用脉冲激光沉积制备SrTiO_3/Nb:SrTiO_3异质结及其光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成光学和光电子技术产业的发展依赖于优质、多功能薄膜材料的获得和器件的制备,脉冲激光沉积(Pulsed laser deposition,PLD)方法是目前最先进的薄膜制备方法之一。本文利用PLD方法研究钙钛矿型氧化物钛酸锶(SrTiO_3)薄膜、异质结的制备及其电学和光学性质。首先,深入探讨了在PLD过程中脉冲激光与靶物质及激光产生的等离子体间的相互作用的物理机制,系统研究了沉积参数如激光功率密度、激光重复频率、反应室氧分压、衬底温度、衬底类型对SrTiO_3薄膜生长的影响。然后,采用优化的沉积参数在两种不同的铌掺杂浓度的掺铌钛酸锶(Nb:SrTiO_3)衬底上进行PLD镀膜,制备了SrTiO_3/Nb:SrTiO_3异质结,利用X射线衍射(XRD)、透射电子显微镜(TEM)、拉曼光谱(Raman spectrum)、厚度测试仪对薄膜和异质结进行了表征。结果表明所得到的SrTiO_3薄膜为单相外延生长,SrTiO_3/Nb:SrTiO_3异质结的性质受到衬底掺杂浓度的调制。进一步地,系统研究了SrTiO_3/Nb:SrTiO_3异质结的界面电子传输性质和光电性质,首次发现了这种异质结中的受界面控制的电流回滞及电阻开关、多电阻态现象并对其进行了合理解释;测量了异质结在紫外光作用下的光电导和光生伏特效应,发现SrTiO_3/Nb:SrTiO_3异质结的光电性质受到其衬底掺杂浓度的调制,衬底掺杂浓度较高的结中光电导更加明显,并且其光生伏特效应与其被置于哪个电阻态密切相关。研究认为,高浓度的Nb掺杂改变了SrTiO_3/Nb:SrTiO_3异质结的界面电子结构,使界面产生较多的缺陷能级并可作为电子的束缚(trap)中心。当外加电场或光照时,束缚中心对电子的俘获或释放使其产生独特的电阻开关、多电阻态及依赖于电阻态的光电效应现象。这一研究工作有助于深入理解激光与物质相互作用的物理机制,且对于新型氧化物光电子材料和器件的开发制备具有启发性的意义。
Fabrication of high quality and multifunction thin films and devices plays an important role in the development of integrated optics and photoelectric technology. Pulsed laser deposition (PLD) is one of the most advanced methods for film growth. In this thesis, SrTiO_3 films and its heterostructures SrTiO_3/Nb:SrTiO_3 have been fabricated using PLD method and the electrical and photoelectrical characteristics of the junctions have been investigated.
     The fundamental physics involving laser-material interaction and laser-plasma interaction during PLD process has been studied thoroughly. The impacts of deposition parameters such as the pulse energy density, the laser pulse frequency, the oxygen pressure, the substrate temperature and the substrate species on film growth have been investigated systematically.
     SrTiO_3 thin films were deposited on Nb: SrTiO_3 substrates with different Nb doping levels using PLD method. Optimized deposition parameters were employed to achieve smooth epitaxial films with high crystalline perfection. X-ray diffractometer (XRD), transmission electron microscope (TEM) and confocal Raman micro-spectroscopy were used for the microstructure analysis. The characteristics of SrTiO_3/Nb:SrTiO_3 heterojunctions were found to be modulated by the Nb doping levels of substrates.
     The electrical transport and photoelectrical properties of SrTiO_3/Nb:SrTiO_3 heterojunctions have been investigated. The hysteretic current-voltage curves, remarkable resistance switching phenomena and multi-resistance states were observed and the results have been discussed by considering the role of defects in the interfacial depletion region of the heterojunctions. The photoconductivity and photovoltaic effects of SrTiO_3/Nb:SrTiO_3 heterojunctions under ultraviolet light irradiation have been measured. These behaviors depend on the Nb doping levels of substrates and the junction with higher Nb concentration in the substrate shows larger photoconductivity. Furthermore, photovoltaic effects in the junction with multi-resistance states have been found to correlate with its resistance states. In the junction with high Nb doping level, defects with high concentration create a considerable number of defect energy levels, which act as "traps" of electrons, in the electrical band structure of interface. When external electrical field or light are applied, trapping or detrapping of electrons by these defects result in the resistance switching, multi-resistance states and particular photovoltaic phenomena. This work is helpful for understanding fundamental physics of light-matter interaction and is useful for fabrication of novel photoelectric devices.
