基于石蜡切片技术的家蚕胚胎发育与Mago蛋白定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探索并建立适合家蚕卵的石蜡切片技术体系;获得家蚕典型胚胎发育时期的显微实体照片,印证补充前人关于家蚕胚胎发育的文字描述、示意图或手绘图,为家蚕胚胎发育基因功能研究提供形态学参考照片;探索并初步建立家蚕免疫组化技术体系,为在组织和细胞水平研究基因功能奠定基础。
     以KOH溶液作为卵壳软化液,设置浓度梯度和软化时间梯度,摸索最佳软化时间;摸索适合家蚕卵的固定、透明、染色方法;利用已建立的石蜡切片技术体系,以不同发育时期的家蚕日系N4品种非滞育卵为材料进行石蜡切片,获得较为系统的典型胚胎发育时期的显微实体照片;以家蚕日系N4品种5龄3天幼虫精巢为材料,以家蚕Mago蛋白IgG为Ⅰ抗,摸索免疫组化方法,建立免疫组化技术体系,获得家蚕Mago蛋白组织定位信息。研究结果如下:
     1.以家蚕日系N4品种非滞育卵为材料,用10%KOH溶液软化卵壳5min,用Smith液固定,用松油醇(Terpineol)脱水兼透明,建立了家蚕卵石蜡切片技术体系。
     2.获得了较为系统的家蚕典型胚胎发育时期的实体照片,这些时期包括胚盘形成、胚带形成、中胚层分化、头胸部突起显现、腹部突起显现、反转前、反转、反转后、器官形成等典型发育时期。还观察到了卵黄细胞的形成过程,区分了合胞体胚盘和细胞胚盘,得到了胚胎中肠、背血管、神经索、生殖腺、丝腺等组织图片。用连续切片技术观察到了类原始生殖细胞存在于中胚层突起处。
     3.影响免疫组化结果的因素主要有抗体的纯度,Ⅰ抗和Ⅱ抗最佳稀释度组合,抗原修复、封闭、洗涤、抗体孵育、显色等步骤的时间等。本研究确定的Ⅰ抗和Ⅱ抗最佳稀释度组合为Ⅰ抗1:1000,Ⅱ抗1:500。
     4.家蚕Mago蛋白精巢组织的免疫定位结果表明,家蚕Mago蛋白存在于整个精巢组织中,但主要位于精母细胞、精子束细胞和结缔组织细胞的细胞核内。
     总之,通过本研究,建立了一套家蚕卵石蜡切片技术体系,具有简便、快速、完整性好、能大批量进行切片等优点,能够满足家蚕胚胎发育基因功能研究的需要;获得了较为系统的家蚕典型胚胎发育时期的实体照片,印证补充了前人关于家蚕胚胎发育的文字描述、示意图、手绘图;探索了家蚕免疫组织化学技术,并对其中的关键环节进行了探讨和标准化,初步建立了一项可重复、稳定性好、适合家蚕组织的蛋白定位方法,获得了家蚕Mago蛋白在家蚕精巢组织的定位结果。
To obtain embryonic microphotographs of representative developmental stages, a paraffin section technical method for silkworm (Bombyx mori) eggs need be explored and established. Then, these microphotographs can conform and enrich the ancestral literal details, schematic diagrams, hand-drawing pictures on this study. In addition, it is believed that these microphotographs may also provide morphology reference for embryonic developmental gene function research in silkworm. To immunolocalize protein in silkworm testis, immunohistochemical staining method must be explored and applied, for the purpose of providing a valuable basis on further gene functional research on tissue and cell level.
     To find the best softening time of silkworm eggs using KOH as softening fluid, concentration gradient and softening time gradient have been tested. The method of fixation, clearing and staining have also been tried. Based on the established paraffin section technical method, a lot of embryonic microphotographs were gained from eggs of N4, a Japanese non- diapause strain. The Immunolocalization of BmMago was completed by immunohistochemical(IHC) staining method, which was explored and established with testis on day 3 of fifth larva, using IgG of BmMago as primary antibody. Some results of the study is as follows:
     1. Establishment of paraffin section technical method for silkworm (Bombyx mori) eggs. In details, with the eggs of Japanese non- diapause strain named N4, softening with 10% KOH for 5 min, fixing with Smith fixative, de-hydrating and clearing with Terpineol.
