甲烷/煤尘复合火焰传播特性及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭将在较长的一段时期内是我国能源的重要来源,虽然国家加大了对煤矿井下安全生产的监管力度和技术投入,但煤矿瓦斯、煤尘爆炸事故仍然时有发生,给国家和人民带来了巨大的伤害和损失。而煤矿井下的爆炸事故往往是瓦斯和煤尘共同参与的,对瓦斯和煤尘共同参与的复合体系的火焰传播特性和机理进行研究,可以为煤矿井下爆炸灾害的预防和控制提供理论基础。本文利用燃烧管道对甲烷/空气预混气体和甲烷/煤尘复合火焰进行了实验研究,对甲烷/空气预混火焰的传播特性进行了分析,对甲烷/煤尘复合火焰的传播特性和机理及其影响因素进行了深入的研究。
     利用高速纹影仪等技术对闭口管道内甲烷/空气预混气体火焰的传播过程进行了研究,对火焰的传播过程和特征进行了分析。当甲烷含量接近当量值时,预混气体火焰传播中会发生火焰阵面由向未燃区弯曲到向已燃区弯曲的转折过程,逐渐由层流燃烧向湍流燃烧转变并形成Tulip火焰这种特殊的火焰结构。Tulip火焰结构形成于火焰传播速度迅速降低的区间里,且只有当减速阶段的最大加速度绝对值大于某一特定值时(本实验条件下约为156.8m/s~2),Tulip火焰结构才能够形成。Tulip火焰结构是预混火焰由层流燃烧向湍流燃烧转变的一个中间过程。
     研究了燃料组分构成λ(λ=复合体系中甲烷的理论耗氧气量/复合体系中煤尘的理论耗氧气量)、煤尘粒径和煤尘种类对复合火焰传播特性的影响,得到了不同实验条件下的火焰形态、火焰温度和火焰传播速度等表征火焰传播特性的参数,分析了燃料组分构成λ、煤尘粒径和煤尘种类变化时复合火焰传播特性的变化规律。
     在实验研究的基础上,分析了甲烷/煤尘复合体系燃烧反应特性,提出了甲烷/煤尘复合火焰结构。对燃料组分构成、煤尘粒径和煤尘种类对复合体系燃烧反应特性和火焰结构的影响进行了深入的研究,揭示了复合体系燃烧反应特性和火焰结构的影响因素及其影响规律。
     甲烷/煤尘复合火焰的传播机理可以描述为:预热区(Z_0)受到火焰前沿的热对流和热辐射而升温;气相火焰区(Z_1)主要为甲烷气体的燃烧,它的燃烧放热一部分传递给未燃区,同时使得煤尘粒子的温度升高;多相燃烧反应区(Z_2)主要为煤尘粒子燃烧构成,在这个区域中,煤尘粒子迅速的热解,挥发分迅速燃烧,形成的焦炭也逐步的开始燃烧;在上一燃烧过程中形成的焦炭在火焰区Z_3中持续的燃烧直至燃烧完毕。
     复合火焰中甲烷的燃烧决定了温度的上升时刻,而煤尘的燃烧决定了复合火焰温度的最大值。对于甲烷/煤尘复合火焰,和单一的甲烷火焰或者煤尘火焰相比,由于甲烷的参与,使得复合火焰比单一的煤尘火焰具有更高的传播速度;由于煤尘的参与,使得复合火焰比单一的甲烷火焰持续更长的时间,燃烧火焰在更大的区域中存在。
The energy supplied by coal will always be an important part of the energy sources in our country in a long term. Although the administration and techniques in the coal mines were enhanced, the methane and coal dust explosion accidents happens frequently in the coal mine. These explosion accidents always carry great damages and losses to the coal miners and our country. Many facts indicate that coal mine explosions were almost induced by the hybrid system of methane and coal dust. However, few investigations focus on the hybrid system of methane and coal dust. The studies on the propagation characteristics and mechanism of methane/coal dust mixture will form the theoretical bases to prevent and control the methane and coal dust explosions in the coal mines. In this study, flame propagating through methane/coal dust hybrid was observed experimentally. The coal dusts were dispersed by premixed methane/air mixture in a vertical rectangle chamber and ignited by an electric spark. High-speed video camera was used to record the images of the propagating flame, photodiode was used to study the emitting light characteristics of the flame, micro-thermocouples and ion current probes were used to measure the flame temperature profile and the reaction behavior of the combustion zone respectively. Combustion behaviors and flame structure of methane/coal dust hybrid propagating flame were analyzed in detail.
