有机成分修饰的金属—卤素簇合物的设计合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要从事金属-卤素簇合物的合成、结构和性能研究。利用水热(溶剂热)合成方法选用不同的含氮杂环脂肪胺和芳香胺与Cu(I)-X,Pb-X和其它金属(Co, Ni, Cd)-X合成了二十个金属-卤素簇合物,其中十九个为新化合物。
     1.采用不同尺寸大小的含氮杂环脂肪族二胺合成了五个新的Cu(I)-I簇合物。化合物1是由哌嗪桥联一维具有类城墙结构的Cu2I2双链而成的三维结构的化合物。化合物2是由1D类城墙双链和1D环形链通过共用Cu-I二聚体而成的二维层状化合物。以Cu4I4簇为次级建筑单元构筑了具有二重互穿quartz拓扑的化合物3和具有五重互穿的类金刚石结构的化合物4。化合物5是由双质子化的bpp分子与孤立的[Cu2I5]3-阴离子簇形成的具有三维超分子网络的化合物。
     2.通过水热(溶剂热)配体原位生成反应得到六个化合物。化合物6是以Cu6I6和Cu8I8簇单元为节点构筑的具有sqp拓扑的三维结构。化合物7是由2-COOpy配体桥联金属铜而形成的链状的配合物。化合物8中展现了一个少见的[Cu3I4]-阴离子层。化合物9, 10, 11中分别存在一维[Cu2I3]-链,一维[Cu2I4]2-链和孤立的[Cu4I6]2-簇,并通过C?H???I氢键相互作用形成三维的超分子网络。
     3.由含氮杂环脂肪二胺及其衍生物为模板合成了五个铅卤酸盐。化合物12是第一例具有孔状接缝的二维层状的铅碘酸盐。以质子化的三乙烯二胺为模板剂构筑了一维链状的铅碘酸盐13和一维双链结构的铅溴酸盐14。化合物15中的[Pb2I6]2-阴离子具有一维带状结构。化合物16中的[Pb2I6]2-阴离子与化合物14中的[Pb2Br6]2-是同构的。
     4.利用哌嗪和不同的MX2(M= Co, Ni, Cd; X= Cl, Br, I)合成的四个具有不同维数的化合物17-20。
     5.考察了有机配体、反应体系的pH值等因素对反应产物的影响。对所合成的化合物进行了多种谱学表征,对部分反应可能的反应机理和荧光进行了初步研究,为进一步探索化合物功能特性和结构的关系提供物质基础。
The study on the novel halogenated metal coordination polymers is of current hot topic in the field of inorganic chemistry due to the fascinating structures and the potential applications in the areas of optics, electrochemistry, magnetism, host-guest chemistry and metallic conductivity. One of the hot topics in halogenated metal coordination polymer is the construction of the coordination polymers based on halogenated metal clusters as the Second Building Units(SBUs). The introduction of the halogenated metal clusters not only can keep their inherent properties, but also can obtain novel compounds with novel structures and functions.
     Based on this mechanism, we synthesized 20 metal-halo coordination polymers based on aliphatic N-heterocyclic diamines, aromatic amines and Cu(I)-X, Pb-X, (Co, Ni, Cd)-X in hydro(solvo)thermal conditions. We discussed the influence of the form, size of the organic ligands and solvent, pH and temperature etc. On the bases of X-ray structural analyses, compounds have been characterized by IR, UV, fluorescence spectra and thermal analyses, which would play an important role in exploration of the structures and functions for coordination polymers. This thesis is divided into seven chapters.
     In the first chapter, we concisely introduced the histories of metal-halo clusters and emphasized the developments of copper(I) halides and haloplumbates as well as the hydro(solvo)thermal in situ ligand syntheses. At the end of this chapter, we pointed out the research significance and the results in this thesis.
     In the second chapter, the principle, methods and the reagent used in the syntheses are summarized by the large.
     In the third chapter, five new Cu(I)-I cluster coordination polymers based on aliphatic N-heterocyclic diamines with different sizes in solvothermal conditions have been prapared. They are [Cu2I2(pip)] (1),[Hpip][Cu3I4] (2),[Cu4I4(dach)2] (3),[Cu4I4(bpp)2] (4) , [(H2bpp)2][Cu2I5]I·2H2O (5) (pip = piperazine, dach = 1,4-Diazacycloheptane, bpp = 1,3-bi(4-piperidyl)propane ). Compound 1 features a new 3-D framework constructed from 1-D merlon-like CuI double chains by pip bridges. It is interesting that, this 3-D framework exhibits 1-D channels in different directions. In [100] direction, the channel is rectangular with the size of 2.7×9.0 ?2, whereas in [001] direction the channel is a diamondoid structure with the size of 7.5×13.9 ?2. Compound 2 features a 2-D layer, which constructed from 1D merlon-like CuI double chains and 1D loop chains by sharing Cu-I dimers. Pip molecules adopt monoprotonated style, with one side coordinated with Cu atoms and the other side protonated to balance the charges of the framework. Pip molecules protrude out from 1D merlon-like CuI double chains, extending along the c axis. Compound 3 displays a 3-D two-fold interpenetrated framework built up from Cu4I4 clusters by dach bridges. From the topological point of view, the 3D framework in 3 is a quartz structure, to our knowledge, it is the fourth member of rare 3D frameworks with a quartz-like topology. It is interesting that, compound 3 exhibits two kinds of channel in ab plane: with the size of 8.72×11.22 ?2 and 14.9×18.12 ?2; two kinds of channel in bc plane with the size of 8.31×18.12 ?2 and 15.03×15.18 ?2, respectively. Using the longer ligand bpp molecules, compound 4 exhibits a diamond-like topology with 5-fold interpenetrated based on Cu4I4 clusters as nodes. Compound 5 features a 3-D supramolecular framework, which constructed from diprotonated bpp molecules and discrete [Cu2I5]3- clusters by hydrogen bondings.
     Aliphatic N-heterocyclic diamines with different styles exist in compounds 1-5: bi-bridged in compounds 1, 3 and 4; Mono-bridged and the other side protonated in compound 2; As the templates to banlance charges in compound 5. pH values play an important role in constructing compounds 4 and 5. The X-ray single crystal analyses, elemental analysis, IR and TG have been performed on these compounds. Compounds 1-5 possess good fluorescence emissions.
     In the fourth chapter, six new coordination compounds prepared through in situ ligand syntheses: [Cu14I14 (dabco)5(py)] (6) , [Cu(2-COOpy)2]·H2O (7) ,[N-C2H5py][Cu3I4] (8),[N-CH3py][Cu2I3] (9),[N, N, N’, N’- (CH3)4pip][Cu2I4] (10), [(N-CH3dabco)2][Cu4I6] (11) (dabco = dabco = 1,4-diazabicyclo[2.2.2]octane, py = pyridine, 2-COOpy = 2-carboxylpyridine, N-C2H5py = N-ethylpyridine, N-CH3py = N-methylpyridine), have been in detail described. Full-decarboxylation reaction and semi-decarboxylation reaction of pyridinedicarboxylic acid were detected in compounds 6 and 7. N-C2H5py in 8 and N-CH3py in 9 derived from the solvothermal in situ simultaneous decarboxylation and N-alkylation reactions of 2,5-(COOH)2py. With Cu6I6 and Cu8I8 clusters as 5-connected nodes, compound 6 features a new 3-D network sqp topology. The two-fold interpenetrated framework is generated by accommodating two identical sqp networks by inversion center. Compound 6 is the first example of interpenetrated sqp net with covalent bonds. Compound 7 is a 2-COOpy-bridged chained Cu coordination polymer. The lattice water molecules link to each other to form a 1-D zigzag-type water chain through the O?H???O hydrogen bondings, extending along the a axis. These two kinds of chain further linked into 3D supramolecular network through O(C)?H???O hydrogen bondings. Comound 8 exhibits a rare [Cu3I4]- 2D layer, which further extended into 3D supramolecular network throgh C?H???I hydrogen bondings. The basic building block of [Cu3I4]- layer is [Cu2.5I2]0.5+ subunit. Compound 9 consists of the [N-CH3py]+ cation and the 1-D [Cu2I3]- chain. Compound 10 is constructed by [Cu2I4]2- chain and N-alkylated piperazine, which further extended into 3D supramolecular network through C?H???I hydrogen bondings. In compound 11, mono-alkylated dabco molecules were detected and coordinated with Cu molecule as terminal ligand.