     2. A lot of embryonic microphotographs from representative developmental stages have been obtained, including stages of blastderm formation, germband formation, mesoderm differentiation, appearance of gnathal and thoracic appendages, appearance of abdominal appendages, early blastokinesis, middle blastokinesis, final blastokinesis, completion of organs and tissues. Moreover, process of yolk cleavage was surveyed; cellular blastoderm and syncytial blastoderm were distinguished; embryonic pictures were captured from different tissue eg. mid-gut, dorsal vessel, nerve cord, gonad, silk gland. The primordial germ-like cells were observed in mesoderm by serial cross section.
     3. There were many factors contribute to IHC, such as purity of primary antibody, dilution degree of primary antibody and secondary antibody, time used in the process of retrieval, block, rinse, antibody incubation, coloration. The best dilution degree in this study was 1:1000 of primary antibody and 1:500 of secondary antibody.
     4. The Immunolocalization of BmMago revealed that BmMago protein was expressed in all the cells of the silkworm testis, where it was predominantly localized to the nuclei.
     In conclusion, a new paraffin section technical method for silkworm {Bombyx mori) eggs has been established, which meet developmental gene functional research, has the advantages of simple, fast, integrity, high throughput. A lot of embryonic microphotographs from representative developmental stages were gained, which conformed and enriched the ancestral literal details, schematic diagrams, hand-drawing pictures on the research field. A immunohistochemical(IHC) staining method has been explored in silkworm, in which key steps have been tested and standardized. BmMago has been immunolocalized in silkworm testis.
引文
1.J.布拉舍.分子胚胎学引论.北京:科学出版社,1981:1
    2.武汉大学等主编.普通动物学(第二版).北京:高等教育出版社,1984:220-246
    3.向仲怀主编.蚕丝生物学.北京:中国林业出版社,2005,6
    4. Gregory K. Davis, Nipam H. Patel. Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annual review entomology, 2002, 47:669-698
    5. Brown SJ, Parrish JK, Beeman RW, Denell RE. 1997. Molecular characterization and embryonic expression of the evensla'pped ortholog of Tribolium castaneum. Mech. Dev, 61:165-73
    6. Brown S J, Patel N H, Denell R E. Embryonic expression of the single Tribolium engrailed homolog. Dev. Genet, 1994, 15:7-18
    7. Carr J N, Taghert P H. Pair-rule expression of a cell surface molecule during gastrulation of the moth embryo. Development, 1989, 107:143-51
    8. Roth S, Neuman Silberberg F S, Barcelo G, Schupbach T. Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell, 1995, 81:967-978
    9. Gonzalez Reyes A, Elliott H, St Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signaling. Nature, 1995, 375:654-658
    10.孙承铣.家蚕胚胎头部形态的发育研究.蚕业科学,1964,2(1):37-42
    11.浙江农业大学主编.蚕体解剖生理学(第二版).北京:农业出版社,1998:10
    12.数据库. http://flybase.bio.indiana.edu
    13. Gilbert S E Developmental Biology. Sinauer Associates, Sunderland, 2000
    14. Lall S, Patel N H. Conservation and divergence in molecular of axis formation. Annu. Rev. Gene, 2001, 35:407-437
    15. Ephrussi A, St Johnston D. Seeing is believing: the bicoid morphogen gradient matures. Cell,2004, 116:143-152
    16. Nagy L, Riddiford L, Kiguchi K. Morphogenesis in the early embryo of the lepidopteran Bombyx mori. Dev Biol, 1994, 165:137-151
    17.柴春利,鲁成.从形态学不同到基因水平差异:家蚕与果蝇早期胚胎发育比较.遗传,2006,28(9):1173-1179
