基于PDMA的星状和嵌段聚合物的合成、表征及溶液行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究基于PDMA的星状和嵌段聚合物的合成,表征及溶液行为。实验中使用的单体包括甲基丙烯酸-2-(N, N-二甲氨基)乙酯(DMAEMA或DMA)、甲基丙烯酸叔丁酯(tert-BMA或tBMA)、以及甲基丙烯酸-(2, 2, 3, 3, 4, 4, 5, 5-八氟)戊酯(2, 2, 3, 3, 4, 4, 5, 5-octafluoropentyl methacrylate, OFMA)。
     第一部分聚阳离子与聚阴离子通过超分子作用构建微凝胶
     通过原子转移自由基聚合方法(ATRP)制备星状聚合物β-CD-g-PDMA;通过氧阴离子聚合方法制备嵌段聚阴离子PMAA30-b-PEG-b-PMAA30。1H NMR,GPC,FT-IR和TGA的结果证实了聚合物的组成及化学结构。通过TEM及DLS方法研究聚阴、阳离子电解质在水溶液中的自组装行为及pH响应性。由上述带有相反电荷的聚电解质在PBS缓冲溶液中混合后可形成微凝胶。SEM,TEM,DLS和流变仪测试结果证实了微凝胶的成功制备。结果表明,微凝胶的形态和大小依赖于聚电解质的结构、浓度以及聚阳离子和聚阴离子电解质的比例。
     第二部分含氟两性电解质聚合物的制备及溶液行为研究
     通过氧阴离子聚合的方法,制备了含氟嵌段聚合物BzO-PDMA30-b-PtBMA10-b-POFPMA6,将其水解,则得到了含氟两性电解质聚合物BzO-PDMA30-b-PtBMA10-b-POFPMA6。1H NMR、19F NMR和GPC的结果证实了这两种聚合物的组成及化学结构。通过一系列方法研究含氟嵌段共聚物的水溶液行为。表面张力测试结果表明水解后的含氟嵌段聚合物具有相对较高的表面活性。此外DLS和TEM测试结果证明这两种含氟嵌段聚合物都具有很好的pH响应性。
This paper is focused on the synthesis and characterization of star and block copolymers based on poly[2-(N, N-dimethylamino)ethyl methacrylate] (PDMAEMA or PDMA in short) and their solution behaviors. The monomers used in this work include DMA, tert-butyl methacrylate (tert-BMA or tBMA) and 2, 2, 3, 3, 4, 4, 5, 5-octafluoropentyl methacrylate (OFPMA).
     (1) Fabrication of Microgels via Supramolecular Assembly of Polycation and Polyanion
     Star polymersβ-CD-g-PDMA was prepared by atom transfer radical polymerization (ATRP), while PMAA30-b-PEG-b-PMAA30 was synthesized by oxyanion-initiated polymerization. The composition and chemical structures of star polymer and block copolymer were confirmed by the measurements of 1H NMR spectroscopy, gel permeation chromatography (GPC), fourier transform infrared spectroscopy (FTIR) and thermogravity analysis (TGA). The self-aggregating morphologies of polyanion and polycation in aqueous solution were investigated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). It was found that the polycation and polyanion in phosphate buffer solution (PBS) formed microgel immediately as soon as they were mixed. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and rheological test confirmed the formation of polyion complex microgels. It was found that both the morphologies and particle size resulted from the microgels depended on the variation of concentrations, the structures of polyanion and the ratios of polycation to polyanion.
     (2) Preparation and Solution Behavior of Fluorinated Amphiphilic Polyelectrolyte
     Well-defined polyampholyte BzO-PDMA30-b-PMAA10-b-POFPMA6 was prepared successfully by the hydrolysis of fluorinated amphiphilic triblock copolymer BzO-PDMA30-b-PtBMA10-b-POFPMA6, which was synthesized by oxyanion-initiated polymerization. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy and gel permeation chromatography (GPC) techniques. The solution behaviors of these fluorinated copolymers were investigated by the measurements of surface tension, dynamic light scattering (DLS), Zeta-potential (ξ-potential) and transmission electron microscopy (TEM). The results indicate that the BzO-PDMA30-b-PMAA10-b-POFPMA6 possess relatively high surface activity than BzO-PDMA30-b-PtBMA10-b-POFPMA6. Moreover, the DLS andξ-potential measurements showed that these two kinds of fluorinated triblock copolymers possess distinct pH-responsive properties.