     First, the propagation characteristics of the premixed methane/air flames propagating through a closed tube are explored. The techniques of high-speed Schlieren photography etc are used to study the propagating flames of the premixed gases with different methane concentration in the closed tube. Based on experimental results, Combustion behaviors and characteristics of the premixed gases are analyzed. The results show that, the transformation process of the flame front bend to unburned zone turning into bend to burned will happen during the premixed flame propagation while the equivalence ratio volume approaches to 1, thus the typical tulip flame structure form during the transformation. The premixed flame show typical laminar combustion and the transformation process of the flame front will not happen while the equivalence ratio volume deviates from 1 to a certain extent. The results show also that, the tulip flame structure is a middle stage during the transformation from laminar combustion to turbulent combustion of the premixed flame. The tulip flame structure forms during the period with velocity decrease greatly and it forms only while the acceleration absolute value of the velocity decrease period is larger than a certain quantity (about 156.8m/s~2 in this experimental condition).
     The effects of the fuel ingredient constitutionλ(λ=the theoretical oxygen consumed by the methane in the mixture/the theoretical oxygen comsumed by the coal dust in the mixture), the diameter distribution of coal dust and coal category on the propagation characteristics of the mixture flame are explored. The parameters of the flame shape, flame temperature and velocity in different experimental conditions are got. Based on the experimental results, the conversion rules between the fuel ingredient constitutionλ, the diameter distribution of coal dust and coal category and the flame propagation characteristics are analyzed in detail.
     Based on the expmerimantal results, the combustion reaction characteristics of the methane/coal dust mixture are anylized and the flame structures of the methane/coal dust mixture flames are concluded. The effects of the fuel ingredient constitution X, the diameter distribution of coal dust and coal category on the combustion reaction characteristics and the flame structure are explored, and the conversion rules between the fuel ingredient constitution X, the diameter distribution of coal dust, coal category and the combustion reaction characteristics, the flame structure are analyzed in detail.
     The propagation processes of the methane/coal dust mixture flame could be described by: the temperature of the preheated zone (Z_0) increases according to the thermal convection and radiation from the combustion front; The gaseous combustion zone (Z_1) consists of methane combustion mainly, and the heat produced by Z_1 not only increases the temperature of the preheated zone but also increases that of the coal dusts; Multiple combustion zone (Z_2) consists of heterogeneous coal dust combustion mainly, in which the coal dusts pyrolyze and the volatile matters combust quickly; The coal chars formed in the last combustion process keep combusting till the carbon is exhausted in the combustion zone Z_3.
     The onset time of the methane/coal dust mixture flame temperature is affected by the methane comsbustion and the maximum volume of that is affected by the coal dust combustion. Comparing with the single methane combustion or single coal dust combustion, the methane participation make the mixture flame propagate with a higer velocity and the coal dust participation make the mixture flame combust in a longer time and a larger zone.
