基于碳纳米管的生物传感器和液/液界面离子转移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要采用透射电子显微镜(TEM)、X射线衍射(XRD)、紫外可见吸收光谱法(UV-Vis)、电化学交流阻抗法(EIS)、循环伏安法(CV)、计时电流法(i-t)、差式脉冲法(DPV)等研究了基于碳纳米管的生物传感器和液/液界面上的离子转移过程。
     1.合成了PAMAM-MWNTs-AuNPs纳米复合物,并将血红蛋白通过静电相互作用固载到带有正电的PAMAM-MWNTs-AuNPs纳米复合物修饰的玻碳电极上,实现了血红蛋白在该修饰电极上的直接电化学。并在此基础上研究了该修饰电极对过氧化氢的催化还原能力。
     2.将由表面活性剂SDS分散的羧基化的碳纳米管与血红蛋白通过共价键结合到玻碳电极表面,实现了血红蛋白与电极之间的直接电子转移。并探讨了该传感器对亚硝酸根催化还原能力。
     3.利用三电极体系,采用循环伏安法研究了稀土金属离子Yb3+在水/1,2-二氯乙烷界面的转移,在电位窗内实现了Yb3+的加速离子转移。探讨了影响Yb3+转移的因素,如冠醚的浓度、Yb3+的浓度和扫速等,并讨论了Yb3+和DB18C6在界面上形成络合物的络合比。
     4.使用内壁硅烷化的微管研究了K+在微液/液界面上的离子转移过程。探讨了影响K+转移的因素,同时讨论了K+在微水/1,2-二氯乙烷界面转移的转移机理。
Biosensor is an interdisciplinary area which was developed in 1960’s. After over 40 years of development, it has been achieved remarkable progress. In recent years, with the development of nano-technology, some nano-materials which have unique property began to be used to fabricate the third generation biosensor based on the redox protein or enzyme.Study the third-generation biosensors based on redox protein or enzyme can help us understand the electron transfer process, the material metabolism and the energy metabolism. The biosensors based on redox protein or enzyme is a valuable system to study the electrochemical process.
     Liquid/Liquid interface electrochemistry is a branch of electrochemistry and electroanalytical chemistry between the traditional electrochemistry and chemical sensors. Charge transfer across the Liquid/Liquid interface is fundamental to a variety of industrial applications including separation and extraction processes, phase transfer catalysis, electrochemical processes, and drug delivery in pharmacology.
     In this thesis, we fabricated several carbon nanotube-based redox protein biosensor, and investigate their electrocatalytic response. Then, we studied the facilitate ion transfer across the Liquid/Liquid interface.The details are summarized as follows:
     1. In Chapter II, we synthesis the nanocomposites based on PAMAM, MWNTs, and AuNPs. The method is simple. In order to investigate the PAMAM-MWNTs-AuNPs composite, we employed the TEM and XRD. Hb have been immobilized onto the positive charged PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode through electrostatic interaction. The UV-Vis result showed that the immobilized Hb retains its original conformation. EIS was carried out to investigate the impedance changes of the electrode surface during the fabrication process. Experimental Results indicated that PAMAM-MWNTs-AuNPs composite film can enhance the rate of electron transfer, and the Hb had been immobilized on the electrode. Direct electron transfer between Hb and the modified electrode was observed by cyclic voltammety and the PAMAM-MWNTs-AuNPs composite is a suitable matrix for the immobilization of Hb. The formal potential (E°') of HbFe(III)/Fe(II) is -0.370 V. The electron transfer rate constant (ks) is 4.66 s-1, the faster ks indicated that the PAMAM-MWNTs-AuNPs composite film was an excellent promoter for the electron transfer between Hb and the underlying electrode. E°' of the HbFe(III)/Fe(II) shifted linearly with pH with a slope of -49.2 mV pH-1, indicating that an electron transfer accompanies single-proton transportation. The modified electrode exhibited excellent electrocatalytic response to the reduction of H2O2. The linear range for H2O2 determination was from 1.0×10?6 to 2.2×10?3 mol L-1 (r =0.999) with a detection limit of 2.0×10?7M at a signal-to-noise ratio of 3. The apparent Michaelis–Menten constant (Kmapp), which gives an indication of the enzyme–substrate kinetics, is 2.95 mM as calculated by Lineweaver–Burk equation. The resulted biosensor showed a low detection limit, good stability, high reproducibility, good selectivity and fast response time. The work reported a new platform for preparing the third-generation electrochemical biosensors.
     2. In Chapter III, the SDS dispersed MWNTs-COOH and Hb was immobilized on the glass carbon electrode through covalent bond. Direct electron transfer between Hb and the modified electrode was observed by cyclic voltammety. E°' of the HbFe(III)/Fe(II) shifted linearly with pH with a slope of -53.07 mV pH-1, indicating that an electron transfer accompanies single-proton transportation. The UV-Vis result showed that the immobilized Hb retains its original conformation.EIS was carried out to investigate the impedance changes of the electrode surface during the fabrication process. Experimental Results indicated that MWNTs have excellent electrical conductivity. It can enhance the rate of electron transfer between Fe(CN)3-/4- and the electrode, and the Hb had been immobilized on the electrode. The modified electrode exhibited excellent electrocatalytic response to the reduction of NO2-. The linear range for NO2- determination was from 2×10-6 to 9×10-5 mol L-1 with a detection limit of 3.2×10-7mol L-1 at a signal-to-noise ratio of 3. The fabricated biosensor showed a low detection limit, good stability, high reproducibility, good selectivity and the method is simple.
     3. In Chapter IV, we employ the three electrode system, using cyclic voltammetry, studied the rare earth metal ion Yb3+ transfer across the water/1,2-dichloroethane interface first time. We observed the facilitated ion transfer in the potential window by DB18C6, indicating DB18C6 complexed with Yb3+, which reduced the Gibbs free energy. Under Yb3+ diffusion-controlled conditions, the peak current increases with scan rate, the peak current is proportional to the square root of the scan rate, the peak current increases with the concentration of Yb3+, the half-wave potential shifted negatively with the concentration of DB18C6, there exist a linear relationship between E1/2 and logcDB18C6 with the slope of -18.16mV/decade the 1:1 complexes [Yb(DB18C6)]3+ was formed at the water/1,2-dichloroethane interface. Under DB18C6 diffusion-controlled conditions, the peak current increases with scan rate, the peak current is proportional to the square root of the scan rate, the peak current increases with the concentration of DB18C6, the half-wave potential shifted negatively with the concentration of Yb3+, there exist a linear relationship between E1/2 and logcYb3+ with the slope of -27mV/decade, the 1:1 complexes [Yb(DB18C6)]3+ was formed at the water/1,2-dichloroethane interface.
     4. In Chapter V, the pipets with radii of 10μm were made from borosilicate capillaries from Sutter Inatrument Co., using a laster-based pipet puller (P-2000 Sutter Inatrument Co.). The inner wall of the pipet was silanized to render it hydrophobic. So organic solvents can be injected into the pipet, it can reduce the toxicity of the organic solvents, and is beneficial to organism detection. Study the liquid-liquid interface with micropipet can reduce the impact of iR drop and charging current. We studied DB18C6 faciliated the K+ transfer across the micro-water/1, 2-dichloethane interface with inner wall silanized micropipet by cyclic voltammetry. If the organic phase only exists the supporting electrolyte, there only the ion transfer peak of supporting electrolyte transfer between the organic phase and water phase, but no the peak of K+, this is because the K+ is strong hydrophilic, and has a high Gibbs free energy. We observed the facilitated K+ transfer in the potential window by DB18C6, indicating DB18C6 complexed with K+, which reduced the Gibbs free energy. The forward scan is the K+ transfer to the micro-water/1, 2-dichloethane interface, behave a peak current, this is because if the concentration of K+ is much higher than DB18C6, the process is controlled by the linear diffusion of DB18C6 in the micropipet transfer to the micro-water/1, 2-dichloethane interface, the mechanism can be seen as the process of interface complexation (TIC). The Reverse scan is the complex dissociation process at the micro-water/1, 2-dichloethane interface, also behave a peak current, this is because the process is controlled by the linear diffusion of the complex in the micropipet dissociate to the micro-water/1, 2-dichloethane interface, the mechanism can be seen as the process of interface dissociation(TID). Under DB18C6 diffusion-controlled conditions, the peak current is proportional to the square root of the scan rate, the peak current increases with the concentration of DB18C6, the half-wave potential shifted negatively with the concentration of K+, there exist a linear relationship between E1/2 and logcK+ with the slope of -65mV /decade, the 1:1 complexes [K(DB18C6)]+ was formed at the micro-water/1,2-dichloroethane interface.