引文
1. Hoffman A S.. Hydrogels for Biomedical Applications. Adv. Drug Deliver. Rev., 2002, 54, 3-12.
    2. Kissel T.; Li Y X.; Unger F.. ABA-triblock Copolymers from Biodegradable Polyester A-blocks and Hydrophilic Poly(ethylene oxide) B-blocks as a Candidate for In Situ Forming Hydrogel Delivery Systems for Proteins. Adv. Drug Deliver. Rev., 2002, 54, 99-134.
    3. Lee K Y.; Mooney D J.. Hydrogels for Tissue Engineering. Chem. Rev., 2001, 101, 1869-1879.
    4. Freemont T J.; Saunders B R.. pH-Responsive Microgel Dispersions for Repairing Damaged Load-bearing Soft Tissue. Soft Matter, 2008, 4, 919-924.
    5. Nayak S.; Lyon L A.. Soft Nanotechnology with Soft Nanoparticles. Angew. Chem., Int. Ed., 2005, 44, 7686-7708.
    6. Nicell J A.; Saadi K W.; Buchanan I D.. Phenol Polymerization and Precipitation by Horseradish Peroxidase Enzyme and an Additive. Bioresource Technol., 1995, 54, 5-16.
    7. Retama J R.; Cabarcos E L.; Mecerreyes D.; López-Ruiz B.. Design of an Amperometric Biosensor using Polypyrrole Microgel Composites Containing Glucose Oxidas E. Biosens. Bioelectron, 2004, 20, 1111-1117.
    8. Bedard M F.; De Geest B G.; Mohwald H.; Sukhorukov G B.; Skirtach A G.. Direction Specific Release from Giant Microgel-templated Polyelectrolyte Microcontainers. Soft Matter, 2009, 5, 3927-3931.
    9. Wong J E.; Richtering W.. Surface Modification of Thermoresponsive Microgels via Layer-by-Layer Assembly of Polyelectrolyte Multilayers. Prog. Colloid Polym. Sci., 2006, 133, 45-51.
    10. Miyauchi M.; Takashima Y.; Yamaguchi H.; Harada A.. Chiral Supramolecular Polymers Formed by Host-Guest Interactions. J. Am. Chem. Soc., 2005, 127, 2984-2989.
    11. Hasegawa Y.; Miyauchi M.; Takashima Y.; Yamaguchi H.; Harada A.. Supramolecular Polymers Formed fromα-Cyclodextrins Dimer Linked by Poly(ethylene glycol) and Guest Dimers. Macromolecules, 2005, 38, 3724-3730.
    12. Liu C.; Hillmyer M A.; Lodge T P.. Multicompartment Micelles from pH-Responsive Miktoarm Star Block Terpolymers. Langmuir, 2009, 25, 13718-13725.
    13. Zhou X D.; Ni P H.; Yu Z Q.; Zhang F J.. Latices of Poly(?uoroalkyl mathacrylate)-b-Poly(butylmethacrylate) Copolymers Prepared via Reversible Addition–Fragmentation Chain Transfer Polymerization. J. Polym. Sci.: Part A: Polym. Chem., 2007, 45, 471-484.
    14. Busch P.; Krishnan S.; Paik M.; Toombes G E S.; Smilgies D-M.; Gruner S M.; Ober C K.. Surface Induced Tilt Propagation in Thin Films of Semifluorinated Liquid Crystalline Side Chain Block Copolymers. Macromolecules, 2007, 40, 81-89.
    15. Unsal H.; Aydogan N.. A New Strategy to Form Multicompartment Micelles: Fluorocarbon-Hydrocarbon Ion-Pair Surfactant. Langmuir, 2009, 25, 7884-7891.
    16. Tan B H.; Tam K C.. Review on the Dynamics and Micro-structure of pH-responsive Nano-colloidal Systems. Adv. Colloid Interface Sci., 2008, 136, 25-44.
    17. Hoare T.; Pelon R.. Electrophoresis of Functionalized Microgels: Morphological Insights. Polymer, 2005, 46, 1139-1150.
    18. Das M.; Zhang H.; Kumacheva E.. Microgels: Old Materials with New Applications. Annu. Rev. Mater. Res., 2006, 36, 117-142.
    19. Hashmi S M.; Dufresne E R.. Mechanical Properties of Individual Microgel Particles through the Deswelling Transition. Soft Matter, 2009, 5, 3682-3688.
    20. Besheer A.; Wood K M.; Peppas N A.; Mader K.. Loading and Mobility of Spin-labeled Insulin in Physiologically Responsive Complexation Hydrogels Intended for Oral Administration. J. Control. Release. 2006, 111, 73-80.