引文
[1] 岑可法,姚强,驼仲泱,李绚天.高等燃烧学.杭州:浙江大学出版社,2000
    [2] http://www.chinacoal-safety.gov.cn/anquanfenxi/node_4181 .htm
    [3] http://www.sdpc.gov.cn/zj gx/t20060209_59151 .htm
    [4] http://politics.people.com.cn/GB/1027/5466185.html
    [5] 王克全.煤尘与矿井特大爆炸伤亡事故的关系.工业安全与防尘,1998,(1):25—29
    [6] 张道民.粉尘的爆炸性危害.矿山环保,2002,(6):40-41
    [7] 煤炭工业部安全司编.中国煤矿伤亡事故统计分析资料汇编:1949-1995.北京:煤炭工业出版社,1998
    [8] Yikang Pu. Fundamental characteristics of laminar and turbulent flames in cornstarch Dust-air mixtures. A Dissertation Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Department of Mechanical Engineering McGill University Montreal, Quebec Canada January, 1988, 20-22
    [9] Barr Pamela K. Acceleration of a Flame-Vortex Interactions. Combustion and Flame,1990,82:115~125
    [10] Lebecki K. Gasdynamic phenomena occurring in coal dust explosions. Przegl Gorn, 1980, 36(4):203
    [11] Pickles J H. A model for coal dust duct explosions. Comb &Flame,1982,44:153~168
    [12] Chi D N, Perlee H I. Numerical simulation of flame-induced aerodynamics in a coal-mine passageway semi-empirical model. Bumines RI-8016,1975
    [13] D. Dunn-Rankin, M. A. McCann. Overpressures from nondetonating, baffle-accelerated turbulent flames in tubes. Combustion Institute, 2000(10):504~514
    [14] Moen I O, donato M. Flame Acceleration due to Turbulence Produced by Obstacles. Combustion and Flame, 1980,39:21-32
    [15] Babkin V S, et al. Propagation of Premixed Gaseous Explosion Flame in Porous Median. Combustion and Flame, 1998,87:182-190
    [16] 林柏泉,周世宁.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响.中国矿业大学学报,1999,28(2):104-107
    [17] 陆守香,范宝春.激波与沉积可燃粉尘相互作用的实验研究.实验力学,1997,12(1):18-22
    [18] 范宝春,姜孝海,李鸿志.激波与可燃粉尘相互作用的实验和理论研究.实验力学, 2002,17(1):77-81
    [19] Lu S X, Guo Z R, et al. Experimental and theoretical analysis of acceleration of a gas flame propagating over a dust deposit. Twenty-Ninth Proceedings of the Combustion Institute, 2002, 2839-2846
    [20] 费国云.煤矿瓦斯煤尘爆炸原因和防治对策.矿业安全与环保,2002,29(6):4-6
    [21] 梅岩.无电触发式爆炸抑制装置.煤矿安全技术,1999,27(10):52
    [22] K. Lebecki, J. Sliz, K. Cybulski, Z. Dyduch. Efficiency of triggered barriers in dust explosion suppression in galleries. Loss Prevention in the process Industries 2001(14):489~494
    [23] Nagy J, et al. Explosion Development in a Spherical Vessels, U.S., Bureau of Mines, Ri. 7279,1969
    [24] Gieras M, Klemens R, Rarata G, Wolanski P. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm~3 at normal and elevated temperature. Journal of Loss Prevention in the Process Industries, 2006, 19 (2-3): 263-270
    [25] Cashdollar K L. Coal dust explosibility. Journal of Loss Prevention in the Process Industry, 1996, 9 (1): 65-76
    [26] Cashdollar K L. Overview of dust explosibility characteristics. Journal of Loss Prevention in the Process Industry, 2000, 13 (3): 183-199
    [27] 何朝远.瓦斯煤尘共存条件下爆炸危险性的研究.煤矿安全,1996,(12):5-7
    [28] Torrent J G, et al. Flammability and Explosion Propagation of Methane-Coal Dust Hybrid Mixtures. Proceedings of International Conference of Safety in Mines Research Institute: 23:1989, (9). 11-15 :wangtington.DC 823-830
    [29] 费国云.独头巷道中瓦斯爆炸引爆沉积煤尘的试验.煤炭工程师,1997(4):16-19
    [30] Amyotte P R, Mintz K J, Pegg M J, et al. Laboratory investigation of the dust explosibility characteristics of three Nova Scotia coals. Journal of Loss Prevention in the Process Industries, 1991, 4(2), 102-109
    [31] Amyotte P R, Mintz K J, Pegg M J, et al. The ignitability of coal dust-air and methane-coal dust-air mixtures. Fuel, 1993, 72(5): 671-659
    [32] 赫茨贝格 M,凯什多勒 K L.粉尘爆炸知识介绍.防爆电机,1994,2:33-40