引文
[1]吴礼光,刘茉娥,朱长乐.生物传感器研究进展[J].化学进展,1995,7(4):287-301.
    [2] CLARK L C. Monitor and control of blood and tissue oxygen tensions [J]. Trans Am Soc Artif Intern Organs, 1956, 2: 41–48.
    [3] CLARK L C, LYONS C. Electrode systems for continuous monitoring in cardiovascular surgery [J]. Ann. NY. Acad. Sci., 1962, 102: 29–45.
    [4] UPDIKE S J, HICKS G P. The enzyme electrode [J]. Nature, 1967, 214: 986–988.
    [5] CASS A E C, DAVIS G, FRANCIS G D, et al, Ferrocene-mediated enzyme electrode for amperometric determination of glucose [J]. Anal. Chem., 1984, 56: 667-671.
    [6] KATRLIK J, BRANDSTETER R, SVORE J et al. Mediator type of glueose microbial biosensor based on Aspergillus niger [J]. Anal. Chim. Acta, 1997, 356: 217-224.
    [7] JONSSON G, GORTON L, PETTERSON L, Mediated electron transfer from glucose oxidase at a ferrocene-modified graphite electrode [J]. Electroanalysis, 1989, 1: 49-58.
    [8] ZHENG L Z, XIONG L Y, LI J H et al. Synthesis of a novel beta-cyclodextrin derivative with high solubility and the electrochemical properties of ferrocene-carbonyl-beta-cyclodextrin inclusion complex as an electron transfer mediator [J], Electrochem. Commun., 2008, 10: 340-345.
    [9] IKEDA T, KATASHO I, KAMEI M et al. Electrocatalysis with glucose-oxidase-immobilized graphite electrode [J]. Agric. Biol. Chem., 1984, 48:1969-1976.
    [10] M. SENDA, T. IKEDA, K. MIKI et al. Amperometric biosensors based on a biocatalyst electrode with entrapped mediator [J]. Anal. Sci., 1986, 2 : 501-506.
    [11] IKEDA T, SHIBATA T, SENDA M. Amperometric enzyme electrode for maltose based on an oligosaccharide dehydrogenase-modified carbon pasteelectrode containing p-benzoquinone [J]. J. Electroanal. Chem., 1989, 261: 351-362.
    [12] GORTON L, TORSTENSSON A, JAEGFELDT H et al. Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite electrodes modified with an adsorbed phenoxazinium salt, meldola blue [J]. J. Electronanal. Chem., 1984, 161: 103-120.
    [13] SANTOS A S, PEREIRA A C, DURAN N, et al. Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola's Blue on multi-wall carbon nanotube [J]. Electrochim. Acta, 2006, 52: 215-220.
    [14] PEREIRA A C, AGUIAR M R, KISNER A, et al. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube [J]. Sens. Actuators, B., 2007, 124: 269-276.
    [15] DICKS JM, HATTORI S, KARUBE I, et al. Ferrocene modified polypyrrole with immobilised glucose oxidase and its application in amperometric glucose microsensors [J]. Ann. Biol. Clin., 1987, 47: 607–613.
    [16] BELANGER D, NADREAU J, FORTIER G. Electrochemistry of the polypyrrole glucose oxidase electrode [J]. J. Electronanal. Chem., 1989, 274: 143-155.
    [17] FORTIER G, BRASSARD E, BELANGER D. Optimization of a polypyrrole glucose oxidase biosensor [J]. Biosens Bioelectron, 1990, 5: 473-490.
    [18] TROJANOWICZ M, KRAWCZYK T K, GESCHKE O. Biosensors based on oxidases immobilized in various conducting polymers [J]. Sens. Actuators, B., 1995, 28: 191-199.
    [19] MU S L, XUE H G. Bioelectrochemical characteristics of glucose oxidase immobilized in a polyaniline film [J]. Sens. Actuators, B., 1996, 31: 155-160.
    [20] ZOTTI G, ZECCHIN S, SCHIAVON G, et al. Conductivity in redox modified conducting polymers. 2. Enhanced redox conductivity in ferrocene-substituted polypyrroles and polythiophenes [J]. Chem. Mater., 1995, 7: 2309-2315.
    [21] SCHLAPFER F, MINDT W, RACINE P H. Electrochemical measurement of glucose using various electron acceptors [J]. Clin. Chim. Acta , 1974 , 57: 283-289.
    [22] BARTLETT P N, TEBBUTT P, TYRRELL C H. Electrochemical immobilization of enzymes. 3. Immobilization of glucose oxidase in thin films of electrochemically polymerized phenols [J]. Anal. Chem., 1992, 64: 138-142.
    [23] LI Q S, YE B C, LIU B X, et al. Improvement of the performance of H2O2 oxidation at low working potential by incorporating TTF-TCNQ into a platinum wire electrode for glucose determination [J]. Biosens. Bioelectron., 1999, 14: 327-334.
    [24] ALBERY W J, CRASTON D H. Amperometric enzyme electrodes: theory and experiment. Biosensors. Fundamentals and applications [M]. Oxford: Oxford University Press, 1987, 180–210.
    [25] ?ENAS N K, KULYS J J. Biocatalytic oxidation of glucose on the conductive charge transfer complexes [J]. J. Electroanal. Chem., 1981, 128: 103-113.
    [26]鞠熀先.电分析化学与生物传感技术[M].北京:科学出版社, 2006.
    [27] YEH P, KUWANA T. Reversible electrode reaction of cytochrome c [J]. Chem. Lett., 1977, 6: 1145-1148.
    [28] EDDOWS M J, HILL H A O. Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c [J]. J. C. S. Chem. Comm. 1977, 21: 771–772.
    [29] NIKI K, YAGI I, INOKUCHI H, KIMURA K. Electrochemical behavior of cytochrome c3 of desulfovibrio vulgaris, strain Miyazaki, on the mercury electrode [J]. J. Am. Chem. Soc. 1979, 101: 3335–3340.
    [30] MARCUS R A, SUTIN N. Electron transfers in chemistry and biology [J]. Biochim. Biophys. Acta, 1985, 811: 265-322.
    [31] MARCUS R A, SUTIN N. Electron transfer in inorganic, organic and biological systems [J]. Adv. Chemother., 1991, 228: 1-23.
    [32] MARCUS R A, SUTIN N. Electron transfer in chemistry and biology[J]. Biochim. Biophys. Acta, 1985, 811: 265-322.
    [33] SHINBO T, SUGIURA M, KAMO N. Potentiometric enzyme electrode for lactate [J]. Anal. Chem., 1979, 51:100-104.
    [34] SOUZA S F D. Immobilization and stabilization of biomaterials for iosensor applications [J]. Appl. Biochem. Biotechnol., 2001, 96: 225-238.
    [35] DI J W, CHENG J J, XU Q, et al. Direct electrochemistry of lactate dehydrogenase immobilized on silica sol–gel modified gold electrode and its application [J], Biosens. Bioelectron., 2007, 23: 682-687
    [36] ALAEJOS M S, GARCIA-MONTELONGO F J. Application of amperometric biosensors to the determination of vitamins andα-amino acids [J]. Chem. Rev., 2004, 104: 3239-3266.