     In the fifth chapter, applying in hydro(solvo)thermal synthesis reactions, five new organically templated haloplumbates: [H2dabco][Pb3I8] (12), [Hdabco] [PbI3]·H2O (13), [H2dabco][Pb2Br6]·H2O (14), [H2depip][Pb2I6]·H2O (15), [H2dppip][Pb2I6]·H2O (16), have been in detail described. compound 12 is the first example of 2-D layered iodoplumbate with perforated structure. The subunit of the perforated layer is a serrated [Pb3I8]2- ribbon, consisting of four infinite chains of edge-shared octahedra featuring the excision of some PbI+ moieties on both side-chains of the ribbon. Templated by monoprotonated dabco, threeμ2-I- ions bridge the Pb(II) octahedra into a 1-D chain structure iodoplumbate of compound 13. Templated by diprotonated dabco, PbBr2 is transformed into a 1-D double-chain structure bromoplumbate of compound 14 based on the Pb2Br9 subunits. The [Pb2I6]2- anion in compound 15 possesses the 1-D ribbon structure, in which the repeat subunit is a planar bi-bridged tetramer. It is interesting that the 1-D ribbons are self-assembled into a 2-D supramolecular layer via the weak inter-ribbon I···I interactions. The [Pb2I6]2- anion in compound 16 is isostructural with that of [Pb2Br6]2- in compound 14.
     The solvothermal in situ N-alkylation reactions (15, 16)of pip with alcohol solvents in the present of I- at acidic conditions provide a new approach to obtain a series of new organic templating agents.
     In the sixth chapter, four 1:1 adducts of MX2 and piperazine: [CoCl2(pip)] (17), [NiCl2(pip)] (18),[CdBr2(pip)] (19), [CdI2(pip)] (20) were obtained. Compound 17 exihibits a 1D zigzag chain, in which Co atoms with tetrahedral geometry. In compounds 18-20, MX2 features a 1D linear chain, for M(pip)22+ unit, the cis-type arrangement corresponds to the 3D network(18, 19), while the trans-mode configuration leads to the 2D sheet(20). In addition, variable-temperature magnetic susceptibility measurements for compound 18 indicate that it displays ferromagnetic interaction during 14-300K, whereas the drop below 14 K can be related to antiferromagnetic coupling between the chains as well as the effect of zero-field splitting.
     In the seventh chapter, a brief conclusion and outlook of this thesis are given.
引文
[1]卢嘉锡.《过渡金属原子簇化学的新进展》[M].福建科学技术出版社,1977.
    [2]项斯芬.《无机化学新兴领域导论》[M].北京大学出版社,1988,P311.
    [3]王恩波,胡长文,许林等.《多酸化学导论》[M].北京:化学工业出版社,1997: 14-47.
    [4] HEALY P C, PAKAWATCHAI C, RASTON C L, et al. Lewis-base adducts of Group 1B metal(I) compounds. Part 1. Synthesis and structure of CuILn complexes (L = nitrogen base, n? 1.5) [J]. J. Chem. Soc., Dalton Trans., 1983: 1905-1916.
    [5] SKELTON B W, WATERS A F, WHITE A H. Lewis-Base Adducts of Group 11 Metal(I) Compounds. LXIII. Stereochemistries and Structures of the 1 : 1 Adducts of Cu1X (X = Cl, Br, I) With 2,2'-Bipyridine [J]. Aust. J. Chem., 1991, 44: 1207-1215.
    [6] HEALY P C, PAKAWATCHAI C, WHITE A H. Lewis-base adducts of Group 1B metal(I) compounds. Part 18. Stereo-chemistries and structures of the 1 : 1 neutral complexes of CuIX with 1,10-phenanthroline (X = I) or 2,9-dimethyl-1,10-phenanthroline (X = I, Br, or Cl) [J]. J. Chem. Soc., Dalton Trans., 1985: 2531-2539.
    [7] PLACE H, SCOTT B, LONG G S, et al. (C5H7N2O)Cu3Br4: template synthesis of a two-dimensional copper(I) bromide lattice [J]. Inorg. Chim. Acta., 1998, 279: 1-6.
    [8] ENGELHARDT L M, GOTSIS S, HEALY P C, et al. Lewis-Base Adducts of Group 11 Metal(I) Compounds .XLV. Conformational Systematics of [(N-base)1(AgX)1]N Complexes [J]. Aust. J. Chem., 1989, 42: 149-176.
    [9] HEALY P C, MILLS N K, WHITE A H. Lewis-base adducts of Group 1 metal(I) compounds. III. Synthesis and crystal structures of the 1 : 1 adducts of silver(I) iodide with triethylamine, 2- and 3-methylpyridine and quinoline [J]. Aust. J. Chem., 1983, 36: 1851-1864.
    [10] MILLS N K, WHITE A H. Lewis-base adducts of Group 1B metal(I) compounds. Part 4. Synthesis and crystal structure of the 1 : 1 adduct of silver(I) chloride with quinoline [J]. J. Chem. Soc., Dalton Trans., 1984: 225-228.
    [11] DEBORD J R D, ZUBIETA J. Hydrothermal synthesis and structural characterization of [Cu(en)2]2Cu7Cl11 a three-dimensional open-framework copper halide with occluded [Cu(en)2]2+cations [J]. Chem. Commun., 1997: 1365-1366.
    [12] MARTIN J D, GREENWOOD K B. Halozeotypes: a New Generation of Zeolite-Type Materials [J]. Angew. Chem., Int. Ed. Engl., 1997, 36: 2072-2075.
    [13] PENG R, LI M, LI D, Copper(I) halides: A versatile family in coordination chemistry and crystal engineering [J]. Coord. Chem. Rev., 2010, 254: 1-18.
    [14] HEALY P C, ENGELHARDT L M, PATRICK V A. Lewis-base adducts of Group 1B metal(I) compounds. Part 19. Crystal structures of bis(1,10-phenanthroline)copper(I) perchlorate and dibromocuprate(I) [J]. J. Chem. Soc., Dalton Trans., 1985: 2541-2545.
    [15] PALLENBERG A J, KOENIG K S, BARNHAR D M. Synthesis and Characterization of Some Copper(1) Phenanthroline Complexes [J]. Inorg. Chem., 1995, 34: 2833-2840.
    [16] SARKAR M, BIRADHA K. b-sheet recognition in the non-interpenetrated and interpenetrated two dimensional coordination networks containing cavities [J]. Chem. Commun., 2005: 2229-2231.
    [17] BATTEN S R, JEFFERY J C, WARD M D. Studies of the construction of coordination polymers using linear pyridyl-donor ligands [J]. Inorg. Chim. Acta., 1999, 292: 231-237.
    [18] BI M H, LI G H, ZOU Y C, et al. Zeolite-like Copper Iodide Framework with New 66 Topology [J]. Inorg. Chem., 2007, 46: 604-606.
    [19] BIRADHA K, AOYAGI M, FUJITA M, Coordination Polytubes with the Affinity for Guest Inclusion [J]. J. Am. Chem. Soc., 2000, 122: 2397-2398.
    [20] PENG R, DENG S R, LI M, et al. Solvent-dependent copper(I) conformational supramolecular pseudo-polymorphs based on a flexible thioether ligand [J]. CrystEngComm, 2008, 10: 590-597.
    [21] ADAMS R D, MCBRIDE K T, ROGERS R D, et al. A New Route to Polyselenoether Macrocycles. Catalytic Macrocyclization of 3,3-Dimethylselenetane by Re2(CO)9SeCH2CMe2CH2 [J]. Organometallics 1997, 16: 3895-3901.
    [22] HU S, TONG M L. Rational design and construction of the first tetrahedral netwith photoluminescent Cu4I4 cubane cluster as the tetrahedral node [J]. Dalton Trans., 2005: 1165-1167.
    [23] ZHANG H X, KANG B S, XU A W, et al. Supramolecular architectures from the self-assembly of trans-oxamidato-bridged dicopper(II) building blocks and phenyldicarboxylates [J]. J. Chem. Soc., Dalton Trans., 2001: 2559-2566.
