大白菜TuMV抗性基因retr02的克隆与抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜起源于中国,是我国最重要的蔬菜作物之一。病毒病是影响大白菜生产的主要病害,芜菁花叶病毒(Turnip mosaic virus,TuMV)是引起该病的主要病原。大白菜TuMV抗性基因的定位克隆、功能研究及抗性机制探索对大白菜TuMV高效分子育种具有特殊重要意义。
     本研究以大白菜抗TuMV高代自交系BP8407和感TuMV高代自交系极早春等为实验材料,对大白菜TuMV抗性基因进行遗传、定位、克隆研究,并对该抗性基因进行功能验证及抗性机制探索,获得了以下研究结果:
     1、以大白菜抗TuMV高代自交系BP8407和感TuMV高代自交系极早春为亲本,构建F2群体及F2:3家系。对F2群体及F2:3家系进行TuMV C4株系人工机械磨擦接种、ELISA检测。F2群体中共239株,其中抗病植株52株,感病植株187株。经卡方检测,抗感比符合1:3,因此BP8407对TuMV C4抗性受一对隐性基因控制。
     2、利用混合群体分组分析法(BSA)、SSR和Indel标记技术筛选与TuMV抗性基因连锁的标记。在200对SSR标记中,筛选到一个与TuMV抗性基因连锁的标记BC84。BC84位于白菜A04染色体上的scaffold000048上。进一步在A04染色体上scaffold000048附近的145对Indel标记中筛选到与TuMV抗性基因连锁的17对Indel连锁标记。该抗性基因两侧紧密连锁的分子标记为BrID10694和BrID101309,其与抗病基因连锁距离分别为0.3和0.6cM。该隐性抗性基因位于大白菜A04染色体上的scaffold000060或者scaffold000104上,将其命名为retr02。
     3、根据白菜参考基因组信息及植物对病毒的隐性抗性机制,对retr02定位目标区域内的基因进行分析,筛选到retr02的侯选基因Bra035393,其编码eIF(iso)4E蛋白。该基因与拟南芥TuMV隐性抗性基因lsp为共线性基因。
     4、根据白菜参考基因组的Bra035393序列信息,设计引物,对亲本BP8407和极早春的Bra035393的gDNA和cDNA进行克隆分析。对Bra035393的gDNA克隆测序后发现,BP8407的Bra035393与极早春的Bra035393相比存在着3个差异位点,第一个差异位点是在exon1和intron1的连接处多出一个碱基G,第二个差异位点是在intron2中多出一个碱基T,第三个差异位点是在exon3中存在着一个SNP(A/G)。对Bra035393的cDNA克隆测序后发现,极早春的Bra035393正常编码成熟的eIF(iso)4E蛋白。而BP8407的Bra035393由于exon1和intron1的连接处多出一个碱基G发生错误剪切,造成编码提前终止,编码不成熟的eIF(iso)4E蛋白。
     5、对retr02(BP8407Bra035393)和Retr02(极早春Bra035393)构建原核表达载体(pET-32a),进行蛋白诱导分析,进一步验证出Retr02编码正常的eIF(iso)4E蛋白,而retr02编码的蛋白长度大大缩短,其为不成熟的eIF(iso)4E蛋白。通过酵母双杂互作分析得出,Retr02编码的完整的eIF(iso)4E蛋白可以与TuMV C4VPg蛋白互作,而retr02编码的eIF(iso)4E蛋白不能与TuMV C4VPg蛋白互作。证实retr02编码的不成熟的eIF(iso)4E蛋白,丧失与TuMV C4VPg互作的能力,从而使80122对TuMV C4产生抗性。
     综上所述,本研究定位、克隆了大白菜TuMV隐性抗性基因retr02,并明确了retr02的抗性机制,为大白菜抗TuMV高效分子育种奠定了基础。
Chinese cabbage originated in China, is one of the most important vegetable crops in China. Thevirus disease is the main disease affecting the production of Chinese Cabbage. Turnip mosaic virus(TuMV) is the main pathogen causing virus disease. The researches of the TuMV resistance genecloning, function studies and resistance mechanism were very important to Chinese cabbage TuMVefficient molecular breeding.
     With the TuMV resistance lines BP8407and susceptible lines Ji Zao Chun, we research theTuMV resitance genetics, the TuMV resitance gene mapping and cloning, the TuMV resitance genefunctional verification and resistance mechanism. And the results are as follows:
     1. The F2population and F2:3lines, which were deduced from the cross of the TuMV resistancelines BP8407and susceptible lines Ji Zao Chun, were inoculated with TuMV C4isolate. The resistancewas established by ELISA. The segregation data from the TuMV inoculation of the F2generation (52resistant individuals and187susceptible individuals) fitted the expected segregation for a Mendelianmodel based on the action of a single recessive allele.