    18.朱洗,张果.氰酸钾对于蚕卵发育的影响.科学通报,1950,1(3):169-171
    19.朱洗,王高顺,何家霱,等.家蚕混精杂交的研究.实验生物学报,1954,4(1):1-73
    20.喻叔英,沈其璋.家蚕胚胎发育扫描电镜图.蚕业科学,1993,19(4):222-228
    21.吴维光主编.桑蚕组织胚胎学图谱.北京:中国农业出版社.1999:272
    22. Miya K. The Early Embryonic Development of Bombyx mori(Yaginuma T, Suzuki K, eds). Japan: GENDAITOSHO, Sagamihara City, 2003
    23.高见丈夫.蚕种总论.北京:农业出版社,1981:205-219
    24. X. Xu, P. X. Xu, Y. Suzuki, A maternal homeobox gene, Bombyx caudal, forms both mRNA and protein concentration gradients spanning anterior-posterior axis during gastrulation, Development, 1994, 120:277-85
    25. X. Xu, P. X. Xu, K. Amanai et al, Double-segment defining role of even-slapped homologs along the evolution of insect pattern formation, Dev Growth Differ, 1997, 39:15-22
    26. T. Nagata, Y. Suzuki, K. Ueno, et al, Developmental expression of the Bombyx Antennapedia homologue and homeotic changes in the Nc mutant, Genes Cells, 1996, 1:555-568
    27. Hajime Nakao. Isolation and characterization of a Bombyx vasa-like gene. Dev. Genes Evol,1999, 209:312-316
    28. Hajime Nakao, Masatsugu Hatakeyama, Jae Min Lee, et al. Expression pattern of Bombyx vasa like (BmVLG) protein and its implications in germ cell development. Dev. Genes Evol. 2006,216:94-99
    29. Jin Y, Y. Chen et al. Proteome analysis of the silkworm colleterial gland during different development stages. Arch Insect Biochem. Physiol., 2006, 61(1): 42-50
    30. B. X. Zhong, J. K. Li, J. R. Lin, et al. Possible effect of 30K proteins in embryonic development of silkworm Bombyx mori. Acta Biochimica et Biophysica Sinica, 2005, 37(5):355-361
    31. Xia Q Y, Zhou Z Y, Lu C, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 2004, 306:1937-1940
    32.刘春,帅小蓉,程廷才,等.家蚕胚胎发育时期的RNA干涉研究.生物化学与生物物理进展,2004,31(4):322-327
    33.程廷才,夏庆友,刘春,等.家蚕chi,gluE和fruA基因与微生物相应基因的同源性及基因水平转移初探.遗传学报,2004,31(10):1082-1088
    34. T C chen, Q Y xia, J F qian, et al. Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao. Insect Biochemistry and Molecular Biology, 2004,34:523-530
    35.李斌,夏庆友,鲁成,等.家蚕细胞色素P450的基因组学分析.中国科学,2004,34(6):517-521
    36.桂建芳,易梅生.发育生物学.北京:科学出版社,2002:41
    37. Regier J C, G D Mazur, F C Kafators. The silkmoth chorion: Morphological and biochemical characterization of four surface regions of specific proteins. Develop. Biol., 1980, 76:286-304
    38.孙承铣.家蚕内胚层迷失与再现的发育现象.蚕业科学,1993,22:60-61
    39.李健男.介绍用502胶解剖昆虫卵的新方法.昆虫知识,1994,31(4):216
    40.刘春莲.蚕卵整体染色透明技术.安徽农业科学,1999,27(1):64-65
    41.孟运莲.现代组织学与细胞学技术.武昌:武汉大学出版社,2004,6-7
    42. SJOSTRAND FS. Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res., 1958, 11, 2(1):122-70
    43. Lutz C, Takagi A, Janecka IP, et al. Three-dimensional computer reconstruction of a temporal bone. Arch Otolaryngol Head Nedk Surg, 1989, 101(5): 522-526
    44. Mason T P, Applebaum E L, Rasmussen M, et al. Virtual temporal bone: Creation and application of a new computer-based teaching tool. Arch Otolaryngol Head Neck Surg, 2000,122(2): 168-173
    45.钱志刚,刘磊,王月娇.血管切片的三维重建.河北大学学报(自然科学版),2002,6,22(2):118~123
    46.刘文军,钟世镇.鼠松质骨切片图像的三维重建与定量分析.中国医学物理学杂志,2004,9,21(5):262-275
    47.李希平,夏寅,韩德民,等.基于虚拟中国人数据集的鼻部及颞骨解剖结构三维重建.中国临床解剖学杂志,2004,22(4):377-379
    48.张义,李时光,杨恬.生物组织显微切片图象计算机三维重建的截面重建技术.中国生物工程学报,1992,3,11(1):17-22
    49.刘哲星,江贵平,董武,等.组织连续切片图像的配准与三维显示.生物医学工程学杂志,2002,19(4):628-632
    50. Shi SR, Key ME, Kalre KL. Amtigen Nefnieval in formalin fixed, paraffin-embedded tissue: An enhancement method for immuno-histochemical staining based on miciowove oven heating of tissue sections. J Histocham Cytochem, 1991, 39:741