    [37] SOUZA, S F D. Microbial biosensors [J]. Biosens. Bioelectron., 2001, 16: 337-353.
    [38] RIEDEL K, MULCHANDANI A, ROGERS K R. Enzyme and Microbial Biosensors: Techniques and Protocols [M]. Totowa: Humana Press, 1998, 199.
    [39] JAEGFELDT H, TORSTENSSON A B C, GORTON L G O, et al. Catalytic oxidation of reduced nicotinamide adenine dinucleotide by graphite electrodes modified with adsorbed aromatics containing catechol functionalities [J]. Anal. Chem., 1981, 53: 1979-1982.
    [40] TURNER A P F, KARUBE I, WILSON F S. Biosensors: Fundamentals and Applications [M]. Moscow: Mir Pubishers, 1992.
    [41] MULCHANDANI A, ROGERS K R. Enzyme and Micriobial Biosensors: Techniques and Protocols [M]. Totowa: Humana Press, 1998.
    [42] TRAN M C. BIOSENSORS [M]. Paris: Chapman and Hall and Masson, 1993.
    [43] MIKKELSEN A R, CORTóN E. Bioanalytical Chemistry [M]. New Jersry: John Wiley and Sons, 2004.
    [44] SINGH S, SOLANKI P R, PANDEY M K, et al. Covalent immobilization of cholesterol esterase and cholesterol oxidase on polyaniline films for application to cholesterol biosensor [J]. Anal. Chim. Acta, 2006, 568: 126-132.
    [45] VILLALONGA R, FUJII A, SHINOHARA H, et al. Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction [J]. Sens. Actuators, B., 2008, 129: 195-199.
    [46] KANG X H, MAI Z B, ZOU X Y, et al. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes [J]. Anal. Biochem., 2007, 369: 71-79.
    [47]严东生.纳米材料的合成与制备[J].无机材料学报, 1995,10 (1): 1-6.
    [48]李新勇,李树本.纳米半导体研究进展[J].化学进展, 1996, 8 (3): 231- 239
    [49] CAVIEEHI R E, SILSBEE R H. Coulomb Suppression of Tunneling Rate from Small Metal Particles [J]. Phys. Rew. Lett., 1984, 52: 1453-1456.
    [50]曹茂盛,蒋成禹,田永君.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社, 2001.
    [51]张立德,牟季美.纳米材料[M].北京:化学工业出版社,2000.
    [52] BALL P, GARWIN L. Science at the atomic scale [J]. Nature, 1992, 355: 761-766.
    [53]刘焕彬,陈小泉.纳米科学与技术导论[M].北京:化学工业出版社,2006.
    [54] KUBO R. Electronic Properties of Metallic Fine Particles [J]. J. Phys. Soc. Of Jap.1962, 17: 975-986.
    [55]严东生.材料新星—纳米材料科学[M].长沙:湖南出版社,1997.
    [56] LIU G D, LIN Y H. Amperometric glucose biosensor based on self-assembling glucose oxidase on carbon nanotubes [J]. Electrochem.Commun., 2006, 8: 251-256.
    [57] XIAN Y Z, HU Y, LIU F, et al. Glucose biosensor based on Au nanoparticles-conductive polyaniline nanocomposite [J]. Biosens. Bioelectron., 2006, 21: 1996-2000.
    [58] ZHANG S X, YANG W W, NIU Y M, et al. Construction of glucose biosensor based on sorption of glucose oxidase onto multilayers of polyelectrolyte/nanoparticles [J]. Anal. Bioanal. Chem., 2006, 384: 736-741.
    [59] ZHAO W, XU J J, SHI C G, et al. Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir, 2005, 21: 9630-9634.
    [60] YANG Y H, YANG G M, HUANG Y, et al. A new hydrogen peroxide biosensor based on gold nanoelectrode ensembles/multiwalled carbon nanotubes/chitosan film-modified electrode [J]. Colloids Surf., A, 2009, 340: 50-55.
    [61] LIU Z M, YANG Y, WANG H, et al. A hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode [J]. Sens. Actuators, B., 2005, 106: 394–400.
    [62]陈军辉,尹华强,刘勇军,等.纳米碳材料及在环境保护中的应用前景[J].化工环保,2004,24: 120-122.
    [63] KROTO H W, HEATH J R , SMALLEY R E. C60: Buckminsterfullerene [J]. Nature, 1985, 318: 162-163.
    [64] DRESSELHAUS M S, DRESSELHAUS G, EKLUND P C. Science of Fullerenes and Carbon Nanotubes [M]. San Diego: Academic Press, 1995.
    [65] PATOLSKY F, TAO G, KATZ E, et al. C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase [J]. J. Electroanal. Chem., 1998, 454 : 9-13.
    [66] LI M, LI N, GU Z, et al. Electrocatalysis by a C60-γ-cyclodextrin (1:2) and nafion chemically modified electrode of hemoglobin [J].Anal. Chim. Acta, 1997, 356: 225-229.
    [67] LI M X, LI N Q, GU Z N, et al. Electrocatalysis of cytochrome c at a C(60)-gamma-cyclodextrin and Nafion chemically modified electrode [J]. Talanta, 1998, 46: 993-997.
    [68] WEI M, LI M, LI N, et al. Electrocatalytic Oxidation of Ascorbic Acid at a Reduced C60-[dimethyl-(β-cyclodextrin)]2 and Nafion Chemically Modified Electrode [J]. Electroanalysis, 2002, 14: 135-140.
    [69] FANG C, ZHOU X. The Electrochemical Characteristics of C60-Glutathione Modified Au Electrode and the Electrocatalytic Oxidationof NADH [J]. Electroanalysis, 2001, 13: 949-954.
    [70] TAN W T, BOND A M, NGOOI S W, et al. Electrochemical oxidation of L-cysteine mediated by a fullerene-C60-modified carbon electrode [J]. Anal. Chim. Acta, 2003 491: 181-191.
    [71] Goyal R N, Gupta V K, Sangal A, et al. Voltammetric Determination of Uric Acid at a Fullerene-C60-Modified Glassy Carbon Electrode [J]. Electroanalysis, 2005,17: 2217-2223.
    [72] GAVALAS V G, CHANIOTAKIS N A, [60]Fullerene–mediated amperometric biosensors [J]. Anal. Chim. Acta., 2000, 409: 131–135.
    [73] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [74] LI W Z, XIE S S, QIAN L X. Large-seale syntyesis of aligned carbonnanotubes [J]. Science, 1996, 274: 1701-1703.
    [75] NGUYEN C V, LANCE D, CASSELL A M, et al. Preparation of nucleic acid functionalized carbonnanotube arrays [J]. Nano.Lett., 2002, 10: 1079-1081.
    [76] XU Q, ZHANG L, ZHU J. Controlled growth of composite nanowires based on coating Ni on carbonnanotubes by electrochemical deposition method [J]. J. Phys. Chem. B., 2003, 107: 8294-8296.
    [77] DORTE N M, KRISTIAN M, RAMONA M, et al. Soldering of nanotubes onto microelectrodes [J]. Nano.Lett., 2003, 3: 42-49.
    [78] LIU J W, SHAO M W, TANG Q, et al. Synthesis of carbonnanotubes and nanobelts through a medial-reduction method [J]. J. Phys. Chem. B., 2003, 107: 6329-6332.
    [79] CHRISTOPHER A D, JAMES M T. Solvent-free functionalization of carbonnanotubes [J]. J. Am. Chem. Soc., 2003, 125: 1156-l157.
    [80] WANG C, WAJE M, WANG X, et al. Proton exchange membrane fuel cells with carbonnanotube based electrodes [J]. Nano.Letters., 2004, 4: 345-348.