引文
[1] Hwang H. Y., Tuning Interface States, Science, 2006,313:1895-1896
    
    [2] Wu T., Ogale S. B.,Garrison J. E., et al., Electroresistance and electronic phase separation in mixed-valent manganites, Phys. Rev. Lett., 2001, 86(26): 5998-6001
    [3] Meng J. F., Huang Y. B., Zhang W. F., et al., Photoluminescence in nanocrystalline BaTiO_3 and SrTiO_3, Phys. Lett. A, 1995, 205: 72-76
    [4] Xiong C. M., Zhao Y. G., Xie B. T., Unusual colossal positive magnetoresistance of the n-n heteroj unction composed of La_(0.33)Ca_(0.67)MnO_3 and Nb-doped SrTiO_3, Appl. Phys. Lett., 2006, 88(19): 193507(3)
    [5] Guo S. M., Zhao Y. G., Xiong C. M., Rectifying I-V characteristic of LiNbO_3/Nb-doped SrTiO_3 heterojunction, Appl. Phys. Lett., 2006, 89(22): 223506(3)
    [6] Buban J. P., Iddir H., and Ogut S., Structural and electronic properties of oxygen vacancies in cubic and antiferrodistortive phases of SrTiO_3, Phys. Rev. B, 2004, 69(18): 180102(4)
    [7] Myhajlenko S., Bell A., Ponce F., et al., Optoelectronic and microstructure attributes of epitaxial SrTiO_3 on Si, J. Appl. Phys., 2005, 97(1): 014101(8)
    
    [8] Stengel M. and Spaldin N. A., Origin of the dielectric dead layer in nanoscale capacitors, Nature, 2006,443: 679-682
    [9] Luo Z., Hao J. H., Gao J., Rectifying characteristics and transport behavior of SrTiO_(3-δ)(110)/p-Si(100) heterojunctions, Appl. Phys. Lett., 2007, 91(6): 062105(3)
    [10] Bieger T. and Maier J., Optical investigation of oxygen incorporation in SrTiO_3, Solid State Ionics, 1992, 53-56: 578
    
    [11] Joshi P. C, Krupanidhi S. B., Structural and electrical characteristics of SrTiO_3 thin films for dynamic random access memory applications, J. Appl. Phys, 1993, 73(11): 7627-7634
    
    [12] 戴闻.SrTiO_3在微电子器件中取代硅材料的前景.物理.2005,34(5):380
    
    [13] Chen C. H., Kwo J., Hong M., Microstructure of YBa_2Cu_3O_(7-x) superconducting thin films grown on SrTiO_3(100) substrate, Appl. Phys. Lett., 1988, 59(1): 841-843
    [14] Chen Y. F., Ziese M, and Esquinazi P., Interface capacitance of La_(0.8)Ca_(0.2)MnO_3 /Nb: SrTiO_3 junctions, J. Appl. Phys., 2007,101(12): 123906(4)
    [15] Muller K. A. and Burkard H., SrTiO_3: An intrinsic quantum paraelectric below 4K. Phys. Rev. B, 1979, 19(7): 3953-3601
    [16] Christen H. -M., Mannhart J., Williams E. J., Dielectric properties of sputtered SrTiO_3 films. Phys. Rev. B, 1994, 49(17): 12095-12104
    
    [17] Sirenko A. A., Bernhard C., Golnik A., et al., Soft-mode hardening in SrTiO_3 thin films, Nature, 2000, 404: 373-376
    [18] Kahn A. H. and Leyendecker A. J., Electronic energy bands in Strontium Titanate, Phys. Rev., 1964, 135: A1321-A1325
    [19] Zhao T., Chen Z. H., Chen F., et al., Enhancement of second-harmonic generation in BaTiO_3/SrTiO_3 superlattices, Phys. Rev. B, 1999, 60(3): 1697-1700
    [20] Kumagai K., Suzuki T., and Taguchi Y, Metal-insulator transition in La_(1-x)Sr_xTiO_3 and Y_(1-x)Ca_xTiO_3 investigated by specific-heat measurements. Phys. Rev. B, 1993, 48(10): 7636-4642
    [21] Spitzer W. G., Miller R. C, Kleinman D. A., et al., Far infrared dielectric dispersion in BaTiO_3, SrTiO_3, and TiO_2. Phys. Rev., 1962, 126(5): 1710-1721
    [22] Frederikse H. P. R., Thurber W. R., and Hosier W. R., Electronic transport in Strontium Titanate. Phys. Rev., 1964, 134(2A):A442-A445
    [23] Tufte O. N., and Chapman P. W., Electric mobility in semiconducting Strontium Titanate. Phys. Rev., 1967, 155(3): 796-802