    51. Pardue ML. In situ Hybridization. In: Hames BD & Higgins SJ, eds. Nucleic acid hybridization, A practica approach. Oxford: IRL press. 1985:170
    52. Tecott LH, et al. MethodoIogical considerations in the utilization of in situ hybridization. In: Valentino K, Ebetwine J, Barchas J, eds. In situ hybridization: Application to neurobioIogy. New York: Oxford University press, 1986:3
    53. Singer RH, et al. Toward a rapid and sensitive in situ hybridization methodology using isotopic and non-isotopic probe. In: Valentino K, Ebefwine J, Barehas F J, eds. In situ hybridization: Application to neurobiology. New York: Oxford University press, 1986:71
    54. Delcllis RA, et al. New techniques in gene product analysis. Arch Pathol Lab Med 1987, 111:620
    55.罗国炜,吴懿德,潘慧仙,等.原位杂交技术在培养细胞冰冻切片和石蜡切片中德应用.中山医科大学学报,1992,13(1):69-72
    56.任立群,赵志涛,孙波,等.石蜡包埋组织切片原位核酸杂交研究.白求恩医科大学学报,2001,27(3):235-236
    57.陆良勇,黄伟达,刘尚廉,等.应用RNA原位核酸杂交检测乳腺癌石蜡切片中ERmRNA、 PR mRNA表达.中国组织化学与细胞化学杂志,2002,3,11(1):92-97
    58.刘少华,程刚,李声伟,等.石蜡包埋骨组织切片核酸原位杂交研究.临床口腔医学杂志,2002,10,18(5):34-348
    59.王春杰,胡沛臻,王文亮,等.原位杂交检测石蜡包埋组织中丙型肝炎病毒RNA.中国组织化学与细胞化学杂志,1995,9,4(3):297-300
    60. Haase AT, Retzel EF, Staskus KA. Amplification and detection of lentiviral DNA inside cells. Proc Natl Acad Sci USA, 1990, 87:4971-4975
    61. Bagasra O, Hauptman SP, Lischner HW, et al. Detection of human immunodeficiency virus type I provirus in mononuclear cells by in situ polymeerase chain reaction. N Eng J Med,1992, 326:1385-1391
    62. Nuovo GJ, Gallery F, Hom R, et al. Importance of different variables for enhancing in situ detection of PCR amplified DNA. PCR Methods Appl., 1993, 2(4): 305
    63. Long AA, Kornminoth P, Lee E, et al. Comparison of indirect and direct in situ polymerase chain reaction in cell preparations and tissue sections. Histochemistry, 1993, 99(2): 151
    64. Gressens P, Martin JR. In situ polymerase chain reaction: Localization of HSV22 DNA sequences in infections of the nervous system. J Virol Meth., 1994, 46(1): 61
    65.许亮国,杨旭宇,谢鹭,等.用原位PCR方法检测鼻咽癌组织中的EB病毒.中华肿瘤杂志,2001,1,22(1):17-18
    66. Sallstrom J F, Zehbe I, Alemi M, et al. Pitfalls of in situ polymerase chain reaction (PCR) using direct incorporation of labelled nucleotides. Anticancer Res., 1993, 8, 13(4): 1153
    67. Kononen J, Bubenclorf L, Kallioniemi A, et al. Tissue microarrary for high - throughout molecular profiling of tumor specimens. Nat med, 1998, 4:844
    68. Hoos A, UristMJ, StojadinovicA, et al. Validation of tissuemicroarrays for immuno-histochemical profiling of cancer speciments using the example of human fibroblastic tumors. Am J Pathol, 2001, 158(4):1245
    69. Moch H, Schraml P, Bubendorf L, et al. High-through put tissue microarray analysis to evaluate genes uncovered by cDNA microarry screening in renal cell carcinoma. J Pathol, 1999, 154(4):981
    70. Pan CC, Chen PC, Tsay S, et al. Cytoplasmic immunoreactivity for thyroid transcrip tion factor21 in hepatocellular carcinoma. Am J Clin Pathol, 2004, 121:343
    71. Packeisen J, Korsching E, Herbst H, et al. Demystified tissue microarray technology. Mol Pathol, 2003, 56(4): 198-204
    72. Wyllie AH, Kerr JF, Currie AR, Cell death: the significance of apoptosis. Int Rev Cytol, 1980,68:251-306
    73. Negoescu A, Lorimier P, Labat Moleur F, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem. Cytochem., 1996, 44:959-968