    [81] ALIREZA N, GREGORY W L, SHU P, et al. A carbon nanotube cross structure as a nanoscale quantum device [J], Nano.Lett., 2003, 3: 1469-1469.
    [82] WANG X B, LIU Y Q, ZHU D B, et al. Controllable growth, structure, and low field emission of well-aligned CNx nanotubes [J]. J. Phys. Chem. B., 2002, 106: 2186-2190.
    [83] DAVID M., ALI J., KONG J., et al. Ballistic transport in metallicnanotubes with reliable Pd ohmic contacts [J]. Nano.Lett., 2003, 3: 1541-1544.
    [84] TOSHIYA O, KAZUTOMO S, KAORI H, et al. Real time reaction dynamics in carbon nanotubes [J]. J. Am. Chem. Soc., 2001, 123: 9673-9674.
    [85] LIU L, FAN S S. Isotope labeling of carbon nanotubes and formation of 12C-13C nanotube junctions [J]. J. Am. Chem. Soc., 2001, 123: 11502-11503.
    [86] DAVIS J J, COLES R J, HILL H O A. Protein electrochemistry at carbon nanotube electrodes [J]. J. Electroanal. Chem., 1997, 440: 279-282.
    [87] LEE K P, GOPALAN A I, KOMATHI S. Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode [J]. Sens. Actuators, B., 2009, 141: 518-525.
    [88] QI H L, ZHANG C X, LI X R. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin [J]. Sens. Actuators, B., 2006, 114: 364-370.
    [89] LI J, LIU Q, LIU Y J, et al. DNA biosensor based on chitosan film doped with carbon nanotubes [J]. Anal. Biochem., 2005, 346: 107-114.
    [90] ZHANG Y Z, MA H Y, ZHANG K Y, et al. An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles [J]. Electrochimica Acta, 2009, 54: 2385-2391.
    [91] LEE K P, GOPALAN A I, KOMATHI S. Direct electrochemistry of cytochrome c and biosensing for hydrogen peroxide on polyaniline grafted multi-walled carbon nanotube electrode [J]. Sens. Actuators, B., 2009, 141: 518-525.
    [92] GEIM A K, MACDONALD A H. Graphene: Exploring carbon flatland [J]. Phys. Today, 2007, 60: 35-41.
    [93] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666-669.
    [94] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat. Mater., 2007, 6: 183-191.
    [95] STAMPFER C, SCHURTENBERGER E, MOLITOR F, et al. Tunable graphene single electron transistor [J]. Nano Lett., 2008, 8: 2378-2383.
    [96] LI D, KANER R B. Materials science. Graphene-based materials [J]. Science, 2008, 320: 1170-1171.
    [97] LEENAERTS O, PARTOENS B, PEETERS F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study [J]. Phys. Rev. B 2008, 77: 125416.
    [98] ANG P K, CHEN W, WEE A T S, et al. Solution-Gated Epitaxial Graphene as pH Sensor [J]. J. Am. Chem. Soc., 2008, 130: 14392-14393.
    [99] CHEN H, MULLER M B, GILMORE K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper [J]. Adv. Mater., 2008, 20: 3557-3561.
    [100] STANKOVICH S, DIKIN D A, DOMMETT G H, et al. Graphene-based composite materials [J]. Nature, 2006, 442: 282-286.
    [101] GILJE S, HAN S, WANG M, et al. A chemical route to graphene for device applications [J]. Nano Lett., 2007, 7: 3394-3398.
    [102] BUNCH J S, VAN DER ZANDE A M, VERBRIDGE S S, et al. Electromechanical resonators from graphene sheets [J]. Science, 2007, 315: 490-493.
    [103] WU J B, BECERRIL H A, BAO Z N, et al. Organic solar cells with solution-processed graphene transparent electrodes [J]. Appl. Phys. Lett., 2008, 92: 263302.
    [104] WANG Y, LI Y M, TANG L H, et al. Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem. Commun., 2009, 11: 889-892.
    [105]马圣乾,裴立振,康英杰.石墨烯研究进展[J].现代物理知识,2008,21(4): 44-47.
    [106] WANG Y, LI Y M, TANG L H, et al. Application of graphene-modified electrode for selective detection of dopamine [J]. Electrochem. Commun., 2009, 11: 889-892.
    [107] SHAN C S, YANG H F, SONG J F, et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene [J]. Anal. Chem., 2009, 81: 2378-2382.
    [108] WU H, WANG J, KANG X H, et al. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film [J]. Talanta, 2009, 80: 403-406.
    [109] WU J F, XU M Q, ZHAO G C. Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing [J]. Electrochem. Comm., 2010, 12: 175-177.
    [110] GENG R, ZHAO G H, LIU M C, et al. A sandwich structured SiO2/cytochrome c/SiO2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor [J]. Biomaterials, 2008, 29: 2794-2801.
    [111] ZHANG L, TIAN D B, ZHU J J. Third generation biosensor based on myoglobin-TiO2/MWCNTs modified glassy carbon electrode [J]. Chin. Chem. Lett., 2008, 19: 965-968.
    [112] LIU B H, CAO Y, CHEN D D, et al. Amperometric biosensor based on a nanoporous ZrO2 matrix [J]. Anal. Chim. Acta, 2003, 478: 59-66.
    [113] KONG T, CHEN Y, YE Y P, et al. An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes [J]. Sens. Actuators, B., 2009, 138: 344-350.
    [114] GIRAULT H H. Modern Aspects of Electrochemistry [M]. New York : Plenum, 1993, 25, 1.
    [115] SAMEC Z. Electrochemistry at the interface between two immiscible electrolyte solutions [J]. Pure Appl. Chem., 2004, 76: 2147-2180.
    [116] BENJAMIN I. Chemical reactions and solvation at liquid interfaces [J]. Chem. Rev., 1996, 96: 1449-1476.
    [117] JING P, HE S L, LIANG Z W, et al. Charge-transfer reactions at liquid/liquid interfaces and their applications in bioassays [J]. Anal. Bioanal. Chem., 2006, 385: 428-432.
    [118] VOLKOV, A G, DEAMER D W. Liquid-Liquid Interfaces: Theory and Methods [M]. London: CRC Press, 1996.
    [119] VOLKOV, A G, DEAMER D W. TANELIAN D L, et al. Liquid Interfaces in Chemistry and Biology [M]. New York, Wiley, John & Sons, 1998.
    [120] VOLKOV A G. Liquid-Liquid Interfaces in Chemical Biological and Pharmaceutical Applications [M]. New York: Marcel Dekker, 2001.
    [121] VERWEY E J W, NIESSEN K F. XL. The electrical double layer at the interface of two liquids [J]. Phil. Mag., 1939, 28: 435-440.
    [122] GAVACH C, SETA P, D’EPENOUX B. The double layer and ion adsorption at the interface between two nonimiscible solutions. Part I. Interfacial tension measurements for the water-nitrobenzene tetraalkylammonium bromide systems [J], J. Electroanal. Chem., 1977, 83: 225-235.
    [123] GIRAULT H H, SCHIFFRIN D J. Theory of the kinetics of ion transfer across liquid/liquid interfaces [J]. J. Electroanal. Chem., 1985, 195: 213-227.
    [124] SAMEC Z, MARECEK V, HOMOLKA D. The double layer at the interface between two immiscible electrolyte solutions: Part I. Capacity of the water/nitrobenzene interface [J]. J. Electroanal. Chem., 1981, 126: 121-129.
    [125] SAMEC Z, MARECEK V, HOMOLKA D. Double layers at liquid/liquid interfaces [J]. Faraday Discuss. Chem. Soc. 1984, 77: 197-208.
    [126] SAMEC Z, MARECEK V, HOMOLKA D. The double layer at the interface between two immiscible electrolyte solutions : Part II. Structure of the water/nitrobenzene interface in the presence of 1:1 and 2:2 electrolytes [J]. J. Electroanal. Chem., 1985, 187: 31-51.