    21. Morishita M.; Goto T.; Nakamura K.; Lowman A M.; Takayama K.; Peppas N A.. Novel Oral Insulin Delivery Systems Based on Complexation Polymer Hydrogels: Single and Multiple Administration Studies in Type 1 and 2 Diabetic Rats. J. Control. Release, 2006, 110, 587-594.
    22. Lyon L A.; Meng Z Y.; Singh N.; Sorrell C D.; John A S.. Thermoresponsive Microgel-based Materials. Chem. Soc. Rev., 2009, 38, 865-874.
    23.邵凤琴,韩庆祥.酶工程在污染治理中的应用.石油化工高等学校学报, 2003, 16, 36-40.
    24. Bysell H.; Hansson P.; Malmsten M.. Transport of Poly-L-lysine into Oppositely ChargedPoly(acrylic acid) Microgels and Its Effect on Gel Deswelling. J. Colloid Interf. Sci., 2008, 323, 60-69.
    25. Bysell H.; Malmsten M.. Visualizing the Interaction between Poly-L-lysine and Poly(acrylic acid) Microgels using Microscopy Techniques: Effect of Electrostatics and Peptide Size. Langmuir, 2006, 22, 5476-5484.
    26. Bysell H.; Malmsten M.. Interactions between Homopolypeptides and Lightly Cross-Linked Microgels. Langmuir, 2009, 25, 522-528.
    27. Tanaka T.; Fillmore D.; Sun S T.; Nishio L.; Swislow G.; Shah A.. Phase Transitions in Ionic Gels. Phys. Rev. Lett., 1980, 45, 1636-1639.
    28. Kudaibergenov S E.; Ciferri A.. Natural and Synthetic Polyampholytes, 2a Functions and Applications. Macromol. Rapid Comm., 2007, 28, 1969-1986.
    29. Wong J E.; Díez-Pascual A M.; Richtering W.. Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Thermoresponsive P(NiPAM-co-MAA) Microgel: Effect of Ionic Strength and Molecular Weight. Macromolecules, 2009, 42, 1229-1238.
    30. Das M.; Mardyani S.; Chan W C W.; Kumacheva E.. Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design. Adv. Mater., 2006, 18, 80-83.
    31. Bradley M.; Rowe J.. Cluster Formation of Janus Polymer Microgels. Soft Matter, 2009, 5, 3114-3119.
    32. Dubin P.; Bock J.; Davies R M.; Schulz D N.; Thies C. Macromolecular Complexes in Chemistry and Biology. Springer-Verlag: Berlin, 1994.
    33. Schanze K S.; Shelton A H.. Functional Polyelectrolytes. Langmuir, 2009, 25, 13698-13702.
    34. Lowe A B.; McCormick C L.. Synthesis and Solution Properties of Zwitterionic Polymers. Chem. Rev., 2002, 102, 4177-4189.
    35. Brown R H.; Duncan A J.; Choi J H.; Park J K.; Wu T Y.; Leo D J.; Winey K I.; Moore R B.; Long T E.. Effect of Ionic Liquid on Mechanical Properties and Morphology of Zwitterionic Copolymer Membranes. Macromolecules, 2010, 43, 790-796.
    36.郑俊民,平其能,杨丽.药用高分子材料学.中国医药科技出版社, 2000, 61-63.
    37.陈玲,侯红瑞,黄云,李晓玺.环境敏感性水凝胶在药物控释系统中的应用.化工新型材料, 2007, 35, 11-14.
    38. Hoare T.; Pelton R.. Impact of Microgel Morphology on Functionalized Microgel-Drug Interactions. Langmuir, 2008, 24, 1005-1012.
    39. Tan J P K.; Zeng A Q F.; Chang C C.; Tam K C.. Release Kinetics of Procaine Hydrochloride (PrHy) from pH-responsive Nanogels: Theory and Experiments. Int. J. Pharm., 2008, 357, 305-313.
    40.张俐娜.天然高分子改性材料及应用.化学工业出版社, 2006, 1-216.
    41. Mladenovska K.; Raicki R S.; Janevik E I.; Ristoski T.; Pavlova M J.; Kavrakovski Z.; Dodov M G.; Goracinova K.. Colon-specific Delivery of 5-Aminosalicylic Acid from Chitosan-Ca-alhinate Microparticles. Int. J. Pharm., 2007, 324, 124-136.
    42.石晓丽,徐军,张雪梅,程晓耕.干扰素壳聚糖/海藻酸钠微囊控释制剂载体的初步研究.中国生物制品学杂志, 2007, 20, 117-118.
    43.俞怡晨,姚炎庆,张亚琼,陆轶业,郭圣荣,范华骅.壳聚糖-海藻酸盐纳米粒子的制备及其对BSA的载药与释放特性.功能高分子学报, 2005, 18, 598-601.