    [24] Muller D. A., Nakagawa N., Ohtomo A., et al., Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO_3, Nature (London), 2004, 430: 657-662
    [25] Ohtomo A. and Hwang H. Y., A high-mobility electron gas at the LaAlO_3/SrTiO_3 heterointerface, Nature (London), 2004,427: 423-426
    [26] Pentcheva R. and Pickett W. E., Charge localization or itineracy at LaAlO_3/SrTiO_3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B, 2006, 74(3): 035112(7)
    [27] Thiel S., Hammerl G., Schmeh A., et al., Tunable quasi two-dimensional electron cases in oxide heterostructures, Science, 2006, 313: 1942-1945
    [28] Huijben M, Rijnders G., Lank D. H. A., et al., Electronically coupled complementary interfaces between perovskite band insulators, Nature mater., 2006, 5: 556-560
    [29] Siemons, W., Koster G., Yamamoto H., et al., Origin of charge density at LaAlO_3 on SrTiO_3 heterointerfaces: Possibility of intrinsic doping. Phys. Rev. Lett., 2007,98(19): 196802(4)
    [30] Reyren N., Thiel S., Caviglia A. D., et al., Superconducting interfaces between insulating oxides, Science, 2007, 317: 1196-1199
    [31] Wahlecke M., Marrello V. and Onton A., Refractive index of BaTiO_3 and SrTiO_3 films, J. Appl. Phys., 1977, 48(4): 1748-1750
    [32] Sihvonen Y. N., Photoluminescence, Photocurrent, and phase-transition correlation in SrTiO_3, J. Appl. Phys., 1967, 38(11): 4431-4435
    [33] Kan D., Terashima T., Kanda R., et al., Blue-light emission at room temperature from Ar+-irradiated SrTiO_3, Nature Mater., 2005,4:816-819
    [34] Kan D., Kanda R., Kanemitsu Y., et al., Blue luminescence from electron-doped SrTiO_3, Appl. Phys. Lett., 2006, 88(19): 191916(3)
    [35] Leonelli R. and Brebner J. L., Evidence for bimolecular recombination in the luminescence spectra of SrTiO_3, Solid State Commun., 1985, 54(6): 505-507
    [36] Zhang W.E., Yin Z., Zhang M. S., et al., Roles of defects and grain sizes in photoluminescence of nanocrystalline SrTiO_3, J. Phys.: Condens. Matter, 1999,11(29): 5655-5660
    [37] Orhan E., Pontes F. M., Pinheiro C. D., et al., Theoretical and experimental study of the relation between photoluminescence and structural disorder in barium and strontium titanate thin films J. Eur. Ceram. Soc., 2007. 25:2337-2340
    [38] Faughnan B. W., Photochromism in transition-metal-doped SrTiO_3, Phys. Rev. B, 1971,4(10), 3623-3636
    [39] Zhao K., Huang Y. H., Zhou Q. L., et al., Ultraviolet photovoltage characteristics of SrTiO_(3-δ) /Si heterojunction, Appl. Phys. Lett., 2005, 86(22): 221971(4)
    [40] Hunter D., Lord K., Williams T. M., et al., Junction characteristics of SrTiO_3 or BaTiO_3 on p-Si(100) heterostructures, Appl. Phys. Lett., 2006, 89(9): 092102(3)
    [41]杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社,1994:17-25
    [42]陈光华,邓金祥.纳米薄膜技术与应用.北京:化学工业出版社,2004:29-48
    [43]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,1998:41-63
    [44] Yu C., Griel P., Sol-Gel derived SrTiO and SrZrO coatings on SiC and C-fibers, J. Mater. Sci., 1999, 34: 4031-4034
    [45] Tian H. Y., Luo W. G., Pu X. H., et al., Synthesis and characteristics of strontium-barium titanate graded thin films at low temperature using a sol-gel technique, Solid State Commun., 2001,117: 315-319
    [46] Jain M., Majumder S. B., Guo R., et al., Synthesis and haracterization of lead strontium titanate thin films by sol-gel technique, Mater. Lett., 2002, 56: 692-697.