    [33] D.J. Bayless, A. R. Schroeder, et al. The effects of natural gas co-firing on the ignition delay of pulverized coal and coke particles. Combustion Science and Technology, 1994, (98): 185-198
    [34] Collins P. K, et al. Flammability characteristics of treated coals [J]. Energy Resources and Technology, 1992, (114):65 - 69
    [35] 王陈.甲烷对煤尘爆炸特性影响的研究.工业粉尘防爆与治理—全国工业粉尘防爆与治理学术讨论会论文集,中国科学技术出版社.1990,449-457
    [36] 罗宏昌.粉尘爆炸及“杂混合物”对其特性的影响.交通部上海船舶运输科学研究所学报,2000,23(1):21-26
    [37] 王克全.煤尘与矿井特大爆炸伤亡事故的关系.工业安全与防尘,1998,(1):25-29
    [38] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation. Journal of Loss Prevention in the Process Industries, 2006, 19 (2-3): 280-287
    [39] Patel S N D H, Ibrahim S S, Yehia M A. Flamelet surface density modeling of turbulent deflagrating flames in vented explosions. Journal of Loss Prevention in the Process Industries, 2003, 16 (6): 451-455
    [40] Dahoe A E, Goey L P H de. On the determination of the laminar burning velocity from closed vessel gas explosions. Journal of Loss Prevention in the Process Industries, 2003, 16 (6): 457-478
    [41] Cashdollar K L, Zlochower I A, Green G M, et al. Flammability of methane, propane, and hydrogen gases. Journal of Loss Prevention in the Process Industries, 2000, 13 (3-5): 327-340
    [42] Dobashi R. Experimental study on gas explosion behavior in enclosure. Journal of Loss Prevention in the Process Industries, 1997, 10 (2): 83-89
    [43] Ciccarelli G., Boccio J L, Ginsberg T. The influence of initial temperature on flame acceleration and deflagration to detonation transition. Twenty-Sixth Symposium (International) on Combustion, 1996, 2973-2979
    [44] Bradley D, Cresswell T M, Puttock J S. Flame acceleration due to flame-induced instabilities in large-scale explosions. Combustion and Flame, 2001, 124(4): 551-559
    [45] Masri A R, Ibrahim S S, Nehzat N, Green A R. Experimental study of premixed flame propagation over various solid obstructions. Experimental Thermal and Fluid Science, 2000, 21(1-3): 109-116
    [46] 何学秋,杨艺.障碍物对瓦斯爆炸火焰结构机火焰传播影响的研究.煤炭学报,2004,27(2):36-40
    [47] 徐景德,周心权,吴兵.矿井瓦斯爆炸传播的尺寸效应研究.中国安全科学学报,2001,11(6):36-40
    [48] Going J E, Chatrathi K, Cashdollar K L. Flammability limit measurements for dusts in 20-L and l-m~3 vessels. Journal of Loss Prevention in the Process Industries, 2000, 13 (3-5): 209-219
    [49] Reddy P D, Amyotte P R, Pegg M J. Effect of inerts on layer ignition temperatures of coal dust. Combustion and Flame, 1998, 114(1-2): 41-53
    [50] Dastidar A G, Amyotte P R, Pegg M J. Factors influencing the suppression of coal dust explosions. Fuel, 1997,76(7):663-670
    [51] Chawla N, Amyotte P R, Pegg M J. A comparison of experimental methods to determine the minimum explosible concentration of dusts. Fuel, 1996,75(6):654-658
    [52] Lunn G A, Holbrow P, Andrews S, et al. Dust explosions in totally enclosed interconnected vessel systems. Journal of Loss Prevention in the Process Industries, 1996, 9 (1): 45-58
    [53] Fan X, Xu T R. On the prevention of dust explosions. Proceeding of third International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions, 2000, 74-79
    [54] Chuyanov V, Topilski L. Prevention of hydrogen and dust explosion in ITER.Fusion Engineering and Design, 2006, 81(8-14): 1313-1319
    [1] Ballantyne A, Moss J B. Fine wire thermocouple measurements of fluctuating temperature. Combustion Science and Flame, Technology, 1977, 17:63-72
    [2] Sun J H, Dobashi R, Hirano T. Temperature profile across the combustion zone propagating through an iron particle cloud. Journal of Loss Prevention in the Process Industries, 2001, 14 (6): 463-467
    [3] Ju W J, Dobashi R,Hirano T. Reaction zone structure and propagation mechanisms of flames in stearic acid particle clouds. Journal of Loss Prevention in the Process Industries, 1998, 11(6):423-430