    [24] CHURCHILL M R. Molecules with an M4X4 Core. IV.1-3 Crystallographic Detection of a“Step”Configuration for the Cu4I4 Core in Tetrameric Triphenylphosphinecopper(1) Iodide, [ PPh3CuI]4 [J]. Inorg. Chem., 1975, 14: 617-623.
    [25] CHURCHILL M R. Molecules with an M4& Core. 11.X-Ray Crystallographic Determination of the Molecular Structure of Tetrameric Triphenylphosphinecopper(1) Bromide in Crystalline [PPh3CuBr]4.2CHC13 [J]. Inorg. Chem., 1974, 13: 1427-1434.
    [26] SOLNTSEV P V, SIELER J, KRAUTSCHEID H, et al. Fused pyridazines: rigid multidentates for designing and fine-tuning the structure of hybrid organic/inorganic frameworks [J]. Dalton Trans., 2004: 1153-1158.
    [27] BROOKS N R, BLAKE A J, CHAMPNESS N R, et al. Discrete molecular and extended polymeric copper(I) halide complexes of tetradentate thioether macrocycles [J]. J. Chem. Soc. Dalton Trans., 2001: 456-465.
    [28] FU W F, GAN X, CHE C M, et al. Cuprophilic Interactions in Luminescent Copper(I) Clusters with Bridging Bis(dicyclohexylphosphino)methane and Iodide Ligands: Spectroscopic and Structural Investigations [J]. Chem. Eur. J. 2004, 10: 2228-2236.
    [29] CHEN B L, MOK K F, NG S C. Synthesis, crystal structures and dynamic NMR studies of novel trinuclear copper(I) halide complexes with 2,5-bis[(diphenylphosphino)methyl]thiophene [J]. J. Chem. Soc. Dalton Trans., 1998: 2861-2866.
    [30] HEALY P C, SKELTON B W, WHITE A H, et al. Lewis base adducts of Group 11 metal(I) complexes. Part 48. Heterobimetallic tris(dithiocarbamato)cobalt(III)– copper(I) halide adducts as a vehicle for novel copper(I) halide clusters (structurally characterized) [J]. J. Chem. Soc. Dalton Trans., 1989: 971-976.
    [31] CHEN L, THOMPSON L K, TANDON S S, et al. Synthetic, Structural, and Spectroscopic Studies on Copper(II), Copper(I), and Silver(1)Complexes of aSeries of Pyridazinophane and Phthalazinophane Macrocycles, Unusual ExtendedMetallocyclic Structures [J]. Inorg. Chem., 1993, 32: 4063-4068.
    [32] VICTORIANO L I, GARLAND M T, VEGA A, et al. Syntheses, properties, crystal and molecular structure of a novel neutral pentanuclear copper(I) iodide species. Copper(I) complexes with tetraethylthiuram monosulfide [J]. J. Chem. Soc. Dalton Trans., 1998: 1127-1131.
    [33] XUE X, WANG X S, XIONG R G, et al. A Cluster Rearrangement of an Open Cubane (Cu4Br4) to a Prismane (Cu6Br6) in a Copper(i) Olefin Network [J]. Angew. Chem. Int. Ed., 2002, 41: 2944-2946.
    [34] OHI H, TACHI Y, KUNIMOTO T, et al. Structure and photoluminescence property of two-dimensional coordination polymer complexes involving CuI 6X6 (X = Cl, Br, I)hexagon prism cluster supported by a tripodal tripyridine ligand with1,3,5-triethylbenzene spacer [J]. Dalton Trans., 2005: 3146-3147.
    [35] LOBANA T S, KAUR P, NISHIOKA T, et al. Synthesis of an Unprecedented Bicapped Adamantoid [Cu6(μ2-I)(μ3-I)4(μ4-I)(m-tolyl3P)4(CH3CN)2] Cluster [J]. Inorg. Chem., 2004, 43: 3766-3767.
    [36] PIKE R D, BORNE B D, MAEYER J T, et al. 1,3,5-Triazine Templated Self-Assembly of a Hexameric Copper(I) Chloride Triphenyl Phosphite Core [J]. Inorg. Chem., 2002, 41: 631-633.
    [37] CECCONI F, GHILARDI C A, MIDOLIINI S, et al. A heterometallic“super-sandwich”containing a novel hexagonal Cu6 unit at the centre: synthesis and X-ray structure determination of [{MeC(CH2PPh2)3}CoP3](CuBr)6 [P3Co{(Ph2PCH2)3CMe}]·2CH2Cl2 [J]. Chem. Commun., 1982: 229-230.
    [38] CARIATI E, ROBERTO D, UGO R, et al. New Structural Motifs, Unusual Quenching of the Emission, and Second Harmonic Generation of Copper(I) Iodide Polymeric or Oligomeric Adducts with Para-Substituted Pyridines or trans-Stilbazoles [J]. Inorg. Chem., 2005, 44: 4077-4085.
    [39] AMOORE J J M, HANTON L R, SPICER M D, et al. Banded ribbons of Cu6I6 hexamers and multimodal thioether pyrazine ligands linked by self- complementary N···H– C synthons [J]. Dalton Trans., 2003: 1056-1058.
    [40] HEALY P C, SKELTON B W, WHITE A H, et al. Lewis base adducts of Group 11 metal(I) complexes. Part 48. Heterobimetallic tris(dithiocarbamato)cobalt(III)–copper(I) halide adducts as a vehicle for novelcopper(I) halide clusters (structurally characterized) [J]. J. Chem. Soc. Dalton Trans., 1989: 971-976.
    [41] DU M, WANG X S. Luminescent copper(I)-olefin complex obtained through in situ hydrothermal ligand synthesis [J]. Chin. J. Inorg. Chem. (Wuji Huaxue Xuebao) 2005, 21: 941-945.
    [42] MüLLER I M, SHELDRICK W S. Tetramethylcyclotetraarsoxane Bridging of Copper(I) Halide Units Cu6Br6, Cu2I2, [Cu6I8]2- and [Cu3I4-] in Porous Coordination Polymers [J]. Z. Anorg, Allg. Chem., 1999, 625: 443-448.
    [43] CHONG J H, MACLACHLAN M J. Robust Non-Interpenetrating Coordination Frameworks from New Shape-Persistent Building Blocks [J]. Inorg. Chem., 2006, 45: 1442-1444.
    [44] BI M H, LI G H, HUA J, et al. Two Isomers with FSC Topology Constructed from Cu6I6(DABCO)4and Cu8I8(DABCO)6 Building Blocks [J]. Cryst. Growth Des., 2007, 7: 2066-2070.
    [45] HOU Q, YU J H, XU J. N, et al. A new 3-D two-fold interpenetrated framework with sqp net based on Cu6I6 and Cu8I8 cluster nodes [J]. CrystEngComm, 2009, 11: 2452–2455.
    [46] SOLNTSEV P V, SIELER J, KRAUTSCHEID H, et al. Fused pyridazines: rigid multidentates for designing and fine-tuning the structure of hybrid organic/inorganic frameworks [J]. Dalton Trans., 2004: 1153-1158.
    [47] ARNBY C H, JAGNER S, DANCE I, et al. Questions for crystal engineering of halocuprate complexes: concepts for a difficult system [J]. CrystEngComm 2004, 6: 257-275.
    [48]宋玉江,金属-氧簇及金属-卤素簇的合成与表征[D].长春:吉林大学硕士论文,2000.
    [49] HASSELGREN C, JAGNER S, et al. Halocuprates(I) crystallising with the Ph3PNPPh3+ cation: preparation and structural characterisation of (Ph3PNPPh3)2[Cu4Br6]and (Ph3PNPPh3)[CuBrCl] [J]. Inorg. Chim. Acta., 2002, 336: 137-141.
    [50] BOWMAKER G A, CLARK G R, ROGERS D A, et al. Structural and spectroscopic characterization of complexes containing the mononuclear trihalogenometalates [CuI3]2–, [CuBr3]2–, and [AgI3]2–. Crystal structure of [PMePh3]2[CuI3] [J]. J. Chem. Soc., Dalton Trans., 1984: 37-45.
    [51] M. Asplund, et al., Acta Chem. Scand. A, 1982, 36: 751-755.
