~2131
    9. Kielkopf CL, Lücke S, Green MR. U2AF homology motifs: protein recognition in the RRM world. Genes Dev, 2004, 18: 1513~1526
    10. Shi H, Xu RM. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev, 2003, 17: 971~976
    11. Lau C-K, Diem MD, Dreyfuss G, et al. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol, 2003, 13: 933~941
    12. Fribourg S, Gatfield D, Izaurralde E, et al. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nature Struct. Biol, 2003, 10: 433~439
    13. Mingot JM, Kostka S, Kraft R, et al. Importin 13: a novel mediator of nuclear import and export. EMBO J, 2001, 20: 3685~3694
    14. Le Hir H, Gatfield D, Braun IC, et al. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep, 2001, 2(12): 1119~1124
    15. Hachet O, Ephrussi A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Current Biology, 2001,11: 1666-1674
    16. Kawano T, Kataoka N, Dreyfuss G, et al. Ce-Y14 and MAG-1, components of the exon-exon junction complex, are required for embryogenesis and germline sexual switching in Caenorhabditis elegans. Machanisms of Development, 2004,121: 27~35
    17. Tange TO, Nott A, Moore MJ. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol, 2004,16: 279~284
    18. Micklem DR, Dasgupta R, Elliott H, et al. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Current Biology, 1997, 7: 468~478
    19. Newmark PA, Boswell RE. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development, 1994, 120: 1303~1313
    20. Ephrussi A, Dickinson LK, Lehmann R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell, 1991, 66: 37~50
    21. Kim-Ha J, Smith JL, Macdonald PM. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell, 1991, 66: 23~35
    22. Li W, Boswell R, Wood WB. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Developmental Biology, 2000, 218: 172~182
    23. Hachet O, Ephrussi A. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature, 2004, 428: 959~963
    24. Peltz SW, Brown AH, Jacobson A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting facto. Genes Dev, 1993, 9: 1737~1754
    25. Back D, Green P. Sequence conservation, relative isoform frequencies, and nonsense-mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci, 2005, 102(36): 12813~12718
    26. Weischenfeldt J, Lykke-Andersen J, Porse B. Messenger RNA surveillance: netutralizing natural nonsense. Curr Biol, 2005, 15(14): 559~562
    27. Maquat LE. No-sense-mediated mRNA decay in mammals. J Cell Sci, 2005, 118(9): 1773~1776
    28. Kataoka N, Diem MD, Kim VN, et al. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J, 2001, 20: 6424~6433
    29. Le Hir H, Izaurralde E, Maquat LE, et al. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J, 2000, 19: 6860~6869
    30. Kim VN. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J, 2001, 20: 2062~2068
    31. Le Hir H, Gatfield D, Braun IC, et al. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep, 2001, 2: 1119~1124
    32. Culbertson MR, Leeds PF. Looking at mRNA decay pathways through the window of molecula revolution. Curr Opin Genet Dev, 2003, 13: 207
    33.孔令泉,涂刚,任国胜. Y14和Upf1在人乳腺癌细胞与乳腺细胞中的表达及意义.重庆医科大学学报, 2007, 32(10): 1013~1015
    34. Engcls D, Chitsulo L, Montresor A, et al. The global epidemiological situation of schistosomiasis and new approaches to control and research. Act Trop, 2002, 82: 139~146
    35. Lizotte-Waneiwski MV, Tawe DB, Guiliano, et al. Identification of potential vaccine and drug target candidates by expressed sequence tag analysis and immunoscreening of Onchocerca volvulus larval cDNA libraries. Infect Immun, 2000, 68(6): 3491~3501
    36. Kimura M. The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press, 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700