     2. The polymorphsic SSR and Indel markers were identified using the BSA method. Among the200pairs of SSR markers, only BC84linked with the resistance gene, which located on the A04chromosome scaffold000048of Brassica rapa. Then, the145Indel markers on A04scaffold000048region were further screened using the BSA method, of which17Indel markers were polymorphsic andlinked to resistance gene. The both sides of the resistance genes closely linked markers were BrID10694and BrID101309, with resistance genes linkage distance respectively0.3and0.6cM. So the resistancegene was located on A04scaffold000060or scaffold000104, and was named retr02.
     3. Based on the B.rapa reference genome information and plant recessive resistance mechanism tovirus, we analysed the retr02candidate gene in the mapped region. And one candidate gene Bra035393,which coded eIF (iso)4E protein, was identified. This candidate gene was the syntenic gene of theTuMV recessive resistance gene lsp in Arabidopsis thaliana.
     4. According to Bra035393sequence of B.rapa reference genome information, some primers weredesigned to clone the Bra035393gDNA and cDNA of BP8407and Ji Zao Chun. After the gDNA ofBra035393cloning sequencing, there were three different sites between BP8407and Ji Zao Chun. Thefirst different site was BP8407have one more G at the joint of exon1and intron1. The second differentsite was BP8407have one more A in intron2. And the third different site was the SNP (A/G) in exon3.For Bra035393cDNA cloning sequencing, we found BP8407Bra035393maybe could code earlytermination and code the immature eIF (iso)4E protein, because of the first different site Insert G at thejoint of exon1and intron1. And Ji Zao Chun Bra035393normal encoded mature eIF (iso)4E protein.
     5. To research the Bra035393expression in transgenic E. coli Rosetta, pET-32a-Bra035393vectorswere constructed using the CDS of BP8407and Ji Zao Chun. And we further verified Retr02normalencoded mature eIF (iso)4E protein, but retr02coded immature eIF (iso)4E protein. Throught yeast two hybrid interaction analysis, we confirmed that the mature eIF (iso)4E protein coded by Retr02could interact with TuMV C4VPg, but the immature eIF (iso)4E protein coded by retr02could notinteract with TuMV C4VPg. So the the immature eIF (iso)4E protein coded by retr02losed its abilityand caused the resistance.
     To sum up, we mapped and cloned the TuMV recessive resistance gene retr02, and confirmed theresistance mechanism. This work laid a foundation for Chinese cabbage efficient molecular breedingresistance to TuMV.
引文
1.曹光亮,曹寿椿.不结球白菜抗病育种研究.南京农业大学学报,1995,18(1):106–108
    2.蔡丽,许泽永,陈坤荣,侯明生.芜菁花叶病毒研究进展.中国油料作物学报,2005,27(1):104–110
    3.陈延阳,姜明,赵越.甘蓝抗芜菁花叶病毒育种研究进展.中国农学通报,2010,26(12):160–164
    4.方智远,刘玉梅,杨丽梅,王晓武,庄木,张扬勇,孙培田.我国甘蓝遗传育种研究概况.园艺学报,2002,29(增刊):657–663
    5.方智远,孙培田,刘玉梅,杨丽梅,侯安福.青花菜杂种优势利用研究初报.中国蔬菜,1990,(6):2–5
    6.冯兰香,徐玲,刘佳,钮心恪,李秀生.北京地区大白菜芜菁花叶病毒株系的鉴定.中国蔬菜,1988,4:23–25
    7.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:中国科学出版社,2003,169–223
    8.高金萍,王超,刘英.结球甘蓝抗TuMV基因的RAPD和SCAR标记研究.植物病理学报,2008,38(5):549–552
    9.韩和平,孙日飞,张淑江,李菲,章时蕃,钮心恪.大白菜中与芜菁花叶病毒(TuMV)感病基因连锁的AFLP标记.中国农业科学,2004,37(4):539–544
    10.韩和平.大白菜抗芜菁花叶病毒病基因的AFLP分子标记的研究.[硕士学位论文].北京:中国农业科学院,2003