    [47] Baba S., Numata K., Saito H., et al., Preparation of strontium titanate thin films by mirror-confinement-type electron cyclotron resonance plasma sputtering, Thin Solid Films, 2001, 390: 70-75
    [48] Kanai M., Kawai T., and Kawai S., Atomic layer and unit cell layer growth of (Ca, Sr)CuO_2 thin film by laser molecular beam epitaxy, Appl. Phys. Lett., 1991, 58: 771-773
    [49] Dijkkamp D., Venkatesan T., Wu X. D., et al., Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T_c bulk material, Appl. Phys. Lett., 1987, 51(8): 619-621
    [50] Dalberth M. J., Stauber R. E., Price J. C., et al., Improved low frequency and microwave dielectric response in strontium titanate thin films grown by pulsed laser ablation, Appl. Phys. Lett., 1998, 72(4): 507-509
    [51] Fork D. K., Fenner D. B., Connell G. A. N., et al., Epitaxial yttria-stabilized xirconia on hydrogen-terminated Si by pulsed laser deposition, Appl. Phys. Lett., 1990,57(11): 1137-1139
    [52] Chang L.D., Tseng M. Z., Hu E. L., et al., Epitaxial MgO buffer layers for YBa_2Cu_3O_(7-x) thin film on GaAs, Appl. Phys. Lett., 1992, 60(14): 1753-1755
    [53] Smith H. M., and Turner A. F., Vacuum deposited thin films using a ruby laser, Appl. Opt., 1965,4(1): 147-148
    [54] Shin Y. T., Shin S. W., Shin J., et al., Pulsed laser deposition of a thin conjugated-polymer film, Thin Solid Films. 2000, 360:13-16
    [55] Yang X. J., Tang Y. X., Yu M., et al., Pulsed laser deposition of aluminum tris-8- hydroxyquinline thin films. Thin Solid Films, 2000, 358: 187-190.
    [56] Willmott P. R. and Huber J. R., Pulsed laser vaporization and deposition, Rev Mod Phys, 2000, 72(1): 315-328
    [57] Willmott P. R., Deposition of complex multielemental thin films, Prog. Surf. Sci., 2004, 76: 163-217
    [58] Yoshihiko S., Kiyoshi K., Kageyasu A., et al., Epitaxial growth and surface acoustic wave properties of lithium niobate films growth by pulsed laser deposition, J. Appl. Phys., 1995, 77 (4): 1498-1503
    [59] Hontsu S., Ishii J., Tabata H. et al., Formation of YBa_2Cu_3O_(7-y)/BaTiO_3 multistructures by pulsed laser deposition for high temperature superconducting device applications, Appl. Phys. Lett., 1995,67(4): 554-556
    [60] H. Jenniches, M. Klaua, H. H(?)che, et al., Comparison of pulsed laser deposition and thermal deposition: Improved layer-by-layer growth of Fe/Cu (111), Appl. Phys. Lett., 1996,69(22): 3339(3)
    [61]刘震,王淑芳,赵嵩卿等.利用脉冲激光沉积技术在双轴织构的Ni基带上外延CeO_2薄膜.物理学报.2005,54(12):5820-5823
    [62] Liu X. H., Liu Z. G., Preparation and characterization of ferroelectric SrBi_2Ta_2O_9 thin films on Si using Al_2O_3 buffer layers, App. Phys. A, 2001, 73: 331-333
    [63] Wang Y. Q., Huang X. T., Wu Ch, et al., Large-area thin film preparation by a hybrid scanning laser ablation, SPIE, 1999,3862:493-497
    [64] Singh R K, Narayan J, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model, Phys. Rev. B, 1990,41(13): 8843-8859
    [65] Chrisey D. B. and Hubler G. K., Pulsed laser deposition of thin films, Wiley: New York, 1 994, 55-87
    [66] Amoruso S., Modelling of laser produced plasma and time-of-flight experiments in UV laser ablation of aluminium targets, Appl. Surf. Sci., 1999,138-139: 292-298
    [67] Tatarakis M., Watts I., Beg F. N., et al., Laser technology measuring huge magnetic, Nature, 2002, 415: 280
    [68] Ozegowski M., Metev S., and Sepold G., Influence of laser parameters on the formation of ablative plasma fluxes and the properties of deposited thin films, App. Surf. Sci., 1998, 127-129: 614-619
    [69] Zhang D. M., Guan L., Li Z. H., et al., Monte Carlo simulation of growth of thin film prepared by pulsed laser, Chin. Phys. Lett., 2003, 20(2): 263-266
    [70] Sankur H, Gunning W. J., DeNatale J., et al., High-quality optical and epitaxial Ge films formed by laser evaporation, J. Appl. Phys., 1989, 65(6): 2475-2478
    [71] Tantigate C., Lee T., and Safari A. Processing and properties of Pb(Mg_(1/3)Nb_(2/3)O_3 -PbTiO_3 thin films by pulsed laser deposition, Appl. Phys. Lett., 1995, 66(13): 1611-1613
    [72] Willmott P. R., Manoravi P., and Holliday K., Production and characterization of Nd, Cr: GSGG thin films on Si (001) grown by pulsed laser ablation, Appl. Phys. A, 2000, 70: 425-429.