    [52] H. Hartl, et al., Z. Naturforsch. Teil B 1985, 40: 1032.
    [53] M. Asplund, et al., Acta Chem. Scand. A 1985, 39: 47.
    [54] BOWMAKER G A, CLARK G R, YUEN D. K. P, et al. Crystal and molecular structure of methyltriphenylphosphonium hexa-iodotetracuprate(I) [J]. J. Chem. Soc., Dalton Trans., 1976: 2329-2334.
    [55] HARTL H. [Cu5I7]2- - An Isopolyanion with Cyclic Face-to-Face Linking of CuI4 Tetrahedra [J]. Angew. Chem., Int. Ed. Engl., 1984, 23: 378-379.
    [56] HU G Z, et al. Tetrakis(trimethylphenylammonium) Octa-μ-bromo- dibromohexacuprate (I) [J]. Acta Cryst. 1994, C 50: 1890-1892.
    [57] FIRMIN D A, QUILANO E R, CAMERON R, et al. The synthesis, molecular structure and magnetic properties of [Cu2L(μ-OH)CH3CN]2[Cu6I10] and [Cu2 L(μ-Br)]Br2, where L = 2,6-Bis(N,N′-dimethylethylenamineformimidoyl) -4-methylphenolato [J]. Inorg. Chim. Acta., 1990, 172: 211-220.
    [58] MAHDJOUR H A F, et al., [Cu6I11]5- a Polyanion with Trigonal-Prismatic Arrangement of Six Metal Atoms [J]. Angew. Chem., Int. Ed. Engl., 1984, 23: 514-515.
    [59] M. Asplund, et al., Acta Chem. Scand. Ser. A 1984, 38: 807.
    [60] YU J H, JIA H B, PAN L Y, et al. Hydrothermal synthesis, crystal structure and third-order non-linear optical property of a discrete decanuclear iodocuprate(I) [CuI 10H2I16]4- with [NiII(phen)3]2+ as a template [J]. J. Solid State Chem., 2003, 175: 152-158.
    [61] HARTL H, et al. [Cu36I56]20- a Novel Polyanion in the Compound (pyH)2[Cu3I5] [J]. Angew. Chem., Int. Ed. Engl., 1986, 25: 569-570.
    [62] WANG X L, QIN C, WANG E B, et al. Self-Assembly of Nanometer-Scale [Cu24I10L12]14+ Cages and Ball-Shaped Keggin Clusters into a (4,12)-Connected 3D Framework with Photoluminescent and Electrochemical Properties [J]. Angew. Chem. Int. Ed., 2006, 45: 7411–7414.
    [63] BLAKE A J, BROOKS N R, CHAMPNESS N R, et al. Copper(1) halide supramolecular networks linked by N-heterocyclic donor bridging ligands [J]. Pure Appl. Chem., 1998, 70: 2351-2357.
    [64] PON G, WILLETT R D, PRINCE B A, et al, Crystal chemistry of the copper bromide/2-aminopyrimidine system [J]. Inorg. Chim. Acta., 1997, 255: 325-334.
    [65] LIU S Q, KONAKA H, KURODA-SOWA T, et al. Porous copper(I) complexes of 2,11-dithia[3.3]paracyclophane:desorption and adsorption of guest molecules [J]. Inorg. Chim. Acta., 2004, 357: 3621-3631.
    [66] MULLER I M, SHELDRICK W S, et al. Tetramethylcyclotetraarsoxane Bridged Copper(1) Halides with Porous Sheet and Framework Structures [CuX(cyclo-(MeAsO)4}] (X = C1, Br, I) and [Cu3X3{cyclo-(MeAsO)4}2 (X=C1 , Br ) [J]. Z. Anorg, Allg. Chem., 1997, 623: 1399-1406.
    [67] HADDLETON D M, DUNCALF D J, CLARK A J, et al. First structurally authenticated inorganic polymers of CuBr and CuI containing chiral bidentate N-donor ligands. Use of the Schi. base2,2’-bis [ (4S)-4-benzyl-2-oxazoline ] as ligand [J]. New J. Chem., 1998: 315-317.
    [68] SONG R F, XIE Y B, LI J R, et al. Syntheses and crystal structures of the copper(I) complexes with quinoline-based monothioether ligands [J]. CrystEngComm. 2005, 7: 249-254.
    [69] MASSAUX M, DUCREUX G, CHEVALIER R, et al. Etude structurale de méthylacrylonitrile–bromure de cuivre, CH2b C(CH3)CN.CuBr [J]. Acta Crystallogr. Sect.B. 1978, 34: 1863-1868.
    [70] LU J Y, CABRERA B R, WANG R J, et al. Chemical Rearrangement under Hydrothermal Conditions: Formation of Polymeric Chains (CuX)2(dpiz)and (CuX)3(dpiz) (X ) Cl, Br; dpiz ) Dipyrido[1,2-a:2’,3’-d]imidazole) and Crystal Structures of [(CuCl)2(C10H7N3)] and [(CuBr)3(C10H7N3)] [J]. Inorg. Chem., 1998, 37: 4480-4481.
    [71] BLACK A J, BROOKS N R, CHAMPNESS N R, et al. Controlling copper(I) halide framework formation using N-donor bridging ligand symmetry: use of 1,3,5-triazine to construct architectures with threefold symmetry [J]. J. Chem. Soc., Dalton Trans., 1999: 2103-2110.
    [72] N?HER C, JESS I. Synthesis, Crystal Structures, and Thermal and Thermodynamic Properties of Dimorphic Copper(I) Coordination Polymers [J]. Inorg. Chem., 2003, 42: 2968-2976.
    [73] LI G, SHI Z, LIU X, et al. Low-Dimensional Hybrid Copper Halides with Novel D6R Cu6I6 Cores [J]. Inorg. Chem., 2004, 43: 6884-6886.
    [74] BLAKE A J, BROOKS N R, CHAMPNESS N R. et al. Copper(1) halide supramolecular networks linked by N-heterocyclic donor bridging ligands [J].Pure Appl. Chem., 1998, 70: 2351-2357.
    [75] WU T, LI D, NG S W. Solvent control in the hydrothermal synthesis of two copper(I) iodide–benzimidazole coordination polymers [J]. CrystEngComm. 2005, 7: 514-518.
    [76] HAMMOND R P, CAVALUZZI M, HAUSHALTER R C, et al. Investigations of the Copper Bromide-2,2′-Dipyridyl System: Hydrothermal Synthesis and Structural Characterization of Molecular Cu3Br4(C10H8N2)2, One- DimensionalCuBr2 (C10H8N2), and Two-Dimensional [Cu2(OH)2(C10H8N2)2] [Cu4Br6] [J]. Inorg. Chem., 1999, 38: 1288-1292.
    [77] H?KANSSON M, JAGNER S. Preparation and Structural Characterization of Cu(CO)Cl [J]. Inorg. Chem., 1990, 29: 5241-5244.
    [78] H?KANSSON M, JAGNER S, WALTHER D, et al. A Complex between Isoprene and Copper( I) Chloride:Synthesis and Structural Characterization [J]. Organometallics. 1991, 10: 1317-1619.
    [79] ZAVALII P Y, MYS’KIV M G, FUNDAMENSKII V S, Kristallografiya (Russ.) Crystallogr. Rep. 1984, 29: 60.
    [80] BAUMGARTNER M R, SCHMALLE H, DUBLER E, et al. The interaction of transition metals with the coenzymeα-lipoic acid: synthesis, structure and characterization of copper and zinc complexes [J]. Inorg. Chim. Acta., 1996, 252: 319-331.
    [81] MYKHALICHKO B M, MYS’KIV M G, AKSEL’RUD L G, et al. (Russ.) Coord. Chem., 1992, 18, 985.
    [82] KROMP T, SHELDRICK W S. One- and two- dimensional copper(I) halide based coordination polymers with bridging pyridazine or pyrimidine ligands [J]. Z. Naturforsch B: Chem. Sci. 1999, 54: 1175-1180.
    [83] WILLETT R D. Bromination of the 3-Chloroanilinium Cation: Structure of a Novel Two-Dimensional Copper(I) Bromide Lattice Prepared via In-Situ Redox Processes [J]. Inorg. Chem., 2001, 40: 966-971.