    11.李经略,李惠兰,干正荣,张恩慧,鲁玉妙.甘蓝对TuMV和黑腐病苗期兼抗性平行鉴定研究.陕西农业科学,1994,1:19–21
    12.李丽丽.中国农作物病虫害及其防治.北京:农业出版社,1996,869–873
    13.李巧云,张志刚,成文华,赵智中.利用ELISA方法鉴定大白菜TuMV抗性.科技导报,2009,27(1):42–45
    14.李树德.中国主要蔬菜抗病育种进展.北京:科学出版社,1995,22–25,583–584,624–626
    15.刘克钧,朱月林,侯喜林,张蜀宁,曹寿椿.不结球白菜抗病育种的研究.南京农业大学学报,1997,20(3):31–35
    16.刘玉梅,孙培田,方智远,杨丽梅,侯安福,王晓武,刘佳,冯兰香.青花菜抗源材料的筛选和利用.中国蔬菜,1996,6:23–26
    17.卢爱兰,陈正华,孔令洁,方荣祥,寸守铣,莽克强.抗芜菁花叶病毒转基因甘蓝型油菜的研究.遗传学报,1996,23(1):77–83
    18.鹿英杰,李光池.应用60Coγ射线辐射育成龙辐二牛心大白菜新品种.中国蔬菜,1994,1:18–19
    19.钮心恪.大白菜抗霜霉病、病毒病原始材料的筛选及抗性遗传的研究.中国蔬菜,1984,4:28–32
    20.钱伟,张淑江,章时蕃,李菲,张慧,孙日飞.大白菜TuMV抗性的主基因+多基因混合遗传分析.中国蔬菜,2012(12):16–21
    21.漆梅芳.番茄和辣椒翻译起始因子4E相关基因的克隆与分析.[硕士学位论文].武汉,华中农业大学,2008
    22.施曼玲,周雪平.植物病毒的诊断技术.微生物学通报,2000,27(2):149–151
    23.施曼玲,吴建祥,郭维,周雪平.芜菁花叶病毒单克隆抗体的制备及检测应用.微生物学报,2004,44(2):185–188
    24.孙日飞,张淑江,李菲,章时蕃,钮心恪.中白系列大白菜新品种.园艺学报,2004,31(3):420
    25.王美.大白菜遗传图谱构建及抗TuMV的QTL分析.[硕士学位论文].泰安:山东农业大学:2003
    26.王述彬,袁希汉,苏小俊,庄勇,李彬.中国不结球白菜种质资源对芜菁花叶病毒的抗病性鉴定.中国蔬菜,2002(1):11–13
    27.王雪.结球甘蓝抗TuMV基因的AFLP标记研究.[硕士学位论文].武汉:华中农业大学,2004
    28.王雪,刘玉梅,李汉霞,张扬勇,方智远.芸薹属作物抗芜菁花叶病毒育种研究进展.园艺学报,2005,32(5):939–946
    29.肖英,程秉栓.电子显微镜技术在植物病毒研究中的应用.新疆农业科学,1995,4:1
    30.徐玲,冯兰香,钮心恪.中国大白菜对芜菁花叶病毒基因型株系的抗性鉴定.中国蔬菜,1990,4:15–16
    31.闫瑾琦.大白菜抗芜菁花叶病毒病基因的RAPD分子标记.[硕士学位论文].北京:中国农业科学院,2000
    32.张海燕,周奕华,党本元,蓝海燕,宋桂英,王兰岚,刘桂珍,张丽华,陈正华,田颖川.将商陆抗病毒蛋白(PAP)cDNA导入油菜获得抗病毒转基因植株.科学通报,1998,23:2534–2537
    33.张俊华,屈淑平,崔崇士.大白菜抗芜菁花叶病毒的QTL分析.植物病理学报,2008,38(2):178–184
    34.张晓伟,原玉香,耿建峰,蒋武生,韩永平,高睦枪.大白菜新品种‘豫新1号’.园艺学报,2004,31(2)
    35.张晓伟,原玉香,王晓武,孙日飞,武剑,谢从华,蒋武生,姚秋菊.大白菜DH群体TuMV抗性的QTL定位与分析.园艺学报,2009,36(5):731–736
    36.张志刚.大白菜抗芜菁花叶病毒(TuMV)遗传规律及过氧化氢等保护酶与抗病性关系的研究.[硕士学位论文].泰安,山东农业大学,2011
    37.章元明,盖钧镒,张孟臣.利用P1、P2、F1和F2或F2:3世代联合的数量性状分离分析.西南农业大学学报,2000,22(1):6–9
    38.赵荣乐,郑光字.斑点免疫结合法检测3种植物病毒.北京师范大学学报,2004,4(4):513-517
    39.赵建平,周钗美,陈集双,郭得平.芜菁花叶病毒(TuMV)特性的研究进展.微生物学通报,2004,31(6):100–104
    40.朱常香,宋云枝,张松,郭兴启,温孚江.抗芜菁花叶病毒转基因大白菜的培育.植物病理学报,2001,31(3):257–264
    41.庄木,王晓武,郑文光,娄平,方智远.十字花科蔬菜芜菁花叶病毒的RT–PCR的快速检测.中国蔬菜,2002,(5):10–11
    42. Albar L., Ndjiondjop M.N., Esshak Z., Berger A., Pinel A., Jones M., Fargette D., Ghesquière A.Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement. TheorAppl Genet,2003,107:371–378
    43. Albar L., Reyser M.B., Hébrard E., Ndjiondjop M.N., Jones M., Ghesquière A. Mutations in theeIF (iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus.Plant J,2006,47:417–426
    44. Anderson P.K., Cunningham A.A., Patel N.G., Morales F., Epstein P.R., Daszak P. Emerginginfectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers.Trends Ecol Evol,2004,19:535–544
    45. Andrade M., Abe Y., Nakahara K.S., Uyeda I. The cyv-2resistance to Clover yellow vein virus inpea is controlled by the eukaryotic initiation factor4E. J Gen Plant Pathol,2009,75:241–249
    46. Ashby J.A., Stevenson C.E.M., Jarvis G.E., Lawson D.M., Maule A.J. Structure-based mutationalanalysis of eIF4E in relation to sbm1resistance to Pea seed-borne mosaic virus in pea. PLoSONE,2011,6(1): e15873
    47. AVRDC, Evaluation of Ethiopian kale accessions for resistance to turnip mosaic virus. In:Progress Report2000, AVRDC, Shanhua, Taiwan, China,2000,129–131
    48. AVRDC, Korea outreach program. In: Progress Report1998, AVRDC, Shanhua, Taiwan, China,1998,108