    [127] NERNST W, RIENSENFIELD E H,über electrolytische Erscheinungen a der Grenzfl?che zweier L?siingsmittel [J]. Z. Phys. Chem, 1902, 8: 600-603.
    [128] SAMEC Z, MARECEK V, KORYTA J, et al. Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry [J], J. Electroanal. Chem., 1977, 83: 393-397.
    [129] SAMEC Z, MARECEK V, WEBER J. Detection of an electron transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry with four-electrode system [J]. J. Electroanal. Chem., 1978, 96: 245-247.
    [130] SPATARU T, SPATARU N, BONCIOCAT N, et al. Potentiometric investigation of the effect of the pH on the ionic transfer of some amino acids at the interface between two immiscible electrolyte solutions [J]. Bioelectrochemistry, 2004, 62: 67-71.
    [131] MALKIA A, LILJEROTH P, KONTURI A K, et al. Electrochemistry at lipid monolayer-modified liquid-liquid interfaces as an improvement to drug partitioning studies [J]. J. Phys. Chem. B., 2001, 105: 10884-10892.
    [132] DASSIE S A, BARUZZI A M. Comparative analysis of alkali and alkaline-earth cation transfer assisted by monensin across the water vertical bar 1,2-dichloroethane interface [J]. J. Electroanal. Chem., 2000, 492: 94-102.
    [133] TUPY M J, BLANCH H W, RADKE C J. Total Internal Reflection Fluorescence Spectrometer to Study Dynamic Adsorption Phenomena at Liquid/ Liquid Interfaces [J]. Ind. Eng. Chem. Res., 1998, 37: 3159-3168.
    [134] FORSSTEN C, STRUTWOLF J, WILLIAMS D E. Liquid–liquid interface electrochemistry applied to study of a two-phase permanganate oxidation [J]. Electrochem. Commun., 2001, 3: 619-623.
    [135] GULABOSKI R, CORDEIRO M N D S, MILHAZES N, et al. Evaluation of the lipophilic properties of opioids, amphetamine-like drugs, and metabolites through electrochemical studies at the interface between two immiscible solutions [J]. Anal. Biochem., 2007, 361: 236-243.
    [136] BASAEZ L, PERIC I, AGUIRRE C, et al. ESTUDIO ELECTROQUIMICO DEL ANTIBIOTICO AMOXICILINA A TRAVES DE INTERFASES LIQUIDO-LIQUIDO [J]. Bol. Soc. Chil. Quim., 2001, 46: 203-208.
    [137] ALEMU H, Voltammetry of drugs at the interface between two immiscible electrolyte solutions [J]. Pure Appl. Chem., 2004,76: 697-705.
    [138] REYMOND F, FERMIN D, LEE H J, et al. Electrochemistry at liquid/liquid interfaces: methodology and potential applications [J]. Electrochim. Acta., 2000, 45: 2647-2662.
    [139] REYMOND F, LEE H J, ROSSIER J S, et al. Electrochemical sensor research at the Laboratoire d'Electrochimie of the EPFL [J]. Chimia., 1999, 53: 103-108.
    [140] KORYTA J, Ion transfer across water/organic phase boundaries and analytical applications. Part 2 [J]. Selective Electrode. Rev., 1991, 13: 133-158.
    [141] LIU B, MIRKIN M V. Electrochemistry at Microscopic Liquid-Liquid Interfaces [J]. Electroanalysis, 2000, 12: 1433-1446.
    [142] SAMEC Z, SAMCOVA E, GIRAULT H H. Ion amperometry at the interface between two immiscible electrolyte solutions in view of realizing the amperometric ion-selective electrode [J]. Talanta, 2004, 63: 21-32.
    [143] GAVACH C, HENRY F. Chronopotentiometric investigation of the diffusion overvoltage at the interface between two nonmiscible solutions. I. Aqueous solution-tetrabutylammonium ion specific liquid membrane [J]. J. Electroanal. Chem., 1974, 54: 361-370.
    [144] GAVACH C, D'EPENOUX B. Chronopotentiometric investigation of the diffusion overvoltage at the interface between two nonmiscible solutions. II. Potassium halide aqueous solution-hexadecyltrimethylammonium picrate nitrobenzene solution [J]. J. Electroanal. Chem., 1974, 55: 59-67.
    [145] OSBORNE M C, SHAO Y, PEREIRA C M, et al. Micro-hole interface for the amperometric determination of ionic species in aqueous solutions [J]. J. Electroanal.Chem., 1994, 364: 155-161.
    [146] NISHI N, IMAKURA S, KAKIUCHI T. Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-Temperature Ionic Liquidof Tetrakis[3,5-bis(Trifluoromethyl)phenyl]borate [J]. Anal. Chem., 2006, 78: 2726-2731.
    [147] KORYTA J. Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions [J]. Electrochim. Acta, 1979, 24: 293-300.
    [148] SHAO Y, OSBORNE M D, GIRAULT H H. Assisted ion transfer at micro-ITIES supported at the tip of micropipettes [J]. J. Electroanal. Chem., 1991, 318:101-109.
    [149] STEWART A A, CAMPBELL J A, GIRAULT H H, et al. Cyclic voltammetry for electron transfer reactions at liquid/liquid interfaces [J]. Ber. Bunsenges. Phys. Chem, 1990, 94: 83-87.
    [150] LU X Q, ZHANG H R, HU L N, et al. Investigation of the effects of metalloporphyrin species containing different substitutes on electron transfer at the liquid/liquid interface [J]. Electrochem.Commun., 2006, 8: 1027-1034.
    [151] LU X Q, HU L N, WANG X Q. Thin-layer cyclic voltammetric and scanning electrochemical microscopic study of antioxidant activity of ascorbic acid at liquid/liquid interface [J]. Electroanalysis, 2005, 17: 953-958.
    [152] BARKER A L, UNWIN P R, ZHANG J. Measurement of the forward and back rate constants for electron transfer at the interface between two immiscible electrolyte solutions using scanning electrochemical microscopy (SECM): Theory and experiment [J]. Electrochem. Commun., 2001, 3: 372-378.
    [153] QUINN B, KONTTURI K. Aspects of electron transfer at ITIES [J]. J. Electroanal. Chem., 2000, 483: 124-134.
    [154] ZHANG J, BARKER A L, UNWIN P R. Microelectrochemical studies of charge transfer at the interface between two immiscible electrolyte solutions: electron transfer from decamethyl ferrocene to aqueous oxidants [J]. J. Electroanal. Chem., 2000, 483: 95-107.
    [155] BARKER A L, UNWIN P R. Assessment of a recent thin-layer method for measuring the rates of electron transfer across liquid/liquid interfaces [J]. J. Phys. Chem. B., 2000, 104: 2330-2340.
    [1] SCHELLER F W, BISTOLAS N, LIU S Q, et al. Thirty years of haemoglobin electrochemistry [J]. Adv. Colloid Interface Sci., 2005, 116: 111-120.
    [2] XIANG C L, ZOU Y J, SUN L X, et al. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode [J]. Talanta, 2007, 74: 206-211.
    [3] MA G X, LU T H, XIA Y Y. Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black [J]. Bioelectrochem., 2007, 71: 180-185.
    [4] GU H Y, YU A M, CHEN H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode [J]. J. Electroanal. Chem., 2001, 516: 119-126.
    [5] ZHAO G C, ZHANG L, WEI X W. An unmediated H2O2 biosensor based on the enzyme-like activity of myoglobin on multi-walled carbon nanotubes [J]. Anal. Biochem., 2004, 329: 160-161.
    [6] YU J J, MA J R, ZHAO F Q, et al. Direct electron-transfer and electrochemical catalysis of hemoglobin immobilized on mesoporous Al2O3 [J]. Electrochim. Acta, 2007, 53: 1995-2001.