    44. Kim W T.; Chung H.; ShinⅡ-S.; Yam K L.; Chung D.. Characterization of Calcium Alginate and Chitosan-treated Calcium Alginate Gel Beads Entrapping Alkyl Isothiocyanate. Carbohyd. Polym., 2007, 71, 566-573.
    45.付加雷,宋长征,张更林.用壳聚糖/海藻酸钠制备干扰素-τ缓释微囊.生物技术通讯, 2007, 18, 93-94.
    46. Naganagouda K.; Mulimani V H.. Gelatin Blends with Alginate: Gel Fibers forα-Galactosidase Immobilization and Its Application in Reduction of Non-digestible Oligosaccharides in Soymilk. Process Biochem., 2006, 41, 1903-1907.
    47. Almeida P F.; Almeida A J.. Cross-linked Alginate-gelatine Beads: A New Matrix for Controlled Release of Pindolol. J. Control. Release, 2004, 97, 431-439.
    48. Balakrishnan B.; Jayakrishnan A.. Self-cross-linking Biopolymers as Injectable in situ Forming Biodegradable Scaffolds. Biomaterials, 2005, 26, 3941-3951.
    49. Chen L Y.; Tian Z G.; Du Y M.. Synthesis and pH Sensitivity of Carboxymethyl Chitosan-based Polyampholyte Hydrogels for Protein Carrier Matrices. Biomaterials, 2004, 25, 3725-3732.
    50.姚芳莲,于潇,周玉涛.壳聚糖-明胶载药微球的制备及释放性能.化学工业与工程, 2008,25, 215-219.
    51. Ren S D.; Chen D Y.; Jiang M.. Noncovalently Connected Micelles Based on aβ-Cyclodextrin-Containing Polymer and Adamantane End-Capped Poly(ε-caprolactone) via Host-Guest Interactions. J. Polym. Sci.: Part A: Polym. Chem., 2009, 47, 4267-4278.
    52. Yamada M.; Hashimoto K.. DNA-Cyclodextrin Composite Material for Environmental Applications. Biomacromolecules, 2008, 9, 3341-3345.
    53. Guo X H.; Abdala A A.; May B L.; Lincoln S F.; Khan S A.; Prud’homme R K.. Novel Associative Polymer Networks Based on Cyclodextrin Inclusion Compounds. Macromolecules, 2005, 38, 3037-3040.
    54. Li L.; Guo X H.; Fu L.; Prud’homme R K.; Lincoln S F.. Complexation Behavior ofα-,β-, andγ-Cyclodextrin in Modulating and Constructing Polymer Networks. Langmuir, 2008, 24, 8290-8296.
    55. Li J.; Li X.; Zhou Z H.; Ni X P.; Leong K W.. Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics andα-Cyclodextrin. Macromolecules, 2001, 34, 7236-7237.
    56. He L H.; Huang J.; Chen Y M.; Xu X J.; Liu L P.. Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush andα-Cyclodextrin. Macromolecules, 2005, 38, 3845-3851.
    57. Choi H S.; Ooya T.; Huh K M.; Yui N.. Notes from the Microsymposium on Polymer Biomaterials. Biomacromolecules, 2005, 6, 1200-1204.
    58. Deng W.; Yamaguchi H.; Takashima Y.; Harada A.. Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins. Chem. Asian J. 2008, 3, 687-695.
    59. Liu Y Y.; Fan X D.; Kang T.; Sun L.. A Cyclodextrin Microgel for Controlled Release Driven by Inclusion Effects. Macromol. Rapid Commun., 2004, 25, 1912-1916.
    60. Liu Y Y.; Yu Y.; Tian W.; Sun L.; Fan X D.. Preparation and Properties of Cyclodextrin/PNIPAm Microgels. Macromol. Biosci., 2009, 9, 525-534.
    61. Liu Y Y.; Fan X D.; Hu H.; Tang Z H.. Release of Chlorambucil from Poly(N-isopropylacrylamide) Hydrogels withβ-Cyclodextrin Moieties. Macromol. Biosci., 2004, 4, 729-736.
    62. Liu Y Y.; Fan X D.. Synthesis, Properties and Controlled Release Behaviors of Hydrogel Networks using Cyclodextrin as Pendant Groups. Biomaterials, 2005, 26, 6367-6374.
    63. Li J.; Li X.; Ni X P.; Wang X.; Li H Z.; Leong K W.. Self-assembled Supramolecular Hydrogels Formed by Biodegradable PEO-PHB-PEO Triblock Copolymers andα-cyclodextrin for Controlled Drug Delivery. Biomaterials, 2006, 27, 4132-4140.