    49. Ayme V., Souche S., Caranta C., Jacquemond M., Chad uf J., Palloix A. Different mutations inthe VPg of Potato virus Y confer virulence on the pvr23resistance in pepper. Mol Plant MicrobeIn,2006,9:557–563.
    50. Bailey T.L., Elkan C. The value of prior knowledge in discovering motifs with MEME. Proc IntConf Intell Syst Mol Biol,1995,3:21–29
    51. Basso J., Dallaire P., Charest P.J., Devantier Y. Laliberté J.F. Evidence for an internal ribosomeentry site within the5' non-translated region of turnip mosaic potyvirus RNA. J General Virol,1994,75:3157–3165
    52. Beauchemin C., Boutet N., Laliberté J.F. Visualization of the interaction between the precursor ofVPg, the viral protein genome-linked to the genome of Turnip mosaic virus, and the translationinitiation factor iso4E in planta. J Virol,2007,81:775–782
    53. Browning K.S. The plant translational apparatus. Plant Mol Biol,1996,32:107–143
    54. Bruun-Rasmussen M.I.S., M ller G., Tulinius J.K.R., Hansen O.S., Lund Johansen I.E. The sameallele of translation initiation factor4E mediates resistance against two Potyvirus spp. in Pisumsativum. Mol Plant Microbe In,2007,20:1075–1082
    55. Cao J.S., Yu X.L., Ye W.Z., Lu G., Xiang X. Functional analysis of a novel male fertilityCYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis makino). Plant Cell,2006,24:715–723
    56. Cao M.Q., Liu F., Yao L., David B., Colette T., Li Y., Christophe R. Transformation of Pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration. Mol Breeding,2000,6:67–72
    57. Carrington J.C., Kasschau K.D., Mahajan S.K., Schaad M.C. Cell-to-cell and long-distancetransport of viruses in plants. Plant Cell,1996,8:1669–1681
    58. Chen J., Chen J.P., Adams M.J. Variation between turnip mosaic virus isolates in Zhejiangprovince, China and evidence for recombination. J Phytopathol,2002,150:142–145
    59. Choi S.H., Nakahara K.S., Andrade M., Uyeda I. Characterization of the recessive resistance genecyv1of Pisum sativum against Clover yellow vein virus. J Gen Plant Pathol,2012,78:269–276
    60. Cynthia A., Lavoie Pascal E.D., Lachance, Nahum Sonenbergi., Paul L. Alternatively SplicedTranscripts from the Drosophila eIF4E Gene Produce Two Different Cap-binding Proteins. J BiolChem,1996,27:16393–16398
    61. Diaz-Pendon J.A., Truniger V., Nieto C., Garcia-Mas J., Bendahmane A., Aranda, M.A. Advancesin understanding recessive resistance to plant viruses. Mol Plant Pathol,2004,5:223–233
    62. Domingo E., Holland J.J. RNA virusmutations and fitness for survival. Ann Review Microbiol,1997,51:151–178
    63. Dufresne P.J., Ubalijoro E., Fortin M.G., Laliberte J.F. Arabidopsis thaliana class II poly (A)-binding proteins are required for efficient multiplication of turnip mosaic virus. J General Virol,2008,89:2339–2348
    64. Dunoyer P., Thomas C., Harrison S., Revers F., Maule1A. Acysteine rich plant protein potentiatespotyvirus movement through an interaction with the virus genome linked protein VPg. J Virol,2004,78(5):2301–2309
    65. Duprat A., Caranta C., Revers F., Menand B., Browning K.S., Robaglia C. The Arabidopsiseukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibilityto potyviruses. Plant J,2002,32:927–934.