    [7] ZONG S Z, CAO Y, ZHOU Y M, et al. Hydrogen peroxide biosensor based on hemoglobin modified zirconia nanoparticles-grafted collagen matrix [J]. Anal. Chim. Acta, 2007, 582: 361-366.
    [8] DAI Z H, LIU S Q, JU H X, et al. Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix [J]. Biosens. Bioelectron., 2004, 19: 861-867.
    [9] GUO C X, HU F P, LI C M, et al. Direct electrochemistry of hemoglobin on carbonized titania nanotubes and its application in a sensitive reagentless hydrogen peroxide biosensor [J]. Biosens. Bioelectron., 2008, 24: 819-824.
    [10] DAI H J, WONG E W, LIEBER C M. Probing Electrical Transport inNanomaterials: Conductivity of Individual Carbon Nanotubes [J]. Science, 1996, 272: 523-526.
    [11] KATZ E, WILLNER I. Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics [J]. ChemPhysChem, 2004, 5: 1084-1104.
    [12] WANG J, MUSAMEH M. Carbon nanotube/teflon composite electrochemical sensors and biosensors [J]. Anal. Chem., 2003, 75: 2075-2079.
    [13] QI H L, ZHANG C X, LI X R. Amperometric third-generation hydrogen peroxide biosensor incorporating multiwall carbon nanotubes and hemoglobin [J]. Sens. Actuators, B, 2006, 114: 364-370.
    [14] GOODING J J, WIBOWO R, LIU J Q, et al. Protein electrochemistry using aligned carbon nanotube arrays [J]. J. Am. Chem. Soc., 2003, 125: 9006-9007.
    [15] LIU J Q, CHOU A, RAHMAT W, et al. Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays [J]. Electroanalysis, 2005, 17: 38-46.
    [16] ZHANG M G, SMITH A, GORSKI W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes [J]. Anal. Chem., 2004, 76: 5045-5050.
    [17] CHEN R J, ZHANG Y G, WANG D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc., 2001, 123: 3838-3839.
    [18] CAI C X, CHEN J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode [J]. Anal. Biochem., 2004, 325: 285-292.
    [19] CHEN R J, ZHANG Y G, WANG D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J]. J. Am. Chem. Soc., 2001, 123: 3838-3839.
    [20] WU K B, SUN Y Y, HU S S. Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode [J]. Sens. Actuators, B, 2003, 96: 658-662.
    [21] LI S, HU N F. Heme Protein Films with Polyamidoamine Dendrimer: Direct Electrochemistry and Electrocatalysis [J]. Biochim. Biophys. Acta, 2004, 1608:23-33.
    [22] PINGARRON J M, YANEZ-SEDENO P, GONZALEZ-CORTES A. Gold nanoparticle-based electrochemical biosensors [J]. Electrochim. Acta, 2008, 53: 5848-5866.
    [23] CAO W, WEI C M, HU J B, et al. Direct electrochemistry and electrocatalysis of myoglobin immobilized on gold nanoparticles/carbon nanotubes nanohybrid film [J]. Electroanalysis, 2008, 20: 1925-1931.
    [24] HU X G, DONG S J. Metal nanomaterials and carbon nanotubes - synthesis, functionalization and potential applications towards electrochemistry [J]. J. Mater. Chem., 2008, 18: 1279-1295.
    [25] Dong C K, Li X, Zhang Y, et al., Fe3O4 Nanoparticles Decorated Multi-walled Carbon Nanotubes and Their Sorption Properties [J]. Chem. Res. Chinese Universities, 2009, 25: 936-940.
    [26] HU X G, WANG T, QU X H, et al. In situ synthesis and characterization of multiwalled carbon nanotube/Au nanoparticle composite materials [J]. J. Phys. Chem. B, 2006, 110: 853-857.
    [27] GUO D J, LI H L. High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes [J]. J. Colloid Interface Sci., 2005, 286: 274-279.
    [28] ZHU Y W, ELIM H I, FOO Y L, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching [J]. Adv. Mater., 2006, 18: 587-592.
    [29] TOMALIA D A, BAKER H, DEWALD J R, et al. A new class of polymers: Starburst dendritic macromolecules [J]. Polym. J.,1985, 17:117-132.
    [30] LEE K Y, LEE Y W, KWON K, et al. One-step fabrication of gold nanoparticles-silica composites with enhanced catalytic activity [J]. Chem. Phys. Lett., 2008, 453: 77-81.
    [31] LI S.Q., XIA J., LIU C.Y., et al., Direct electrochemistry and electrocatalysis of hemoglobin on an indium tin oxide electrode modified with implanted carboxy ions [J]. Microchim. Acta, 2009, 167: 41-46.
    [32] NASSAR A E F, WILLIS W S, RUSLING J F. Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules [J]. Anal. Chem., 1995, 67: 2386-2392.
    [33] WANG L W, HU N F. Direct electrochemistry of hemoglobin in layer-by-layer films with poly(vinyl sulfonate) grown on pyrolytic graphite electrodes [J]. Bioelectrochem., 2001, 53: 205-212.
    [34] LAVIRON E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. J. Electroanal. Chem., 1979, 100: 263-270
    [35] YANG W W, LI Y C, BAI Y, et al. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a Nafion film [J]. Sens. Actuators B, 2006, 115: 42-48.
    [36] LEI C, WOLLENBERGER U, BISTOLAS N, et al. Electron transfer of hemoglobin at electrodes at electrodes modified with colloidal clay nanoparticle [J]. Anal. Bioanal. Chem., 2002, 372: 235-239.
    [37] NASSAR A E, ZHANG Z, HU N, et al. Proton-coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like films [J]. J. Phys. Chem. B, 1997, 101: 2224-2231.
    [38] HUANG H, HE P L, HU N F, et al. Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films [J]. Bioelectrochem., 2003, 61: 29-38.
    [39] BOND A M. Modern Polarographic Methods in Analytical Chemistry [M]. Second ed., New York: Marcel Dekker, 1980.
    [40] BARTLETT P N, BIRKIN P R, WANG J H, et al. An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline)Film [J]. Anal. Chem., 1998, 70: 3685-3694.
    [41] WANG J, LIN Y, CHEN L. Organic-phase biosensor for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products [J]. Analyst, 1993, 118: 277-280.
    [42] SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV)oxalate [J]. Analyst, 1980, 105: 950-954.
    [43] KAMIN R A, WILSON G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem., 1980, 52: 1198-1205.
    [44] CAI C X, CHEN J. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode [J]. Anal. Biochem., 2004, 325: 285-292.
    [45] LI J, TAN S N, GE H L. Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide [J]. Anal. Chim. Acta, 1996, 335: 137-145.
    [1]李梦瑶,孔令蜜,朱佩思,等.细胞色素c/L-半胱氨酸修饰金电极检测亚硝酸根[J].理化检验-化学分册,2008,44:495-510.
    [2] JIMIDAR M, HARTMANN C, COUSEMENT N, et al. Determination of nitrate and nitrite in vegetables by capillary electrophoresis with indirect detection [J]. J. Chromatogr. A, 1995, 706: 479-492.
    [3]王瑜.动力学催化光度法测定痕量亚硝酸根[J] .理化检验:化学分册,2005,41(8):561-562.
    [4] MANZOORI J L, SOROURADDIN M H, HAJI-SHABANI A M. Spectrophotometric determination of nitrite based on its catalytic effect on the oxidation of carminic acid by bromate [J]. Talanta, 1998, 46: 1379-1386.
    [5]姜华,何荣桓,修明磊,等.反相离子对色谱法同时测定水中的硝酸根和亚硝酸根[J].分析化学,2001,29(7):867-867.
    [6]陈金枝,韩铁.水样中亚硝酸盐的高效液相色谱测定法[J].环境与健康杂志, 2002,19(3):256-257.