    [84] PENG R, WU T, LI D, et al. A chiral coordination polymer containing copper(I) iodide layer composed of intersecting [CuI]n helices [J]. CrystEngComm. 2005, 7: 595-598.
    [85] CHENG J W, ZHENG S T, YANG G Y. Incorporating Distinct Metal Clusters To Construct Diversity of 3D Pillared-Layer Lanthanide-Transition-MetalFrameworks [J]. Inorg. Chem., 2008, 47: 4930-4935.
    [86] HEALY P C, KILDEA J D, WHITE A H, et al. Lewis base adducts of Group 11 metal(I) compounds. Part 36. The synthesis and X-ray crystallographic characterisation of polymeric copper(I) iodide–benzonitrile (2/1) [J]. J. Chem. Soc. Dalton Trans., 1988: 1637-1639.
    [87] CHENG J K, CHEN Y B, WU L, et al. A 3-D Noninterpenetrating Diamondoid Network of a Decanuclear Copper(I) Complex [J]. Inorg. Chem., 2005, 44: 3386-3388.
    [88] VITALE M,PALKE W E,FORD P C,et al. Origins of the double emission of the tetranuclear copper(I) cluster Cu4I4(pyridine)4: an ab initio study [J]. J. Phy. Chem., 1992, 96: 8329-8336.
    [89] HOSKINS B F,ROBSON R. Infinite Polymeric Frameworks Consisting of Three Dimensionally Linked Rod-like Segments [J]. J. Am. Chem. Soc., 1989, 111: 5962-5964.
    [90] BEIN T. Supramoelucal Architecture [M], AmerieanChemieal Soeiety: Washington, DC, 1992.
    [91] STEIN A,KELLE S. W, MALLCUK T. E, et al. Turning Down the Heat: Design and Mechanism in Solid-State Synthesis [J]. Science, 1993, 259: 1558-1563.
    [92] HERRMAN W A,HUBBE N W,et al. Volatile Metal Alkoxides according to the Concept of Donor Functionalization [J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 2187-2206.
    [93] AMBILINO D B,STODDART J F,et al. Interlocked and Intertwined Structures and Superstructures [J]. Chem. Rev., 1995, 95: 2725-2828.
    [94] KYLE K R, RYU C. K, DIBENEDETTO J A, et al. Photophysical Studies in Solution of the Tetranuclear Copper( I) Clusters Cu414L4 (L = Pyridine or Substituted Pyridine [J]. J. Am. Chem. Soc., 1991, 113: 2954-2965.
    [95] Ford P C, CARIATI E, BOURASSA J, et al. Photoluminescence Properties of Multinuclear Copper(I) Compounds [J]. Chem. Rev., 1999, 99: 3625-3647.
    [96] H. D. Hardt. Luminescence thermochromism, a forgotten phenomenon [J]. Naturwissenschaften 1974, 61: 107-110.
    [97] HARDT H. D, PIERRE A, et al. Fluorescence thermochromism and symmetry of copper(I) complexes [J]. Inorg. Chim. Acta., 1977, 25: L59-L60.
    [98] FORD P C, VOGLER A. Photochemical and Photophysical Properties of Tetranuclear and Hexanuclear Clusters of Metals with d10 and s2 Electronic Configurations [J]. Acc. Chem. Res., 1993, 26: 220-226.
    [99] VITAL M, FORD P C. Luminescent mixed ligand copper(I) clusters (CuI)n(L)m (L=pyridine, piperidine):thermodynamic control of molecular and supramolecular species [J]. Coord. Chem. Rev., 2001, 219-221: 3-16.
    [100] KIM T H, SHIN Y W, JUNG J H, et al. Crystal-to-Crystal Transformation between Three CuI Coordination Polymers and Structural Evidence for Luminescence Thermochromism [J]. Angew. Chem. Int. Ed., 2008, 47: 685- 688.
    [101] CARIATI E,BOURASSA J, FORD P C,et al. Luminescence response of the solid state polynuclear copper(I) iodide materials [CuI(4-picoline)]x to volatile organic compounds [J]. Chem. Commun., 1998: 1623-1624.
    [102] CARIATI E, BU X, FORD P C, et al. Solvent- and Vapor-Induced Isomerization between the Luminescent Solids [CuI(4-pic)]4 and [CuI(4-pic)] (pic )methylpyridine). The Structural Basis for the Observed Luminescence Vapochromism [J]. Chem. Mater., 2000, 12: 3385-3391.
    [103] TANG Z. J, GULOY A. M, A Methylviologen Lead(II)Iodide:Novel[PbI3-]∞Chains with Mixed Octahedral and Trigonal Prismatic Coordination [J]. J. Am. Chem. Soc. 1999, 121: 452-453.
    [104] SHIBUYA K, KOSHIMIZU M, TAKEOKA Y, et al. Scintillation properties of (C6H13NH3)2PbI4:Exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons [J]. Nuclear Instruments and Methods in Physics Research B, 2002, 194: 207-212.
    [105] Xu Z. T, MITZI D B. [CH3(CH2)11NH3]SnI3: A Hybrid Semiconductor with MoO3-type Tin(II)Iodide Layers [J]. Inorg.Chem., 2003, 42: 6589-6591.
    [106] Mitzi D B, DIMITRAKOPOULOS C D, KOSBAR L L. Structurally Tailored Organic-Inorganic Perovskites:Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors [J]. Chem. Mater., 2001, 13: 3728-3740.
    [107] PAPAVASSILIOU G C, MOUSDIS G A, KOUTSELAS IB, et al. Some New Organic–Inorganic Hybrid Semiconductors Based on Metal Halide Units: Structural,Optical and Related Properties [J]. Adv. Mater. Opt. Electron, 1999, 9: 265-271.
    [108]孟祥茹,赵金安,侯红卫,米立伟,配位聚合物的三阶非线性光学性质,无机化学学报, 2003, 19: 15-19.
    [109] DONNERS J J J M, HOOGENBOOM R, SCHENNING A P H J, et al. Fabrication of Organic-Inorganic Semiconductor Composites Utilizing the Different Aggregation States of a Single Amphiphilic Dendrimer [J]. Langmuir, 2002, 18: 2571-2576.
    [110] ABDELRAZZAQ F B, KWONG R C, THOMPSON M E, et al. Photocurrent Generation in Multilayer Organic-Inorganic Thin Films with Cascade Energy Architectures [J]. J. Am. Chem. Soc., 2002, 124: 4796-4803.
    [111] OVCHARAENKO V L, SAGDEEV R Z. Molecular ferromagnets [J]. Russ. Chem. Rev., 1999, 68: 345-363.
    [112] MITZI D B. Thin-Film Deposition of Organic-Inorganic Hybrid Materials [J]. Chem. Mater., 2001, 13: 3283-3298.
    [113] THOMAS D, ENRIC C,PASCALE A S. Patrick B. (EDT-TTF-I2)2PbI3·H2O:an ambient pressure metal with aβ’-donor slab topology [J]. J. Mater. Chem., 2004, 14: 135-137.
    [114] KAGAN C R, MITZI D B, DIMITRAKOPOULOS C D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors [J]. Science, 1999, 286: 945-947.
    [115] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J]. J. Am. Chem. Soc., 2009, 131: 6050-6051.
    [116] VINCENT B R, ROBERTSON K N, CAMERON T S, et al. Alkylammonium lead halides. Part 1. Isolated PbI64- ions in (CH3NH3)4PbI6·2H2O [J]. Can. J. Chem. 1987, 65: 1042-1046.
    [117] PAPAVASSILIOU G C, KOUTSELAS I B, TERZIS A, et al. Preparation and characterization of (C6H5CH2CH2NH3)4BiI7cntdot.H2O, (C6H5CH2CH2NH3)3 BiBr6, and (C6H5CH2CH2NH3)3BiCl6 [J]. Z. Naturforsch. B: Chem. Sci. 1995, 50: 1566-1569.
    [118] KRAUTSCHEID H, VIELSACK F. Iodoplumbate mit vier-und funffach koordinierten Pb2+Ionen [J]. Z. Anorg. Allg. Chem., 1999, 625: 562-566.