    74. Migheli A, Cavalla P, Marino S, et al. A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks. J Neuropathol Exp Neurol, 1994, 53:606-616
    75. Wijsman JH, Jonker RR, Keijzer R, et al. A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem, 1993, 41:7-12
    76. Mundle SD, Gao XZ, Khan S, et al. Two in situ labeling techniques reveal different patterns of DNA fragmentation during spontaneous apoptosis in vivo and induced apoptosis in vitro. Anticancer Res., 1995, 15:1895-1904
    77. Gold R, Schmied M, Rothe G, et al. Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem.,1993, 41:1023-1030
    78. DW Hedley, ML Friedlander, IW Taylor, et al. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. Journal of Histochemistry and Cytochemistry. 1983, 11, 31(11): 1333-1335
    79.叶常青.形态计量学在病理学中应用的回顾和展望.中华病理学杂志,1990,19(4):241
    80.申洪.形态测量学在病理学中应用.中华病理学杂志,1990,19(1):71
    81. P W Hamilton, D C Alien, P C Watt, et al. Classification of normal colorectal mucosa and adenocarcinoma by morphometry. Histopathology, 1987, 9, 11 (9):901
    82. Newmark, Boswell. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila. Development, 1994, 120(5): 1303-1313
    83. Boswell, R, Prout, M, Steichen J. Mutations in a newly identified Drosophila melanogaster gene, mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development, 1991, 113, 373-384
    84. Newmark P. A, Mohr S E, Gong L, et al. mago nashi mediates the posterior follicle cell-to-ocyte signal to organize axis formation in Drosophila. Development, 1997, 124,3197-3207
    85. David R. Micklem, Ramanuj Dasgupta, Heather Elliott et al. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curt. Biol. 1997, 7(7): 468-478
    86. Li, W, Boswell, R, Wood, W.B. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev. Biol, 2000, 218: 72-82
    
    87. R W, Aplan, P.D. The mammalian homologue of mago nashi encodes a serum-inducible protein. Genomics, 1998,47: 19-22
    88. Zhao X F, Nowak N J, Shows T B, et al. MAGOH interacts with a novel RNA-binding protein. Genomics, 2000, 63: 145-148
    89. Franco Cotelli, Carla Lora Lamia, Sveva Doniselli, et al. Identification and expression pattern of mago nashi during zebrafish development. Gene Expression Patterns, 2004,5: 265-272
    90. Sergio DJ Pena, Elida ML Rabelo, Adriano BS Hobaika, et al. Sequencing and Expression Analysis of a Schistosoma mansoni Gene Homologue to a Drosophila Gene Involved in Germ Plasm Assembly. Mem Inst Oswaldo Cruz. Rio de Janeiro, 1998, 93: 207-209
    91. S E Mohr, S T Dillon, R E Boswell. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes & Development, 2001, 9,15(21): 2886-2899
    92. Le Hir H, Gatfield D, Izaurralde E, et al. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and NMD. Genes Dev. 2001, 15: 2886-2899
    93. Kim V N, Kataoka N, Dreyfuss G. Role of the non-sense mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science, 2001, 293: 1832-1836
    94. Lykke Andersen J, Shu M D, Steitz J A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell, 2000: 103, 1121-1131
    95. Lykke Andersen J, Shu M D, Steitz J A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science, 2001: 293, 1836-1839
    96. Mendell J T, Rhys C M J, Dietz H C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science, 2002, 298: 419-422
    97. Kataoka N, Diem M D, Kim V N, Yong J, et al. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J, 2001, 20: 6424-6433