    [4] 吴颖川,计算光学流动显示技术理论及应用研究,南京理工大学博士学位论文,2003
    [5] Ellis C de C O. Flame movement in gaseous explosive mixtures [J]. J. Fuel Sci. 1928, 7,502-508
    [6] Salamandra G D, Bazhenova T V, Naboko I M. Formation of detonation wave during combustion of gas in combustion tube[A], Seventh Symposium (International) on combustion[C], Butterworths, London, 1959. 851-855
    [7] Dunn-Rankin D, Barr P K, Sawyer R F. Numerical and experimental study of "tulip" flame formation in a closed vessel [A], Twenty-First Symposium (International) on Combustion[C], The Combustion Institute, Pittsburgh, 1986. 1291-1301
    [8] Matalon M, Metzener P. The propagation ofpremixed flames in closed tubes [J]. J. Fluid Mech. 1997, 336,331-350
    [9] Zhou B, Sobiesiak A and Quan P. Flame behavior and flame-induced flow in a closed rectangular duct with a 90° bend [J]. International Journal of Thermal Sciences, 2006, 45 (5): 457-474
    [10] Clanet C, Geoffrey S. On the "tulip flame" phenomenon [J]. Combust. Flame, 1996, 105,225-238
    [11] Kagan L, Sivashinsky G. The transition from deflagration to detonation in thin channels [J]. Combustion and Flame, 2003, 134,389-397
    [1] Nagy J, et al. Explosion Development in a Spherical Vessels,U.S., Bureau of Mines, Ri. 7279, 1969
    [2] Hartman I, et al. Recent Studies on the Explosibility of Constarch, Bureau of Mines, Ri.4725,1951
    [3] Cashdollar K L. Coal dust explosibility. Journal of Loss Prevention in the Process Industry, 1996, 9 (1): 65-76
    [4] Cashdollar K L. Overview of dust explosibility characteristics. Journal of Loss Prevention in the Process Industry, 2000, 13 (3): 183-199
    [5] Torrent J G, et al. Flammability and Explosion Propagation of Methane-Coal Dust Hybrid Mixtures. Proceedings of International Conference of Safety in Mines Research Institute: 23:1989, (9). 11-15 :wangtington.DC 823-830
    [6] D. Dunn-Rankin, M. A. McCann. Overpressures from nondetonating baffle-accelerated turbulent flames in tubes. Combustion Institute, 2000(10) :504~514
    [7] Gieras M, Klemens R, Rarata G, Wolanski P. Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm~3 at normal and elevated temperature. Journal of Loss Prevention in the Process Industries, 2006, 19 (2-3): 263-270
    [8] Collins P. K, et al. Flammability characteristics of treated coals [J]. Energy Resources and Technology, 1992, (114):65 - 69
    [9] Cashdollar K L, Zlochower I A, Green G M, et al. Flammability of methane, propane, and hydrogen gases. Journal of Loss Prevention in the Process Industries, 2000, 13 (3-5): 327-340
    [10] 何学秋,杨艺.障碍物对瓦斯爆炸火焰结构机火焰传播影响的研究.煤炭学报,2004,27(2):36-40
    [11] Reddy P D, Amyotte P R, Pegg M J. Effect of inerts on layer ignition temperatures of coal dust. Combustion and Flame, 1998, 114(1-2): 41-53
    [12] Essenhigh R H. Combustion and flame propagation in coal systems: a review. Sixteenth Symposium (International) on Combustion, The Combustion Institute, 353-374
    [13] 刘义.甲烷、煤尘火焰结构及传播特性的研究.中国科学技术大学博士学位论文,2006
    [14] 于娟,章明川,范卫东,等.不同升温方式下活化能分布热解模型的适用性.上海交通大学学报,2003,37(7):1027-1030
    [15] 岑可法,姚强,驼仲泱,李绚天.高等燃烧学.杭州:浙江大学出版社,2000.
    [16] 李爱民,池涌,严建华,等.大颗粒炭在流化床中燃烧的热应力破碎理论.煤炭学报,1998,23(2):208-211
    [17] 李文蛟,姚强,曹欣玉,等.煤粉气流着火特性与粒径之间的关系研究.锅炉技术,1998(12) 7-12
    [18] 陈占军,金晶,钟海卿,等.超细化煤粉气流着火特性的试验研究.热力发电,2004 (04):45-48
    [19] EDWARD L. DREIZIN and VERN K. HOFFMANN. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity. COMBUSTION AND FLAME, 1999,118:262-280
    [20] SUN J H, DOBASHI R, & HIRANO T. Concentration profile of particles across a flame propagating through an iron particle cloud. Combustion and Flame, 2003, 134(4), 381-387.