    [119] KRAUTSCHEID H, VIELSACK F. Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10] 4-, [Pb7I22] 8-, [Pb10I28] 8-,∞1[Pb3I10] 4- and∞2[Pb7I18]4- [J]. J. Chem. Soc. Dalton.Trans., 1999: 2731-2735.
    [120] WILLETT R D, MAXCY K R. Polytypism in Columnar Group 14 Halide Salts : Structures of (Et2NH2)3Pb3X9·nH2O(X=Cl,Br)and(β-alaninium)2SnI4, Inorg. Chem., 2002, 41: 7024-7030.
    [121] KRAUTSCHEID H, LEKIEFFRE J F, BESINGER J. Iodoplumbate mit polymeren Anionen- Synthese und Kristallstrukturen von [Na3(OCMe2)12][Pb4I11(OCMe2)],(Ph4P)2[Pb5I12] und (Ph4P)4[Pb15I34(dmf)6] [J]. Z. Anorg. Allg. Chem., 1996, 622: 1781-1787.
    [122] CORRADI A B, BRUNI S, CARIATI F, et al. Organic/inorganic composite materials:synthesis and properties of one-dimension polymeric haloplumbate(II)systems [J]. Inorg. Chim. Acta., 1997: 137-143.
    [123] TANG Z J, GULOY A M. A Methylviologen Lead(II) Iodide: Novel[PbI3-]∞Chains with Mixed Octahedral and Trigonal Prismatic Coordination [J]. J. Am. Chem. Soc., 1999, 121: 452-453.
    [124] CHAKRAVARTHY V, GULOY A M. Synthesis and structure of a new layered organic-inorganic compound containing unique chains of PbI2 [J]. Chem.Commun., 1997: 697-698.
    [125] WANG S M, MITZI D B, FEILD C A, et al. Synthesis and Characterization of [NH2C(I)=NH2]3MIs (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single (110) Perovskite Sheets [J]. J. Am. Chem. Soc., 1995, 117: 5297-5230.
    [126] PAPAVASSILIOU G C, MOUSDIS G A, RAPTOPOULOU C P, et al. Preparation and Characterization of [C6H5CH2NH3]2PbI4, [C6H5CH2CH2SC(NH2)2]3PbI5 and [C10H7CH2NH3]PbI3 Organic-Inorganic Hybrid Compounds [J]. Z. Naturforsch. 54b, 1999: 1405-1409.
    [127] ZHANG Z J, GUO G C, XU G, et al. A New Type of Hybrid Magnetic Semiconductor Based upon Polymeric Iodoplumbate and Metal-Organic Complexes as Templates [J]. Inorg. Chem., 2006, 45: 1972-1977.
    [128] CORRADI A B, FERRARI A M. Structure and Electrical Characterization of Polymeric Haloplumbate(II)Systems [J]. Inorg.Chem., 1999, 38: 716-721.
    [129] CORRADI A B, FERRARI A M, RIGHI L. An Additional Structural and Electrical Study of Polymeric Haloplumbates(II)with Heterocyclic Diprotonated Amines [J]. Inorg. Chem., 2001, 40: 218-223.
    [130] KRAUTSCHEID H, LODE C, VIELSACK F. Synthesis and crystal structures of iodoplumbatechains, ribbons, rods with new structural types [J]. J. Chem. Soc. Dalton. Trans., 2001: 1099-1104.
    [131] YE R B, HUANG C C, ZHANG H H. Synthesis and Crystal Structure of a New Organic-inorganic Hybrid One-dimensional Polymer:[Zn(C8H23N5)]2(Pb3I10) [J]. Chinese J. Struct. Chem., 24(6): 679-683.
    [132] MITZI D B. Templating and structural engineering in organic–inorganic Perovskites [J]. J. Chem. Soc., Dalton Trans., 2001: 1-12.
    [133] MERCIER N. (HO2C(CH2)3NH3)2(CH3NH3)Pb2I7: a predicted noncentrosymmetrical structure built up from carboxylic acid supramolecular synthons and bilayer perovskite sheets [J]. CrystEngComm. 2005, 7: 429-432.
    [134] ZHU X H, MERCIER N, RIOU A, et al. (C4H3SCH2NH3)2(CH3NH3)Pb2I7 : non-centrosymmetrical crystal structure of a bilayer hybrid perovskite [J]. Chem.Commun., 2002: 2160-2161.
    [135] ZHANG Z J, Guo G C, XU G, et al. [(H2en)7(C2O4)2]n(Pb4I18)n·4nH2O, a New Type of Perovskite Co-templated by Both Organic Cations and Anions Inorg. Chem., 2006, 45: 10028-10030.
    [136] LI J P, LI L H, WU L M, et al. Synthesis, Properties, and Theoretical Studies of New Stepwise Layered Iodoplumbate: [Ni(opd)2(acn)2]n[Pb4I10]n [J]. Inorg. Chem., 2009, 48: 1260-1262.
    [137] KRAUTSCHEID H, VIELSACK F, KLAASSEN N, et al. Polymere Iodoplumbate-Synthese und Kristallstrukturen von (Pr3N-C2H4-NPr3)[Pb6I14 (dmf)2]·4DMF, (Pr3N-C2H4-NPr3)[Pb(dmf)6][Pb5I14]·DMF und (Me3N-C2H4-NMe3)2[Pb2I7]I [J]. Z. Anorg. Allg. Chem., 1998, 624: 807-812.
    [138] KRAUTSCHEID H, VIELSACK F. Synthese und Kristallstrukturen kettenformiger und netzartiger Iodoplumbate [J]. Z. Anorg. Allg. Chem., 1997, 623: 259-263.
    [139] ZHANG Z J, XIANG S C, GUO G C, et al. Wavelength-Dependent Photochromic Inorganic– Organic Hybrid Based on a 3D Iodoplumbate Open-FrameworkMaterial [J]. Angew. Chem. Int. Ed., 2008, 47: 4149-4152.
    [140] MARTIN J D, GREENWOOD K B. Halozeotypes: a New Generation of Zeolite-Type Materials [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 2072-2075.
    [141] FELDMANN C. CuBi7I19(C4H8O3H)3(C4H8O3H2), a Novel Complex BismuthIodide Containing One-Dimensional [CuBi5I19]3- Chains [J]. Inorg. Chem., 2001, 40: 818-819.
    [142] FAN L Q, WU L M, CHEN L. Syntheses, Crystal Structures, and Properties of Heterometallic Iodoplumbates: Bicubane, Ribbon, and Chain Configurations [J]. Inorg. Chem., 2006, 45: 3149-3151.
    [143] GOFORTH A M, GARDINIER J R, SMITH M D, et al. [Ru(2,2’-bipy)3]2[Bi4I16]: A bimetallic inorganic–organic complex consisting of a d-metal coordination cation and a polynuclear iodobismuthate anion, Inorg. Chem. Commun., 2005, 8: 684-688.
    [144] BURNS M C, TERSHANSY M A, ELLSWORTH J M, et al. Layered Heterometallic Iodoplumbate Containing a Novel Pb3Cu6I16 Net: Structure and Optical Properties [J]. Inorg. Chem., 2006, 45: 10437-10439.
    [145] CHESNUT D J, HAGRMAN D, ZAPF P J, et al. Organic/inorganic composite materials:the roles of organoamine ligands in the design of inorganic solids [J]. Coord. Chem. Rev., 1999, 190: 737-769.
    [146] CONSTABLE E C. Metals and Ligand Reactivity [M]. VCH, Weinheim, 1996: 245.
    [147] BURGESS J, HUBBARD C D. Ligand Substitution Reactions [J]. Adv. Inorg. Chem., 2003, 54: 71-155.
    [148] ZHANG X M, TONG M L, GONG M L, et al. Syntheses, Crystal Structures, and Physical Properties of Dinuclear Copper(I) and Tetranuclear Mixed-Valence Copper(I,II) Complexes with Hydroxylated Bipyridyl-Like Ligands [J]. Chem. Eur. J., 2002, 8: 3187-3194.
    [149] BLAKE A J, CHAMPNESS N R, CHUNG S S M, et al. In situ ligand synthesisi and construction of an unprecedented three-dimensional array with silcer (i): a new approach to inorganic crystal engineering [J]. Chem. Commun., 1997: 1675.