    [73] Shin B., Leonard J., McCamy J. W., et al. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy, Appl. Phys. Lett., 2005, 87(18): 181916(3)
    [74] Xiao Y. S., Zhang X. P., and Zhao Y. G., Backward diodelike behavior in La_(0.67)Ca_(0.33)MnO_(3-δ)/SrTiO_3 /Nb-SrTiO_3p-i-n junction, Appl. Phys. Lett., 2006, 88(21): 213501(3)
    [75]陈逸清,郑立荣,张顺开.准分子激光沉积PZT铁电薄膜沉积及其特性研究.科学通报.1995,40(1):89-92
    [76]顾豪爽,杨光,王又清.准分子激光沉积(Ba_(1-x)Sr_x)TiO_3铁电薄膜.湖北大学学报(自然科学版).2000,22(2):150-153
    [77] Singh R. K., Bhattcharya D., and Narayan J., Subsurface heating effects during pulsed lasers evaporation of matesials, Appl. Phys. Lett., 1990, 57(19): 2022 -2024
    [78] Peterlongo A., Miotello A., and Kelly R., Laser-pulse sputtering of aluminum: Vaporization, boiling, superheating, and gas-dynamic effects, Phys. Rev. E, 1994, 50(6): 4716-4727
    [79] Tachiki, M., Noda M., Yamada K., et al., SrTiO_3 films epitaxially grown by eclipse pulsed laser deposition and their electrical characterization, J. Appl. Phys., 1998, 83(10): 5351-5357
    [80] Kwok H. S., Formation of atom beams and dynamics of in situ superconducting film growth by pulsed-laser deposition, Thin Solid Films, 1992, 218: 277-290
    [81] Fleet A., Dale D., Woll A. R., et al., Multiple time scales in diffraction measurements of diffusive surface relaxation, Phys. Rev. Lett., 2006,96(5): 055508(4)
    [82] Venkatesan T., Wu X. D., Inam A., et al., Nature of the pulsed laser process for the deposition of high Tc superconducting films, Appl. Phys. Lett., 1988, 53: 1431-1433
    [83] Blank D. H. A., Ijsselsteijn P. R. J., Out P. G., et. al., High Tc thin films prepared by laser ablation: material distribution and droplet problem, Mat. Sci. Eng. B, 1992, 13: 67-74
    [84] Foote M. C., Jones B. B., Hunt B. D., et al., Composition variations in pulsed laser deposited Y-Ba-Cu-O thin films as a function of deposition parameters, Physica C, 1992, 201: 176-182
    [85] Eryu O., Masuda K., Shihoyama K., et al., Strong wavelength dependence of laser ablation fragments of superconductor YBaCu_5O_7, Jpn. J. Appl. Phys., 1992, 31: L86-L88
    [86] Izumi H., Ohata K., Sawada T., et al., Direct observation of ions in laser plume onto the substrate, Appl. Phys. Lett., 1991, 59: 597-599
    [87]Von M.奥尔曼.激光束与材料相互作用的物理原理及应用.北京:科学出版社,1994:41-43
    [88] Weimer W. A., Plasma emission from laser ablation of the high-temperature superconductor YBa_2Cu_3O_7, Appl. Phys. Lett., 1988, 52(25): 2171-2173
    [89] Venkatesan T., Wu X. D., Inam A., et. al., Observation of Two Distinct Components During Pulsed Laser Deposition of High Tc Superconducting Films, Appl. Phys. Lett., 1988, 52(14): 1193-1195
    [90] Zheng J. P, Ying Q. Y., Witanachchi S., et. al., Role of the oxygen atomic beam in low-temperature growth of superconducting films by laser deposition, Appl. Phys. Lett., 1989, 54(10): 954-956
    [91] Nishikawa H., Kawai M. and Kawai T., Laser ablation of alkaline earth metals investigated by line of high mass spectrocopy: Ion desorption by lore-electron excitation, Jan. J. Appl. Phys., 1969, 35: 425-428
    [92] Guan W. J., Matusmoto T. and Kawai T., Time-and space-resolved diagnosis of lasesr ablation plasma probed by optical transmittance, Chem. Phys. Lett., 1998,291:161-166