    64. Salmaso S.; Semenzato A.; Bersani S.; Matricardi P.; Rossi F.; Caliceti P.. Cyclodextrin/PEG Based Hydrogels for Multi-drug Delivery. Int. J. Pharm., 2007, 345, 42-50.
    65. Tessmar J K.; G?pferich A M.. Customized PEG-Derived Copolymers for Tissue-Engineering Applications. Macromol. Biosci., 2007, 7, 23-39.
    66. Pich A.; Berger S.; Ornatsky O.; Baranov V.; Winnik M A.. The Influence of PEG Macromonomers on the Size and Properties of Thermosensitive Aqueous Microgels. Colloid Polym. Sci., 2009, 287, 269-275.
    67. Lee W C.; Li Y C.; Chu I M.. Amphiphilic Poly(D,L-lactic acid)/Poly(ethyleneglycol)/Poly(D,L-lactic acid) Nanogels for Controlled Release of Hydrophobic Drugs. Macromol. Biosci., 2006, 6, 846-854.
    68. Kr?mer M.; StumbéJ-F.; Türk H.; Krause S.; Komp A.; Delineau L.; Prokhorova S.; Kautz H.; Haag R.. pH-Responsive Molecular Nanocarriers Based on Dendritic Core-Shell Architectures. Angew. Chem. Int. Ed., 2002, 41, 4252-4256.
    69. Sheihet L.; Dubin R A.; Devore D.; Kohn J.. Hydrophobic Drug Delivery by Self-Assembling Triblock Copolymer-Derived Nanospheres. Biomacromolecules, 2005, 6, 2726-2731.
    70. Finne A.; Andronova N.; Albertsson A-C.. Well-Organized Phase-Separated Nanostructured Surfaces of Hydrophilic/Hydrophobic ABA Triblock Copolymers. Biomacromolecules, 2003, 4, 1451-1456.
    71. Lei L.; Gohy J F.; Willet N.; Zhang J X.; Varshney S.; Jér?me R.. Tuning of the Morphology of Core-Shell-Corona Micelles in Water. I. Transition from Sphere to Cylinder. Macromolecules, 2004, 37, 1089-1094.
    72. Yu S H.; Colfen H.; Hartmann J.; Antonietti M.. Biomimetic Crystallization of Calcium Carbonate Spherules with Controlled Surface Structures and Sizes by Double-hydrophilic Block Copolymers. Adv. Funct. Mater., 2002, 12, 541-545.
    73. Zhang X Q.; Li J G.; Li W.; Zhang A F.. Synthesis and Characterization of Thermo-and pH-responsive Double-hydrophiphilic Diblock Copolypetides. Biomacromolecules, 2007, 8, 3557-3567.
    74. Berlinova I V.; Iliev P V.; Vladimirov N G.; Novakov C P.. Polymerization and Self-assembly of Thermally Responsive in-Chain Functionalized Double-hydrophilic Macromonomers. J. Polym. Sci.: Part A: Polym. Chem., 2007, 45, 4720-4732.
    75. Colfen H.. Double-hydrophilic Block Bopolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Macromol. Rapid Commun., 2001, 22, 219-252.
    76. Pojjak K.; Mezaros R.. Novel Self-Assemblies of Oppositely Charged Polyelectrolytes and Surfactants in the Presence of Neutral Polymer. Langmuir, 2009, 25, 13336-13339.
    77. Anderson B C.; Mallapragada S K.. Synthesis and Characterization of Injectable, Water-soluble Copolymers of Tertiary Amine Methacrylates and Poly(ethylene glycol) Containing Methacrylates. Biomaterials, 2002, 23, 4345-4352.
    78. Dai S.; Ravi P.; Tam K C.; et al. Novel pH-Responsive Amphiphilic Diblock Copolymers with Reversible Micellization Properties. Langmuir, 2003, 19, 5175-5177.
    79. Liu, S. Y.; Armes, S. P.. Polymeric Surfactants for the New Millennium: A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer. Angew. Chem. Int. Ed., 2002, 41, 1413-1416.
    80. Cai Y C.; Armes S P.. Synthesis of Well-Defined Y-Shaped Zwitterionic Block Copolymers via Atom-Transfer Radical Polymerization. Macromolecules. 2005, 38, 271-279.
    81. Li Y T. ; Du J Z.; Armes S P.. Shell Cross-Linked Micelles as Cationic Templates for the Preparation of Silica-Coated Nanoparticles: Strategies for Controlling the Mean Particle Diameter. Macromol. Rapid Commun., 2009, 30, 464-468.