    [21] SUN J H, DOBASHI R, & HIRANO T. Temperature profile across the combustion zone propagating through an iron particle cloud. Journal of Loss Prevention in the Process Industries, 2001, 14 (6): 463-467
    [1] Chen J L, Dobashi R, Hirano T. Mechanisms of flame propagation through combustible particle clouds. Journal of Loss Prevention in the Process Industries, 1996, 9 (3): 225-229
    [2] Han O S, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles behavior. Journal of Loss Prevention in the Process Industries, 2001, 14 (6): 153-160
    [3] Han O S,Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T. Behavior of flames propagating through lycopodium dust clouds in a vertical duct. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 449-457
    [4] Ju W J, Dobashi R, Hirano T. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds. Journal of Loss Prevention in the Process Industries, 1998, 11(6): 423-430
    [5] Ju W J, Dobasbi R, Hirano T. Dependence of flammability limits of a combustible particle cloud on particle diameter distribution. Journal of Loss Prevention in the Process Industries, 1998, 11(3): 177-185
    [6] Dobashi R. Senda K. Detailed analysis of flame propagation during dust explosions by UV band observations. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 149-153
    [7] Proust C, Veyssiere B. Fundamental properties of flames propagating in starch dust-air mixtures. Combustion Science and Technology, 1998, 62 (4-6): 149-172
    [8] Sun J H, Dobashi R, Hirano T. Structure of flames propagating through metal particle clouds and behavior of particles, Twenty-seventh Symposium(International) on Combustion, The Combustion Institute,2405-2411
    [9] Sun J H, Dobashi R, Hirano T. Combustion behavior of iron particles suspended in air. Combustion Science and Technology, 2000, 150, 99-114
    [10] [10] Sun J H,Dobashi R,Hirano T.Concentration profile of particles across a flame propagating through an iron particle cloud .Combustion and Flame, 2003, 134(4):381-387
    [11] Sun J H, Dobashi R, Hirano T. Temperature profile across the combustion zone propagating through an iron particle cloud. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 463-467
    [12] Sun J H, Dobashi R, Hirano T Velocity and number density profiles of particles across upward and downward flame propagating through iron particle clouds Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 135-141
    [13] Eckhoff R K. Current status and expected future trends in dust explosion research. Journal of Loss Prevention in the Process Industries, 2005, 18(4-6):225-237
    [14] Proust C. A few fundamental aspects about ignition and flame propagation in dust clouds. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 135-141
    [1] 傅维标,张永廉,王清安.燃烧学.北京:高等教育出版社,1989
    [2] PetersN, Kee R J. The computation of streched laminar methane/air diffusion flames using a reduced four2step mechanism[J]. Combust Flame, 1987, 68:17-29.
    [3] 李宇红,祁海鹰,张宏武.甲烷预混燃烧火焰的详细数值模拟.工程热物理学报,2002,23(1):119-123.
    [4] TOBIAS PLESSING, PETER TERHOEVEN, and NORBERT PETERS. An Experimental and Numerical Study of a Laminar Triple Flame. Combsution and Flame, 115:335-353 (1998).
    [5] 肖保国,钱炜祺,杨顺华,乐嘉陵.甲烷点火燃烧的简化化学反应动力学模型.推进技术,2006,27(2):101-105.
    [6] 董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002,8 (1):44-48.
    [7] Miller J A, Bowman C T. Mechanism and Modeling of Nirrogen Chemistry in Combsution, Prog Energy Combustion Sci, 1989(15):287-338.
    [8] PETER GLARBORG, MARIA U. ALZUETA and KIM DAM-JOHANSEN. Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor. COMBUSTION AND FLAME 115:1-27 (1998).
    [9] 岑可法,姚强,驼仲泱,李绚天.高等燃烧学.杭州:浙江大学出版社,2000.
    [10] Eckhoff R K. Current status and expected future trends in dust explosion research. Journal of Loss Prevention in the Process Industries, 2005, 18(4-6):225-237
    [11] Proust C. A few fundamental aspects about ignition and flame propagation in dust clouds. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 135-141
    [12] Essenhigh R H. Combustion and flame propagation in coal systems: a review. Sixteenth Symposium (International) on Combustion, The Combustion Institute, 353-374
    [13] 刘义.甲烷、煤尘火焰结构及传播特性的研究.中国科学技术大学博士学位论文,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700