    [93] Liu X. Z., He S. M., Li D. H., et al., Dynamics of STO heteroepitaxial growth by pulsed laser deposition, J. Marte. Sci. 2005,40:5139-5145
    [94] Naito M., Yamamoto H., Sato. H., Reflection high-energy electron diffraction and atomic force microscopy studies on homoepitaxial growth of SrTiO_3(001), Physics C, 1998, 305: 233-250
    [95] Yoo Y. Z., O. Chmaissem, S. Kolesnik, Contribution of oxygen partial pressures investigated over a wide range to SrRuO_3 thin-film properties in laser deposition processing, J. Appl. Phys., 2005,97(10): 103525(6)
    [96] Misra D. S., Lourenco A. A. C. S., and Palmer S. B., The importance of the oxygen environment in the laser deposition of YBaCu_3O_7 films and tunnel junctions, Supercond. Sci.Technol., 1990, 3: 440-444
    [97] Gouglas B. C. and Graham K. H. Pulsed laser deposition of thin films. New York: John Wiley & Sons, 1994. 229-236
    [98] Vasco E. and Sacedon J. L., Role of Cluster Transient Mobility in Pulsed Laser Deposition-Type Growth Kinetics, Phys. Rev. Lett., 2007, 98(3): 036104(4)
    [99] Singh R K., Bhattacharya D., and Narayan J., Control of surface particle density in pulsed laser deposition of superconducting YBaCu_3O_7 and diamond like carbon thin films, Appl. Phys. Lett., 1992, 61(4): 483-485
    [100] Ehrilich G., Hudda F. G., Atomic view of surface self-diffusion: tungsten on tungsten, J. Chem. Phys., 1966, 44:1039-1043
    [101] Schwoebel R. L., Shipsey E. J., Step motion on crystal surfaces, J. Appl. Phys., 1966, 37(10): 3682-3686
    [102] Song J. H. and Jeong Y. H., SrTiO_3 homoepitaxy by the pulsed laser deposition method: island, layer-by-layer, and step-flow growth, Solid State Commun., 2003, 125 (10): 563-566
    [103] Eklund E. A., Bruinsma R., Rudnick J., et al., Submicron-scale surface roughening induced by ion bombardment Phys. Rev. Lett., 1991, 67: 1759-1762
    [104] Gamaly E. G., Rode A. V., and Luther-Davies B. Ultrafast ablation with high-pulse-rate lasers., Part Ⅰ: Theoretical considerations, J. Appl. Phys, 1999, 85(8): 4213-4221
    [105] Rode A. V., Luther-Davies B., and Gamaly E. G, Ultrafast ablation with high-pulse-rate lasers, Part Ⅱ: Experiments on laser deposition of amorphous carbon films, J. Appl. Phys., 1999, 85(8): 4222-4230
    [106]周岳亮,赵维义.脉冲激光淀积高温超导薄膜的几个技术问题.低温物理学报.1999,21(1):17-24
    [107] Wang Z. C., Kugler V., Helmersson U., et al., Electrical properties of SrTiO_3 thin films on Si deposited by magnetron sputtering at low temperature, Appl. Phys. Lett., 2001, 79(10): 1513-1515
    [108] Choi D., Lee D., Sim H., Reversible resistive switching of SrTiO_x thin films for nonvolatile memory applications, Appl. Phys. Lett., 2006, 88(8): 082904(3)
    [109] Kliea R. F., Zhu Y., Altman E. I., et al., Atomic structure of epitaxial SrTiO_3-GaAs(001) heterojunctions, Appl. Phys. Lett., 2005, 87(14): 143106(3)
    [110] Joshi P. C. and Krupanidhi S. B., Structural and electrical characteristics of SrTiO_3 thin films for dynamic random access memory applications, J. Appl. Phys., 1993, 73(11): 7627-7634
    [111]吴曼.X射线衍射及应用.沈阳大学学报(自然科学版).1995,26(4):7-12
    [112]田民波,刘德令.薄膜科学与技术手册(上).北京:机械工业出版社,1991,674-676
    [113] Lu J. W., Schmidt S., Ok Y. W., Contributions to the dielectric losses of textured SrTiO_3 thin films with Pt electrodes, J. Appl. Phys., 2005, 98(5): 054101(5)