    82. Vo C D.; Armes S P.. Synthesis of Zwitterionic Diblock Copolymers without Protecting Group Chemistry. Macromolecules, 2007, 40, 157-167.
    83. Zhu Z Y.; Xu J.; Zhou Y M.; Jiang X Z.; Armes S P.; Liu S Y.. Effect of Salt on the Micellization Kinetics of pH-Responsive ABC Triblock Copolymers. Macromolecules, 2007, 40, 6393-6400.
    84. Liu H.; Li C H.; Liu H W.; Liu S Y.. pH-Responsive Supramolecular Self-Assembly of Well-Defined Zwitterionic ABC Miktoarm Star Terpolymers. Langmuir. 2009, 25, 4724-4734.
    85. Matsumoto K.; Mazaki H.; Matsuoka H.. Fluorinated Amphiphilic Vinyl Ether Block Copolymers: Synthesis and Characteristics of Their Micelles in Water. Macromolecules, 2004, 37, 2256-2267.
    86. Liu C C.; He J L.; Zhao Q.; Zhang M Z.; Ni P H.. Well-Defined Poly[(Dimethylamino)ethyl methacrylate]-b-Poly(Fluoroalkyl Methacrylate) Diblock Copolymers: Effects of Different Fluoroalkyl Groups on the Solution Properties. J. Polym. Sci.: Part A: Polym. Chem., 2009, 47, 2702-2712.
    87. Hansen N M L.; Gerstenberg M.; Haddleton D M.; Hvilsted S.. Synthesis, Characterization, and Bulk Properties of Amphiphilic Copolymers Containing Fluorinated Methacrylates from Sequential Copper-Mediated Radical Polymerization. J. Polym. Sci.: Part A: Polym. Chem., 2008, 46, 8097-8111.
    88. Eberhardt M.; Théato P.. RAFT Polymerization of Pentafluorophenyl Methacrylate: Preparation of Reactive Linear Diblock Copolymers. Macromol. Rapid. Commun., 2005, 26, 1488-1493.
    89. Inoue Y.; Watanabe J.; Takai M.; Yusa S-I.; Ishihara K.. Synthesis of Sequence-controlled Copolymers from Extremely Polar and Apolar Monomers by Living Radical Polymerization and Their Phase-separated Structures. J. Polym. Sci.: Part A: Polym. Chem., 2005, 43, 6073-6083.
    90. Hussain H.; Busse K.; Kressler J.. Poly(ethylene oxide)- and Poly(perfluorohexylethyl methacrylate)-containing Amphiphilic Block Copolymers: Association Properties in Aqueous Solution. Macromol. Chem. Phys., 2003, 204, 936-946.
    91. Bütün V.; Billingham N.C.; Armes S.P.. Synthesis and Aqueous Solution Properties of Novel Hydrophilic-Hydrophilic Block Copolymers Based on Tertiary Amine Methacrylates. Chem. Commun., 1997, 671-672.
    92. Lee A S.; Bütün V.; Vamvakaki M.; Armes S P.; Pople J A.; Gast A P.. Structure of pH-Dependent Block Copolymer Micelles: Charge and Ionic Strength Dependence. Macromolecules, 2002, 35, 8540-8551.
    93. Bories-Azeau X.; Mérian T.; Weaver J V M.; Armes S P.. Synthesis of Near-Monodisperse Acidic Homopolymers and Block Copolymers from Hydroxylated Methacrylic Copolymers Using Succinic Anhydride under Mild Conditions. Macromolecules, 2004, 37, 8903-8910.
    94. Liu S Y.; Armes S P.. Polymeric Surfactants for the New Millennium: A pH-responsive, Zwitterionic, Schizophrenic Diblock Copolymer. Angew. Chem. Int. Ed., 2002, 41, 1413-1416.
    95. Bories-Azeau X.;. Armes S. P.; van den Haak H. J. W.. Facile Synthesis of Zwitterionic Diblock Copolymers without Protecting Group Chemistry. Macromolecules, 2004, 37, 2348-2352.
    96. Liu B.; Zeng H. C.. Semiconductor Rings Fabricated by Self-assembly of Nanocrystals. J. Am. Chem. Soc., 2005, 127, 18262-18268.
    97. Sun J.; Deng C.; Chen X. S.; Yu H. J.; Tian H. Y.; Sun J R.; Jing X B.. Self-Assembly of Polypeptide-Containing ABC-Type Triblock Copolymers in Aqueous Solution and Its pH Dependence. Biomacromolecules, 2007, 8, 1013-1017.