    98. Kataoka N, Yong J, Kim V N, Velazquez F, et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell, 2000, 6: 673-682
    99. Tichomiroff, A. Ueber die entwichlungsgeshichte des seidenwurms. Zool.Anz. 1879, 2: 64-67
    100. Toyama, K Structure of the eggs and development of the embryos in the silkworm, Bombyx mori. 1896,28:28-80
    101. Ikeda E. Embryonic development and morphological changes of Bombyx mori. 1910, 18: 26-42
    102. Wada S. Kenntnis der keimblatterheerkunft des subosophagealkorpers am embryo der seodenraupe, Bombyx mori. J. seric. sci. Jpn., 1955, 24: 114-117
    103. Akai H. Studies on the electron microscopic structure of egg shell in Bombyx mori. J. seric. sci. Jpn., 1957, 26: 335-340
    104. Akutsu S. Yoshitake N. Electron microscopic observations on the grey eggshell of the silkworm, Bombyx mori. J. seric. sci. Jpn., 1974,43: 461-466
    105. Miya K. Electron microscopic studies on the embryonic development in the silkworm, Bombyx mori. J. seric. sci. Jpn., 1959, 28: 163-164
    106. Takei R, Nagashima E. Electron microscope investigation on the early developmental stages of diapause and non-diapause eggs in the silkworm, Bombyx mori. J. seric, sci. Jpn., 1975, 44:118-124
    107.陶天仕.关于大卵黄粒卵胚的切片问题.山东大学学报(生物版),1960,2:18-27
    108.关海红.鱼类组织石蜡切片技术的改进.水产学杂志,1996,5,9(1):65-67
    109. Iwasaki Y. The formation of blastoderm and yolk cells and properties of the yolk cells in the egg of the silkworm, Bombyx mori. (Article in Japanese). Jap. J. Appl. Zool., 1931, 3:308-313
    110. Miya K. Studies on the embryonic development of the gonad in the silkworm, Bombyx mori L. (part I. Differentiation of germ cells). J. Fac. Agr. lwate Univ., 1958, 3(4): 436-467
    111. Miya K. Electron microscopic observation of the early embryonic development in the silkworm, Bombyx mori. Ⅱ. Blastoderm and germ-band formation stages. Proc. 16th Symp. Arthrop. Embryol. Jap. Soc., 1980, 7and18
    112. Anderson D T, Wood E C. The morphological basis of embryonic movements in the light brown apple moth, Epiphyar poatvittana(walk) (Lipidoptera, Tortricidae). Aust. J. Zool., 1968, 16:763 -793
    113. Rempel J G, A study of the embryology of Mameatra configurata (Walker) (Lepidoptera, Phalaenidae). Can. Ent., 1951, 83:1-19
    114. Dubois A M. A contribution to the embryology ofSciara. J. Morphol., 1932, 54:161-192
    115. Sonnenblick B P. Germ cell movements and sex differentiation of the gonads in the Drosophila embryo. Proc. Natl. Acad. Sci., 1941, 27:484-489
    116.杨国海.南瓜实蝇的胚胎发育过程研究.硕士论文,中山大学,1989
    117. Miya K. Early embryogenesis ofBombyx mori. In: King RC, Akai H (eds) Insect ultrastructure, New York: Plenum Press, 1984, 2:49-73
    118. Presser B D, Rutschky C W. The embryonic development of the corn earworm HeliothiJ zea (Boddie). (Lepidoptera, Phalaenidae). Ann. Ent. Soc. Am., 1957, 50:133-164
    119.刘勇,牟吉元.豆天蛾胚胎发育特征及药剂对卵的杀伤作用.昆虫知识,1999,4:210-212
    120. Bassand D. Contribution a letude de la diapause embryonnaire et de I'embryogenese de Zeiraphera griseana Hubner (=Z. diniana Guenee) (Lepidoptera=Tortricidae). Rev. Suisse Zool., 1965.72:431-542
    121. Ruberson J R. Larsen J R. Joreensen C D. Embryogenesis of the codling moth, Cydia pomonella (Lepidoptera:Tortricidae). Ann. Entomol. Soc. Am, 1987, 80:56-570
    122. Shi SR, Cote R J, Young L L, et al. Antigen retrieval immunohistochemistry: Piactice and development. 1997, 20(2): 145-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700