    [114] Eriksson A., Deleniv A. and Gevorgian S., Orientation and direct current field dependent dielectric properties of bulk single crystal SrTiO_3 at microwave frequencies, J. Appl. Phys., 2003, 93(5): 2848-2854
    [115] Fukuda Y., Numata K., Aoki K., Origin of dielectric relaxation observed for Ba_(0.5)Sr_(0.5)TiO_3 thin film capacitor, Jpn. J. Appl. Phys. Part 1, 1996, 35: 5178-5180
    [116] Morioka Y. and Nakagawa I., Hyper-Raman spectra of some cubic crystals, Chem. Phys. Lett., 1985, 122(1-2):150-152
    [117] Rajagopal A. K. and Srinivasan R., Lattice dynamics of cubic perovskite structures, in particular SrTiO_3, J. Phys. Chem. Sol., 1962,23(6): 633-638
    [118] Rimai L. and Parsons J. L., Evidence for the presence of a first order Raman spectrum in the high temperature phase of SrTiO_3, Solid State Commun., 1967,5(5): 387-390
    [119] Nilsen W. G. and Skinner J. G., Raman spectrum of strontium titanate, J. Chem. Phys., 1968, 48(5): 2240-2248
    [120] Sirenko A. A., Akimov I. A., Fox J. R., et al., Observation of the first-order Raman scattering in SrTiO_3 thin films. Phys. Rev. Lett., 1999, 82:4500-4503
    [121] Akimov I. A., Sirenko A. A., Clark A. M, et al., Electric-field-induced soft-mode hardening in SrTiO_3 films. Phys. Rev. Lett., 2000, 84(20): 4625-4628
    [122] Tkach A., Vilarinho P. M., Kholkin A. L., et al., Lattice dynamics and dielectric response of Mg-doped SrTiO_3 ceramics in a wide frequency range, J. Appl. Phys., 2005, 97: 044104(6)
    [123] Merkulov V. I., Fox J. R., Li H. C., et al, Metal-oxide bilayer Raman scattering in SrTiO_3 thin films, Appl. Phys. Lett., 1998, 72(25): 3291-3293
    [124] Du Y.L., Chen G., and Zhang M.S., Investigation of structural phase transition in polycrystalline SrTiO_3 thin films by Raman spectroscopy, Solid State Communications, 2004, 130: 577-580
    [125] Myhajienko S., Bell A. and Ponce F., Optoelectronic and microstructure attributes of epitaxial SrTiO_3 on Si, J. Appl. Phys., 2005,97(1): 014101(8)
    [126] Guo H. Z., Liu L. F., Fei Y. Y., et al., Optical properties of p-type In-doped SrTiO_3 thin films, J. Appl. Phys., 2003, 94(7): 4558-4562
    [127]虞丽生.半导体异质结物理(第二版).北京:科学出版社,2006
    [128] Sze S. M., Physics of Semiconductor Device, 2nd ed. (Wiley, New York, 1981)
    [129] Zafar S., Jones R. E., Jiang B., et al, The electronic conduction mechanism in barium strontium titanate thin films, Appl. Phys. Lett, 1998, 73(24): 3533-3535
    [130] Ann K. H., Kim S. S., Baik S., Thickness dependence of leakage current behavior in epitaxial (Ba,Sr)TiO_3 film capacitors, J. Appl. Phys., 2003, 93(3): 1725-1730
    [131] Wang Y. P. and Tseng T. Y., Electronic defect and trap-related current of (Ba_(0.4)Sr_(0.6))TiO_3 thin films, J. Appl. Phys., 1997, 81(10): 6762-6766
    [132] Chang S. T. and Lee J. Y., Electrical conduction mechanism in high-dielectric-constant (Ba_(0.5),Sr_(0.5))TiO_3 thin films, Appl. Phys. Lett., 2002, 80(4): 655-657
    [133] Yamamoto A., Sawa A., Akoh H., et al., Electrical properties of oxide heteroepitaxial p-n junctions: La_(1-x)Sr_xFeO_3/SrTi_(0.99)Nb_(0.01)O_3, Appl. Phys. Lett., 2007, 90(11): 112104(3)
    [134] Hovel H. J. and Urgell J. J., Switching and memory characteristics of ZnSe-Ge heterojunctions, J. Appl. Phys., 1971, 42(12): 5076-5083