    [150] ZHANG X M. Hydro(solvo)thermal in situ ligand syntheses [J]. Coord. Chem. Rev., 2005, 249: 1201-1219.
    [151] CHEN X M, TONG M L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry [J]. Acc. Chem. Res., 2007, 40: 162-170.
    [152] ZHANG X M, TONG M L, CHEN X M. Hydroxylation of N-heterocycle ligandsobserved in two unusual mixed-valence Cu-I/Cu-II complexes [J]. Angew. Chem. Int. Ed., 2002, 41: 1029-1031.
    [153] ZHANG X M, TONG M L, GONG M L, et al. Syntheses, crystal structures, and physical properties of dinuclear copper(I) and tetranuclear mixed-valence copper(I,II) complexes with hydroxylated bipyridyl-like ligands [J]. Chem. Eur. J., 2002, 8: 3187-3194.
    [154] R?DEL E, JENTOFT R E, RESSLER T. In situ investigations of structureactivity correlations of mixed molybdenum oxide catalysts [J]. Z. Anorg. Allg. Chem., 2004, 630: 1756.
    [155] XIAO D R, HOU Y, WANG E B, et al. Hydrothermal synthesis and crystal structure of a novel polyoxomolybdate with the hydroxylated N-heterocycle ligand: Mo2O5(ophen)2 (Hophen=2-hydroxy-1,10-phenanthroline) [J]. J. Mol. Struct., 2003, 659: 13-21.
    [156] CHE C M, MAO Z, MISKOWSKI V M, et al. Cuprophilicity: Spectroscopic and structural evidence for Cu-Cu bonding interactions in luminescent dinuclear copper(I) complexes with bridging diphosphane ligands [J]. Angew. Chem. Int. Ed., 2000, 39: 4084-4088.
    [157] TAO J, ZHANG Y, TONG M L, et al. A mixed-valence copper coordination polymer generated by hydrothermal metal/ligand redox reactions [J]. Chem. Commun., 2002: 1342-1343.
    [158] EVANS O R, LIN W. Synthesis of Zinc Oxalate Coordination Polymers via Unprecedented Oxidative Coupling of Methanol to Oxalic Acid [J]. Cryst.Growth Des., 2000, 1: 9-11.
    [159] CHENG J K , YAO Y G , ZHANG J, et al. A simultaneous redox, alkylation, self-assembly reaction under solvothermal conditions afforded a luminescent copper(I) chain polymer constructed of [Cu3I4]- and [EtS-4-C5H4N+Et] components (Et = CH3CH2) [J]. J. Am. Chem. Soc., 2004, 126: 7796-7797.
    [160]顾艳红,含吡啶取代基的吡唑卤化亚铜配合物的溶剂热合成与结构研究[D].汕头:汕头大学硕士论文,2008。
    [161] YAN Y, WU C D, LU C Z. Hydrothermal synthesis of two new transition metal coordination polymers with mixed ligands [J]. Z. Anorg. Allg. Chem., 2003, 629: 1991-1995.
    [162] HU X X, XU J Q, CHENG P, et al. A new route for preparing coordinationpolymers from hydrothermal reactions involving in situ ligand synthesis [J]. Inorg. Chem., 2004, 43: 2261-2266.
    [163] HU X X, PAN C L, XU J Q, et al. One- and three-dimensional coordination polymers containing organic ligands produced through in situ hydrothermal reactions [J]. Eur. J. Inorg. Chem., 2004: 1566-1569.
    [164] YU J H, ZHU Y C, WU D, et al. Preparation and structural characterization of a series of monoacylhydrazidate-bridged coordination polymers [J]. Dalton Trans., 2009: 8248-8256.
    [165] LIU F C, DUAN L Y, LI Y G, et al. Hydrothermal synthesis and characterizations of a novel 2-D double-layers metal-organic coordination polymer involving in situ ligand synthesis [J]. Inorg. Chim. Acta., 2004, 357: 1355-1359.
    [166]卢静,含氮、氧及卤素配体的过渡金属配合物的合成、结构及性能[D].长春:吉林大学博士论文,2006。
    [167]于晓洋,经由原位酰化反应的配位聚合物的合成、结构与荧光性能研究[D].长春:吉林大学硕士论文,2007。
    [168]杨庆凤,含羧酸与氮杂环配体的配位聚合物的合成、结构及性能[D].长春:吉林大学博士论文,2009。
    [169]徐如人,庞文琴.无机合成与制备化学[M].高等教育出版社,2001: 128-163.
    [170] SHELDRICK G M. SHELXS 97, Program for Crystal Structure Refinement [M]. University of G?ttingen: G?ttingen, Germany, 1998.
    [171] FORD P C, VOGLER A. Photochemical and Photophysical Properties of Tetranuclear and Hexanuclear Clusters of Metals with d10 and s2 Electronic Configurations [J]. Acc. Chem. Res., 1993, 26: 220-226.
    [172] GRAHAM P M, PIKE R D, SABAT M, et al. Coordination Polymers of Copper(I) Halides [J]. Inorg. Chem., 2000, 39: 5121-5132.
    [173] N?THER C, JEΒI. Synthesis, Crystal Structure and Thermal Reactivity of New Copper(I) Halide Pyrimidine-Containing Coordination Polymers [J]. Eur. J. Inorg. Chem., 2004: 2868-2876.
    [174] LU J. Y. (C5H7N2O)Cu3Br4: template synthesis of a two-dimensional copper(I) bromide lattice [J]. Coord. Chem. Rev., 2003, 246: 327-347.
    [175]陈小明,蔡继文编著.单晶结构分析[M].科学出版社,2003, P100.
    [176] SPEK A L. PLATON, Molecular Geometry Program [M]. University of Utrecht:The Netherlands, 1999.
    [177] SUBRAMANIAN L, HOFFMANN R. Bonding in Halocuprates [J]. Inorg. Chem., 1992 , 31: 1021-1029.
    [178] CARIATI E, ROBERTO D, UGO R, et al. X-ray Structures and Emissive and Second-Order Nonlinear Optical Properties of Two Inorganic-Organic Polymeric Adducts of CuI with 4-Acetylpyridine. The Role of Both“Intrastrand”Charge Transfers and Structural Motifs on the Nonlinear Optical Response of Cu(I) Polymeric Adducts with Pseudoaromaticη1-Nitrogen Donor Ligands [J]. Chem. Mater., 2002, 14: 5116-5123.
    [179] VEGA A, SAILLARD J Y. Bonding in Tetrahedral Cu4(μ3-X)4L4 Copper(I) Clusters: A DFT Investigation [J]. Inorg. Chem., 2004, 43: 4012-4018.
    [180] ANGELOV B, ANGELOVA A, LESIEUR S, et al. Detailed Structure of Diamond-Type Lipid Cubic Nanoparticles [J]. J. Am. Chem. Soc., 2006, 128: 5813-5817.
    [181] BAUER M R, TOLLE J, BUNGAY C, et al. Tunable band structure in diamond–cubic tin–germanium alloys grown on silicon substrates [J]. Solid State Commun., 2007, 127: 355-359.
    [182] PR?SANG C, HOFMANN M, GEISELER G, et al. Topomerization of a Distorted Diamond-Shaped Tetraborane(4) and Its Hydroboration to a closo- Pentaborane(7) with a nido Structure [J]. Angew. Chem. Int. Ed., 2003, 42: 1049-1052.
    [183] SUN J, WENG L, ZHOU Y, et al., QMOF-1 and QMOF-2: Three-Dimensional Metal-Organic Open Frameworks with a Quartzlike Topology [J]. Angew. Chem., Int. Ed., 2002, 41: 4471-4473.
    [184] HOSKINS B F, ROBSON R, SCARLETT N V Y. Six Interpenetrating Quartz-Like Nets in the Structure of ZnAu2(CN)4 [J]. Angew. Chem., Int. Ed., 1995, 34: 1203-1204.
    [185] LU J Y, SCHAUSS V. Crystal engineering of a three-dimensional coordination polymer based on both covalent and O–H···O hydrogen bonding interactions of bifunctional ligands [J]. CrystEngComm. 2001, 3: 111-113.
    [186] ADAM D, HERRSCHAFT B, HARTL H. [J]. Z. Naturforsch., B 1991, 46: 738.