    [7]袁东,张新申,张丽萍,等.流动注射催化光度法测定环境水样中的痕量亚硝酸根[J].2006,化工环保,26 (6) : 522-524.
    [8]高岐,张海燕.化学发光分析法测定食品中微量亚硝酸根[J].理化检验:化学分册,2003,39(9):515-516.
    [9]董存智,秦利鸿.蔬菜中痕量因子硝酸根催化荧光光度法测定[J].中国公共卫生,2005,21 ( 11 ):1400 -1401.
    [10]张贵珠,张海清,何锡文.荧光动力学光度法同时测定硝酸根及亚硝酸根的研究[ J ].分析化学,1994,22 (10) :1006-1009.
    [11]谢莉,吕春玲,田芳.基于亚硝化反应吖啶红极谱法测定亚硝酸根[J] .理化检验—化学分册,2000,36(7):289-293.
    [12]段德良,王宅中,顾永万,等.钯取代Dawson型钨磷杂多酸聚吡咯薄膜修饰电极的制备及其电化学性能[J].云南大学学报,2001,23 (6):4472453.
    [13]王瑜,孙元喜,冶保献.聚中性红膜修饰电极测定痕量硝酸根的研究[ J ].分析实验室,1998,17 (6):10212.
    [14]吴鸣虎,王升富.亚硝酸根在磷钼镍杂多酸-聚吡咯膜修饰电极上的伏安行为及含量测定[ J ].分析实验室,1999,18 (3):45-48.
    [15]兰雁华,陆光汉,吴晓刚,等.甲壳素修饰电极测定亚硝酸根[J].分析实验室,1999,18 (1):27-30.
    [16] ZHANG P, ZHAO G, WEI X. Electrocatalytic oxidation of nitric oxide on an electrode modified with fullerene films [J]. Microchim. Acta, 2005, 149: 223-228.
    [17] TAU P, NYOKONG T. Electrocatalytic oxidation of nitrite by tetra-substituted oxotitanium(IV) phthalocyanines adsorbed or polymerised on glassy carbon electrode [J]. J.Electroanal. Chem., 2007, 611: 10-18.
    [18] GU H Y, YU A M, CHEN H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode [J]. J. Electroanal. Chem., 2001, 516: 119-126.
    [19] WANG Q L, LU G X, YANG B J. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film [J]. Biosens. Bioelectron., 2004, 19: 1269-1275.
    [20] PIVIDORI M I, MERKOCI A, ALEGRET S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods [J]. Biosens. Bioelectron., 2000, 15: 291-303.
    [21] BESTEMAN K, LEE J O, WIERTZ F G M, et al. Enzyme-coated carbon nanotubes as single-molecule biosensors [J]. Nano Lett., 2003, 3: 727-730.
    [22] WANG J, MUSAMEH M. Carbon nanotube/teflon composite electrochemical sensors and biosensors [J]. Analy. Chem., 2003, 75: 2075-2079.
    [23] ZHANG J, FENG M, TACHIKAWA H. Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes [J]. Biosens. Bioelectron., 2007, 22: 3036-3041.
    [24] LIU Y, WANG M K, ZHAO F, ET AL. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix [J]. Biosens. Bioelectron., 2005 21 984-988.
    [25] ZHOU Y, YANG H, CHEN H Y. Direct electrochemistry and reagentlessbiosensing of glucose oxidase immobilized on chitosan wrapped single-walled carbon nanotubes [J]. Talanta, 2008, 76: 419-423.
    [26] LIU Q, LU X B, LI J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes [J]. Biosens. Bioelectron., 2007, 22: 3203-3209.
    [27] DENG C Y, CHEN J H, CHEN X L, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode [J]. Biosens. Bioelectron., 2008, 23: 1272-1277.
    [28] CHEN X L, CHEN J H, DENG C Y, et al. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode [J]. Talanta, 2008, 76: 763-767.
    [29] GEORGE P, HANANIA G I H. Spectrophotometric study of ionizations in methemoglobin [J]. Biochem.J., 1953, 55: 236-243.
    [30] WANG L W, HU N F. Direct Electrochemistry of Hemoglobin in Layer-by-Layer Films with Poly(vinyl sulfonate) Grown on Pyrolytic Graphite Electrodes [J]. Bioelectrochemistry, 2001, 53: 205-212.
    [31] HUANG H., HE P.L., HU N.F., et al. Electrochemical and Electrocatalytic Properties of Myoglobin and Hemoglobin Incorporated in Carboxymethyl Cellulose Films [J]. Bioelectrochem., 2003, 61: 29-38.
    [1] GIRAUT H H, SCHIFFRIN D J. Electrochemistry of Liquid-Liquid Interfaces, in A. J. Bard (Ed.,) Electroanalytical Chemistry [M]. New York: Marcel Dekker, 1989, 15: 1-48.
    [2] SAMEC Z, KAKIUCHI T. Charge Transfer Kinetics at Water-Organic Solvent Phase Boundaries, in H. Gerischer, C. W. Tobias (Eds.,), Advances in Electrochemical Science and Engineering [M]. Weinheim: VCH, 1995, 4: 297-361.
    [3] VOLKOV A G, DEAMER D W, Liquid–Liquid Interfaces. Theory and Methods [M]. Boca Raton: CRC, 1996.
    [4] REYMOND F, FERMIN D, LEE H J, et al. Electrochemistry at liquid/liquid interfaces: methodology and potential applications [J]. Electrochim. Acta, 2000, 45: 2647-2662.
    [5] LIU B, MIRKIN M V. Electrochemistry at microscopic liquid-liquid interfaces [J]. Electroanalysis, 2000, 12: 1433-1446.
    [6] TESTA B, VAN DE WATERBEEMD H, FOLKERS G, et al. Pharmacokinetic Optimization in Drug Research [M]. Weinheim: Wiley-WCH, 2001.
    [7] JING P, HE S, LIANG Z, et al. Charge-transfer reactions at liquid/liquid interfaces and their applications in bioassays [J]. Anal. Bioanal. Chem., 2006, 385: 428-432.
    [8] SUN P, LI F, CHEN Y, et al. Observation of the marcus inverted region of electron transfer reactions at a liquid/liquid interface [J]. J. Am. Chem. Soc., 2003, 125: 9600-9601.
    [9] SUN P, ZHANG Z, GAO Z, et al. Probing fast facilitated ion transfer across an externally polarized liquid-liquid interface by scanning electrochemical microscopy [J]. Angew. Chem. Int. Ed., 2002, 41: 3445-3448.
    [10] LI F, CHEN Y, SUN P, et al. Investigation of facilitated ion-transfer reactions at high driving force by scanning electrochemical Microscopy [J]. J. Phys. Chem. B, 2004, 108: 3295-3302.
    [11] ZHANG Z Q, YUAN Y, SUN P, et al. Study of electron-transfer reactions across an externally polarized water/1,2-dichloroethane interface by scanning electrochemical microscopy [J]. J. Phy. Chem. B, 2002, 106: 6713-6717.
    [12] KORYTA. Electrochemical polarization phenomena at the interface of two immiscible electrolyte solutions [J]. J. Electrochim. Acta, 1979, 24: 293-300.
    [13] TONG Y H, HUANG Z F, SHAO Y H, et al. Voltammetric study of the sodium ion transfer across micro-water/1,2-dichloroethane interface facilitated by terminal-vinyl liquid crystal crown ether [J]. Electroanalysis, 2001, 13: 1481-1484.
    [14] ZHAN D P, YUAN Y, XIAO Y J, et al. Alkali metal ions transfer across a water/1,2-dichloroethane interface facilitated by a novel monoaza-B15C5 derivative [J]. Electrochim. Acta, 2002, 47: 4477-4483.