    [135] Liu S. Q., Wu N. J., and Ignatiev A., Electric-pulse-induced reversible resistance change effect in magnetoresistive films, Appl. Phys. Lett., 2000, 76(19): 2749-2751
    [136] Quintero M., Levy P., Leyva A. G., et al., Mechanism of electric-pulse-induced resistance switching in manganites, Phys. Rev. Lett., 2007, 98(11): 116601(4)
    [137] Nian Y. B., Strozier J., Wu N. J., et al., Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides, Phys. Rev. Lett., 2007, 98(14): 146403(4)
    [138] Rossel C., Meijer G. I., Bremaud D., et al., Electrical current distribution across a metal-insulator-metal structure during bistable switching, J. Appl. Phys., 2001, 90(6): 2892-2898
    [139] Rozenberg M. J., Inoue I. H., and Sanchez M. J., Nonvolatile memory with multilevel switching: A basic model, Phys. Rev. Lett., 2004, 92(17):178302(4)
    [140] Hamaguchi M., Aoyama K., Asanuma S., et al., Electric-field- induced resistance switching universally observed in transition-metal- oxide thin films, Appl. Phys. Lett., 2006, 88(14): 142508(3)
    [141] Shang D. S., Wang Q., Chen L. D., et al., Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La_(0.7)Ca_(0.3)MnO_3/Pt heterostructures, Phys. Rev. B, 2006, 73(24): 245427(4)
    [142] Fors R., Khartsev S. I., and Grishin A. M., Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition, Phys. Rev. B, 2005, 71(4): 045305(10)
    [143] Oka T. and Nagaosa N., Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance, Phys. Rev. Lett., 2005,95(26): 266403(4)
    [144] Nieva G., Osquigui E., Guimpel J., et al., Photoinduced enhancement of superconductivity, Appl. Phys. Lett., 1992, 60(17): 2159-2161
    [145] Collet E., Lemee-Cailleau M. H., Buron-Le C. M., et al., Laser-induced ferroelectric structural order in an organic charge-transfer crystal, Science, 2003,300: 612-615
    [146] Ogawa Y., Koshihara S., Koshino K., et al., Dynamical aspects of the photoinduced phase transition in spin-crossover complexes, Phys. Rev. Lett, 2000, 84(14): 3181-3184
    [147] Yokoyama T., Tokoro H., Ohkoshi S. I., Photoinduced phase transition of RbMnFe(CN)_6 studied by x-ray-absorption fine structure spectroscopy, Phys. Rev. B, 2002,66(18): 184111-184120
    [148] Koshihara S., Tokura Y., Mitani T., et al., Photoinduced valence instability in the organic molecular compound tetrathiafulvalene -p-chloranil (TTF-CA), Phys. Rev. B, 1990,42(10): 6853-6856
    [149] Katsu H., Tanaka H., and Kawai T., Photocarrier injection effect on double exchange ferromagnetism in .La,SrMnO3 /SrTiO_3 heterostructure, Appl. Phys. Lett., 2000, 76(22): 3245-3247
    [150] Muramatsu T., Muraoka Y, and Hiroi Z., Photocarrier injection and the I-V characteristics of La_(0.8)Sr_(0.2)MnO_3/ SrTiO_3:Nb heterojunctions, Solid State Communications, 2004,132:351
    [151] Sun J. R., Lai C. H, and Wong H. K., Photovoltaic effect in La_(0.7)Ce_(0.3)MnO_(3-d) /SrTiO_3-Nb heterojunction and its oxygen content dependence, Appl. Phys. Lett., 2004, 85(1): 37-39
    [152] Xing J., Jin K. J, Lu H. B., Photovoltaic effects and its oxygen content dependence in BaTiO_(3-δ)/Si Heterojunctions, Appl. Phys. Lett., 2008, 92(7): 071113(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700