    [187] ZHANG Y, HOLM R H. Structural Conversions of Molybdenum-Iron-Sulfur Edge-Bridged Double Cubanes and PN-Type Clusters Topologically Related tothe Nitrogenase P-Cluster [J]. Inorg. Chem., 2004, 43: 674-682.
    [188] PESAVENTO R P, BERLINGUETTE C P, HOLM R H. Stabilization of Reduced Molybdenum-Iron-Sulfur Single- and Double-Cubane Clusters by Cyanide Ligation [J]. Inorg. Chem., 2007, 46: 510-516.
    [189] BLATOV V A, CARLUCCI L, CIANI G, et al. Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database [J]. CrystEngComm. 2004, 6: 378-395.
    [190] BABURIN I A, BLATOV V A, CARLUCCI L, et al. Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs [J]. CrystEngComm. 2008, 10: 1822-1838.
    [191] O'KEEFFE M, PESKOV M A, RAMSDEN S J, et al. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets [J]. Acc. Chem. Res., 2008, 41: 1782-1789.
    [192] More information can be found at http://rcsr.anu.edu.au/.
    [193] BROWN I D, in: M. O’Keefe, A. Navrotsky, (Eds.), Structure and Bonding in Crystals, 1981, vol. 2, p. 1 (Academic Press, New York).
    [194] CIURTIN D M, SMITH M D, Zur LOYE H C. Cu(2-methylpyrazine-5-carboxylate)2 hydrate: a metal-containing-ligand for the construction of organic–inorganic framework materials. Four new one-, two- and three-dimensional mixed-valent CuI–CuII coordination polymers [J]. Inorg. Chim. Acta., 2001, 324: 46-56.
    [195] AROM G, RIBAS J, GAMEZ P, et al. Aggregation of [Cu4II] Building Blocks into [Cu8II] Clusters or a [Cu4II] Chain through Subtle Chemical Control [J]. Chem. Eur. J. 2004, 10: 6476-6488.
    [196] ARONICA C, PILET G, CHASTANET G, et al. A Nonanuclear Dysprosium(III)–Copper(II) Complex Exhibiting Single-Molecule Magnet Behavior with Very Slow Zero-Field Relaxation [J]. Angew. Chem., Int. Ed., 2006, 45: 4659-4662.
    [197] CINGOLANI A, GALLI S, MASCIOCCHI N, et al. A. Sironi, Sorption-Desorption Behavior of Bispyrazolato-Copper(II) 1D Coordination Polymers [J]. J. Am. Chem. Soc., 2005, 127: 6144-6145.
    [198] CARIATI E, UGO R, CARIATI F, et al. A. Sironi, J-Aggregates Granting Giant Second-Order NLO Responses in Self-Assembled Hybrid Inorganic-Organic Materials [J]. Adv. Mater., 2001, 13: 1665-1668.
    [199] CHENG J W, ZHENG S T, YANG G Y, et al. Incorporating Distinct Metal Clusters To Construct Diversity of 3D Pillared-Layer Lanthanide-Transition- Metal Frameworks [J]. Inorg. Chem., 2008, 47: 4930-4935.
    [200] HARTL H, MAHDJOUR-HASSAN-ABADI F. Z. Naturforsch, Teil B 1984, 39: 149.
    [201] FRYDRYCH R, MUSCHTER T, BRDGAM I, et al. Z. Naturforsch. Teil B 1990, 45: 679.
    [202] HARTL H, MAHDJOUR-HASSAN-ABADI F. [(C6H5)4P] 1[Cu3I4] - The First Compound with a Helical Chain of Face-Sharing Tetrahedra as a Structural Element [J]. Angew. Chem., Int. Ed. Engl., 1994, 33: 1841-1842.
    [203] LI H H, CHEN Z R, LI J Q, et al. Synthesis, structure and optical limiting effect of a novel inorganic–organic hybrid polymer containing mixed chains of copper(I)/iodine [J]. J. Solid. State. Chem., 2006, 179: 1415-1420.
    [204] RICE S A, BERGREN M S, BELCH A C, et al. A theoretical analysis of the hydroxyl stretching spectra of ice Ih, liquid water, and amorphous solid water [J]. J. Phys. Chem., 1983, 87: 4295-4308.
    [205] THORN A, WILLETT R D, TWAMLEY B. Retro-Crystal Engineering Analysis of Two N-Methylethylenediammonium Cadmium Halide Salts Obtained by Dimensional Reduction and Recombination of the Hexagonal CdX2 Lattice [J]. Cryst. Growth Des., 2005, 5: 673-679.
    [206] BILLING D G, LEMMERER A. catena-Poly[bis(tert-butylammonium) [plumbate(II)-tri- -iodo] iodide dihydrate [J]. Acta Crystallogra, Sect., 2006, C62, m264-266.
    [207] KOKOZAY V N, SIENKIEWICZ A V. Direct synthesis and crystal structure of lead(II) compounds containing N,N,N′,N′-tetramethylethylenediamine and its cyclization derivative [J]. Polyhedron, 1995, 14: 1547-1551.
    [208] HUANG C C, LI H. H, CHEN Z R, et al. Synthesis and Crystal Structure of a Novel One-dimensional Coordination Polymer [(C14H18N2)(Pb2I6)]n [J]. Chin. J. Struct. Chem., 2004, 23, 1013-1016.
    [209] MIYAMAE H, NISHIKAWA H, HAGIMOTO K, et al. Crystal Structures ofCompounds Obtained from Lead(II) Iodide-Hexamethylenetetramine System, [C6H13N4]2[Pb3I8(C6H12N4)2] and [C6H13N4][PbI3M3] [J]. Chem. Lett., 1988, 1907-1910.
    [210] JIAN F F, ZHAO P S, WANG Q X, et al. One-dimensional Cd metal string complex: Synthesis, structural and thermal properties of [(HPy)3(Cd3Cl9)]∞[J]. Inorg. Chim. Acta., 2006, 359: 1473-1477.
    [211] MA K R, XU J N, ZHANG P, et al. Crystal structures and properties of two new pseudopolymorphic modifications of the glucocorticoide triamcinolone diacetate [J]. Solid State Sci., 2006, 8: 1373-1379.
    [212] CORRADI A B, FERRARI A M, PELLACANI G C, et al. Organic-inorganic composite materials: structural archetypes of linear polymeric chlorocadmates(II) [J]. Inorg. Chim. Acta, 1998, 272: 252-260.
    [213] HADDAD S, AWWADI F, WILLETT R D. A Planar Bibridged [Cu10Br22]12- Oligomer: Dimensional Reduction and Recombination of the CuBr2 Lattice via the N-H···Br- and the C-Br···Br- Synthons [J]. Cryst. Growth. Des., 2003, 3: 501-505, and references therein.
    [214] THORN A A, WILLETT R D, TWAMLEY B. Novel Series of Ribbon Structures in Dialkylammonium Chlorocadmates Obtained By Dimensional Reduction of the Hexagonal CdCl2 Lattice [J]. Cryst. Growth. Des., 2006, 6: 1134-1142.
    [215] SVENSSON P H, KLOO L. Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide-Iodine Systems [J]. Chem. Rev., 2003, 103: 1649-1684.
    [216] HU C H, ENGLERT U. Polymeric versus monomeric and tetrahedral versus octahedral coordination in zinc(II) pyridine complexes [J]. CrystEngComm. 2001, 3: 91-95.
    [217] HU C H, LI Q, ENGLERT U. Structural trends in one and two dimensional coordination polymers of cadmium(II) with halide bridges and pyridine-type ligands [J]. CrystEngComm. 2003, 5: 519-529.
    [218] BIE H Y, LU J, YU J H, et al. Syntheses of fluorescent thiocyanate supramolecular compounds with unusual two-dimensional structures [J]. J. Solid State Chem., 2005, 178: 1445-1451.
    [219] RUEFF J M, PILLET S, CLAISER N, et al. Synthesis, Crystal Structure and Magnetic Properties of the Helical-Chain Compounds [M2(O2CC12H8CO2)2(H2O)8] [M = Cobalt(II), Nickel(II)] [J]. Eur. J. Inorg. Chem., 2002: 895-900, and references therein.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700