    98. Ko J.; Park K.; Kim Y-S.; Kim M. S.; Han J K.; Kim K.; Park R-W.; Kim I-S.; Song H K.; Lee D S.; Kwon I C.. Tumoral Acidic Extracellular pH Targeting of pH-responsive MPEG-poly(β-amino ester) Block Copolymer Micelles for Cancer Therapy. J. Control. Release, 2007, 123, 109-115.
    99. Chang Y.; Chen W. Y.; Yandi W.; Shih Y. J.; Chu W. L.; Liu Y. L.; Chu C. W.; Ruaan R. C.; Higuchi A.. Dual-Thermoresponsive Phase Behavior of Blood Compatible Zwitterionic Copolymers Containing Nonionic Poly(N-isopropylacrylamide). Biomacromolecules, 2009, 10, 2092-2100.
    100. Shen H W.; Zhang L F.; Eisenberg A.. Thermodynamics of Crew-cut Micelle Formation of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in DMF/H2O Mixture. J. Phys. Chem. B, 1997, 101, 4697-4708.
    101. Kubowicz S.; Baussard J-F.; Lutz J-F.; Thünemann A. F.; Berlepsch H. V.; Laschewsky A.. Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium. Angew. Chem. Int. Ed., 2005, 44, 5262-5265.
    102. Skrabania K.; Laschewsky A.; Berlepsch H.; Bottcher C.. Synthesis and Micellar Self-Assembly of Ternary Hydrophilic-Lipophilic-Fluorophilic Block Copolymers with a Linear PEO Chain. Langmuir, 2009, 25, 7594-7601.
    103. Skrabania K.; Berlepsch H.; Bottcher C.; Laschewsky A.. Synthesis of Ternary, Hydrophilic-Lipophilic-Fluorophilic Block Copolymers by Consecutive RAFT Polymerizationsand Their Self-Assembly into Multicompartment Micelles. Macromolecules, 2010, 43, 271-281.
    104. Li Z B.; Kesselman E.; Talmon Y.; Hillmyer M A.; Lodge T P.. Multicompartment Micelles from ABC Miktoarm Stars in Water. Science, 2004, 306, 98-101.
    105. Saito N.; Liu C.; Lodge T P.; Hillmyer M. A.. Multicompartment Micelles from Polyester-Containing ABC Miktoarm Star Terpolymers. Macromolecules, 2008, 41, 8815-8822.
    106. Lodge T P.; Rasdal A.; Li Z B.; Hillmyer M A.. Simultaneous, Segregated Storage of Two Agents in a Multicompartment Micelle. J. Am. Chem. Soc., 2005, 127, 17608-17609.
    107. Ma Z W.; Yu H Z.; Jiang W.. Bump-Surface Multicompartment Micelles from a Linear ABC Triblock Copolymer: A Combination Study by Experiment and Computer Simulation. J. Phys. Chem. B, 2009, 113, 3333-3338.
    108. Zhao Y.; Liu Y T.; Lu Z Y.; Sun C C.. Effect of Molecular Architecture on the Morphology Diversity of the Multi-compartment Micelles: A Dissipative Particle Dynamics Simulation Study. Polymer, 2009, 49, 4899-4909.
    109. Petrov P D.; Drechsler M.; Muller H E.. Self-Assembly of Asymmetric Poly(ethylene oxide)-block-Poly(n-butyl acrylate) Diblock Copolymers in Aqueous Media to Unexpected Morphologies. J. Phys. Chem. B, 2009, 113, 4218-4225.
    110. Xu J.; Ni P H.; Mao J.. Synthesis and Characterization of a Novel Triblock Copolymer Containing Double-hydrophilic Blocks and Poly(fluoroalkyl methacrylate) Block via Oxyanion-initiated Polymerization. e-Polym., 2006, 015, 1-14.
    111. Mao J.; Ni P H.; Mai, Y Y.; Yan, D Y.. Multicompartment Micelles from Hyperbranched star-Block Copolymers Containing Polycations and Fluoropolymer Segment. Langmuir, 2007, 23, 5127-5134.
    112. Zhang H.; Ni P H.; He J L.; Liu C C.. Novel Fluoroalkyl End-Capped Amphiphilic Diblock Copolymers with pH/Temperature Response and Self-Assembly Behavior. Langmuir, 2008, 24, 4647-4654.
    113. He J L.; Ni P H.; Liu C C.. Synthesis and Characterization of Amphiphilic Fluorinated Pentablock Copolymers Based on Pluronic F127. J. Polym. Sci.; Part A: Polym. Chem., 2008,46, 3029-3041.