    [15] LI Q, XIE S B, LIANG Z W, et al. Fast Ion-Transfer Processes at Nanoscopic Liquid/Liquid Interfaces [J]. Angew. Chem. Int. Ed., 2009, 48: 8010-8013.
    [16] YUAN Y, WANG L, AMEMIYA S. Chronoamperometry at micropipet electrodes for determination of diffusion coefficients and transferred charges at liquid/liquid interfaces [J]. Anal.Chem., 2004, 76: 5570-5578.
    [17] DASSIE S A, BARUZZI A M. Alkaline-earth cation transfer assisted by monensin across the water vertical bar 1,2-dichloroethane interface in the presence of alkali cations [J]. J. Electroanal. Chem., 2002, 522: 158-166.
    [18] RAHMAN M A, DOE H, SAKURADA N, et al. Facilitated ion-transfer of alkaline-earth metal cations by naphtho-15-crown-5 across the water vertical bar 1,2-dichloroethane interface: voltammetric and electrospray ionization mass spectrometric studies [J]. Electrochim. Acta, 2001, 47: 623-631.
    [19] HOMOLKA D, HOLUB K, MARE?EK V. Facilitated ion transfer across the water/nitrobenzene interface Theory for single-scan voltammetry applied to a reversible system [J]. J. Electroanal. Chem., 1982, 138: 29-36.
    [20] CACOTE M H M, PEREIRA C M, TOMASZEWSKI L, et al. Ag+ transfer across the water/1, 2-dichloroethane interface facilitated by complex formation with tetraphenylborate derivatives [J]. Electrochim. Acta, 2004, 49: 263-270.
    [21] KATANO H, KUBOYAMA H, SENDA M. Voltammetric study of the transfer of heavy metal ions at the nitrobenzene vertical bar water interface assisted by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine [J]. J. Electroanal. Chem., 2000, 483: 117-123.
    [22] LAGGER G, TOMASZEWSKI L, OSBORNE M D, et al. Electrochemical extraction of heavy metal ions assisted by cyclic thioether ligands [J]. J. Electroanal. Chem., 1998, 451: 29-37.
    [23] KATANO H , SENDA M. Voltammetric Study of the Transfer of Heavy Metal Ions at Nitrobenzene/Water Interface Assisted by 1, 4, 7, 10, 13, 16-Hexathiacyclooctadecane [J]. Anal. Sci., 1999, 15: 1179-1184.
    [24] BINGOL H, AKGEMCI E G, ERSOZ M, et al. Electrochemical investigation of heavy metal ion transfer across the water/1,2-dichloroethane interface assisted by 9-ethyl-3-carbazolecarboxaldehyde-thiosemicarbazone [J]. Electroanalysis, 2007, 19: 1327-1333.
    [25] SHIOYA T, NISHIZAWA S, TERAMAE N. Anion Recognition at the Liquid?Liquid Interface. Sulfate Transfer across the 1, 2-Dichloroethane?Water Interface Facilitated by Hydrogen-Bonding Ionophores [J]. J. Am. Chem. Soc., 1998, 120:11534-11535.
    [26] CUI R F, LI Q, GROSS D E, et al. Anion Transfer at a Micro-Water/1, 2- Dichloroethane Interface Facilitated by beta-Octafluoro-meso- octamethylcalix[4]pyrrole [J]. J.Am.Chem.Soc., 2008, 130: 14364-14365.
    [27]江祖成,蔡汝秀,张华山.稀土元素分析方法[M],北京:科学出版社,2000,41-42.
    [28] DOE H, YOSHIOKA K, KITAGAWA T. Voltammetric study of protonated 1,10-phenanthroline cation transfer across the water/nitrobenzene interface [J]. J.Electroanal.Chem., [J], 1992, 324: 69-78.
    [29] CLARKE D J, SCHIFFRIN D J, WILES M. A tetraphenylborate internal reference electrode for immiscible electrolyte solutions and ion selective electrodes [J]. Electrochim. Acta, 1989, 34: 767-769.
    [30] RAHMAN M A, DOE H, OKAMOTO M, et al. Voltammetric and electrospray ionization mass spectrometric studies of the facilitated ion transfer of sodium and potassium cations by naphtho-15-crown-5 across the water 1,2-dichloroethane interface [J]. Electrochim. Acta, 1998, 44: 39-46.
    [1] TAYLOR G, GIRAULT H H J. Ion transfer reactions across a liquid—liquid interface supported on a micropipette tip [J]. J.Electroanal.Chem., 1991, 208: 179-183.
    [2] SHAO Y, OSBORNE M D, GIRAULT H H. Assisted ion transfer at micro-ITIES supported at the tip of micropipettes [J]. J.Electroanal.Chem., 1991, 318: 101-109.
    [3] 1TAYLOR G, GIRAULT H H. Ion transfer reactions across a liquid—liquid interface supported on a micropipette tip [J]. J. Electroanal. Chem., 1986, 208: 179-183.
    [4] YUAN Y, SHAO Y H. Systematic Investigation of Alkali Metal Ion Transfer Across the Micro- and Nano-Water/1,2-Dichloroethane Interfaces Facilitated by Dibenzo-18-crown-6 [J]. J. Phys. Chem. B, 2002, 106: 7809-7814.
    [5] SUN P, LAFORGE F O, MIRKIN M V. Ion Transfer at Nanointerfaces between Water and Neat Organic Solvents [J]. J. Am. Chem. Soc., 2005, 127: 8596-8597.
    [6] KITAZUMI Y, KAKIUCHI T. Emergence of the electrochemical instability in transfer of decylammonium ion across the 1, 2-dichloroethane|water interface formed at the tip of a micropipette [J]. J.Phy.: Condens. Matter, 2007, 19: 375104.
    [7] LI Q, XIE S, LIU S, et al. Fast Ion-Transfer Processes at Nanoscopic Liquid/Liquid Interfaces [J]. Angew. Chem. Int. Ed., 2009, 48: 8010–8013.
    [8] JING P, ZHANG M Q, HU H, et al. Ion-Transfer Reactions at the Nanoscopic Water/n-Octanol Interface. [J]. Angew. Chem. Int. Ed., 2006, 45: 6861- 6864.
    [9] RODGERS P J, AMEMIYA S. Cyclic Voltammetry at Micropipet Electrodes for the Study of Ion-Transfer Kinetics at Liquid/Liquid Interfaces [J]. Anal. Chem., 2007, 79: 9276-9285.
    [10] LI Q, XIE S, LIU S, et al. Fast Ion-Transfer Processes at Nanoscopic Liquid/Liquid Interfaces [J]. Angew. Chem. Int. Ed., 2009, 48: 8010 -8013.
    [11] LANGMAIER J, SAMEC Z. Voltammetry of Ion Transfer across a Polarized Room-Temperature Ionic Liquid Membrane Facilitated by Valinomycin: Theoretical Aspects and Application [J]. Anal. Chem., 2009, 81: 6382-6389.
    [12] DOE H, YOSHIOKA K, KITAGAWA T. Voltammetric Study of Protonated 1,10-phenanthroline Cation Transfer across the Water/Nitrobenzene Interface [J]. J. Electroanal. Chem., 1992, 324: 69 -78.
    [13] CLARKE D J, SCHIFFRIN D J, WILES M. A tetraphenylborate internal reference electrode for immiscible electrolyte solutions and ion selective electrodes, Electrochim. Acta, 1989, 34: 767-769.
    [14] SHAO Y H, MIRKIN M V. Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy [J]. J. Phys. Chem. B, 1998, 102: 9915-9921.
    [15] RAHMAN M A, DOE H, OKAMOTO M, et al. Voltammetric and Electrospray Ionization Mass Spectrometric Studies of the Facilitated Ion-Transfers of Sodium and Potassium Cations by Naphtho-15-Crown-5 across the Water | 1,2-Dichloroethane Interface [J]. Electrochim. Acta, 1998, 44: 39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700