    114. Choi H S.; Huh K M.; Ooya T.; Yui N.. pH-and Thermosensitive Supramlecular Assembling System: Rapidly Responsive Properties ofβ-cyclodextrin-conjugated Poly(ε-lysine). J. Am. Chem. Soc., 2003, 125, 6350-6351.
    115. Choi H. S.; Ooya T.; Sasaki S.; Yui N.. Control of Rapid Phase Transition Induced by Supramolecular Complexation ofα-Cyclodextrin-Conjugated Poly(ε-lysine) with a Specific Guest. Macromolecules, 2003, 36, 5342-5347.
    116. Tomatsu I.; Hashidzume A.; Harada A.. Photoresponsive Hydrogel System Using Molecular Recognition ofα-Cyclodextrin. Macromolecules, 2005, 38, 5223-5227.
    117. Zhang F.; Ni P H.; Xiong Q F.; Yu Z Q.. Reversible Addition–Fragmentation Chain Transfer/Miniemulsion Polymerization of Butyl Methacrylate in the Presence ofβ-Cyclodextrin. J. Polym. Sci.: Part A: Polym. Chem., 2005, 43, 2931-2940.
    118. Bradley M.; Vincent B.; Burnett G.. Uptake and Release of Anionic Surfactant into and from Cationic Core-Shell Microgel Particles. Langmuir, 2007, 23, 9237-9241.
    119. Johansson C.; Hansson P.; Malmsten M.. Interaction Between Lysozyme and Poly(acrylic acid) Microgels. J. Colloid Interf. Sci., 2007, 316, 350-359.
    120. Uzulina I.; Gaillard N.; Guyot A.; Claverie J.. Controlled Radical Polymerization of Styrene in Miniemulsion Polymerization using Reversible Addition Fragmentation Chain Transfer. C. R. Chimie, 2003, 6, 1375-1384.
    121. Webber B G.; Wanless E J.; Armes S P.; Tang Y.; Li Y.. Biggs S. Nano-anemones Stimulus-responsive Copolymer-micelle Surfaces. Adv. Mater., 2004, 16, 1794-1798.
    122. Cho S Y.; Allcock H R.. Dendrimers Derived from Polyphosphazene-poly(propyleneimine) Systems: Encapsulation and Triggered Release of Hydrophobic Guest Molecules. Macromolecules, 2007, 40, 3115-3121.
    123. Patrickios C S.; Hertler W R.; Abbott N L.; Hatton T A.. Diblock, ABC Triblock, and Random Methacrylic Polyampholytes: Synthesis by Group Transfer Polymerization and Solution Behavior. Macromolecules, 1994, 27, 930-937.
    124. Merle Y.. Synthetic Polyampholytes: Influence of Neighbour Interactions on Potentiometric Curves. J. Phys. Chem., 1987, 91, 3092-3098.
    125. Gu Z X.; Yuan Y.; He J L.; Zhang M Z.; Ni P H.. Facile Approach for DNA Encapsulation in Functional Polyion Complex for Triggered Intracellular Gene Delivery: Design, Synthesis, and Mechanism. Langmuir, 2009, 25, 5199-5208.
    126. ?etin M.. Electrolytic Conductivity, Debye-Huckel Theory, and the Onsager Limiting Law. Phys. Rev. E, 1997, 55, 2814-2817.
    127. Saunders J M.; Tong T.; Le Maitre C L.; Freemont T J.; Saunders B R.. A study of pH-responsive microgel dispersions: from fluid-to-gel transitions to mechanical property restoration for load-bearing tissue. Soft Matter, 2007, 3, 486-494.
    128. Michot L J.; Baravian C.; Bihannic I.; Maddi S.; Moyne C.; Duval J F L.; Levitz P.; Davidson P.. Sol-Gel and Isotropic/Nematic Transitions in Aqueous Suspensions of Natural Nontronite Clay. In?uence of Particle Anisotropy. 2. Gel Structure and Mechanical Properties. Langmuir, 2009, 25, 127-139.
    129. Ni P H.; Pan Q S.; Zha L S.; Wang C C.; Ela?ssari A.; Fu S K.. Syntheses and characterization of poly[2-(dimethylamino)ethyl methylacrylate]-poly(propylene oxide)-poly[2-(dimethylamino)ethyl methacrylate] ABA triblock copolymers. J. Polym. Sci.: Part A: Polym. Chem., 2002, 40, 624-631.
    130. Zhou J C.; Zhuang D Q.; Yuan X F.; Jiang M.; Zhang Y X.. Association of Fluorocarbon and Hydrocarbon End-capped Poly(ethylene glycol)s: NMR and Fluorescence Studies. Langmuir, 2000, 16, 9653-9661.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700