    66. Edwardson J.R, Christie R.G. A monograph on the potyvirus group. Fla Agric Exp Stn Tech BullMonograph,1991,16:1–4
    67. Evans I.R., MacNeil B.H. Virus diseases of rutabagas (turnips). Ontario Ministry Agric. FoodFactsheet,1983,61–76
    68. Finn R.D., Tate J., Mistry J., Coggill P.C., Sammut J.S., Hotz H.R., Ceric G., Forslund K., EddyS.R., Sonnhammer E.L., Bateman A. The Pfam protein families database. Nucleic Acid Res,2008,36:281–288
    69. Fraser R.S.S. The genetics of resistance to plant-viruses. Ann Review Phytopathol,1990,28:179–200
    70. Fraser R.S.S. The genetics of plant-virus interactions: implications for plant breeding. Euphytica,1992,63:175–185
    71. Gai J.Y., Zhang Y.M., Yang H.Y. The EIM algorithm in the joint segregation analysis ofquantitative traits. Genet Res,2003,81(2):157–163
    72. Green D.J. Different classes of resistance to turnip mosaic virus in Brassica rapa. Eur J PlantPathol,2002,108:15–20
    73. Gallie D.R. Cap-independent translation conferred by the5' leader of tobacco etch virus iseukaryotic initiation factor4G dependent. J Virol,2001,75:12141–12152
    74. Gallie D.R., Browning K.S. eIF4G functionally differs from eIFiso4G in promoting internalinitiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem,2001,276:36951–36960
    75. Gao Z., Eyers S., Thomas C., Ellis N., Maule A. Identification of markers tightly linked to sbmrecessive genes for resistance to Pea seed-borne mosaic virus. Theor Appl Genet,2004,109:488–494
    76. Gao Z., Johansen E., Eyers S., Thomas C.L., Ellis T.H., Maule A.J. The potyvirus recessiveresistance gene, sbm1, identifies a novel role for translation initiation factor eIF4E in cell-to-celltrafficking. Plant J,2004,40:376–385
    77. Ge L.M., Zhang J., Zhou X, Li H. Genetic Structure and Population Variability of Tomato YellowLeaf Curl China Virus. J Virol,2007,11:5902–5907
    78. Gómez P., Hernández A.M.R., Moury B., Aranda M.A. Genetic resistance for the sustainablecontrol of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol,2009,125:1–22
    79. Graner A., Streng S., Kellermann A., Schiemann A., Bauer E., Waugh R., Pellio B., Ordon F.Molecular mapping and genetic fine-structure of the rym5locus encoding resistance to differentstrains of the Barley Yellow Mosaic Virus Complex. Theor Appl Genet.1999,98:285–290
    80. Green D.K., Deng T.C. Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Dis,1985,69:28–31
    81. Grzela R., Strokovska L., Andrieu J.P., Dublet B., Zagorski W., Chroboczek J. Potyvirus terminalprotein VPg, effect or of host eukaryotic initiation factor eIF4E. Biochimie,2006,88:887–896
    82. Han H.P., Sun R.F., Zhang S.J., Li F., Zhang S.F., Niu X.K. AFLP marker linked to Turnip mosaicvirus susceptible gene in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). Agric Sci China,2004,3:292–298
    83. Hancock J.M., Chaleep W., Dale J., Gibbs A. Replication slippage in the evolution of potyviruses.J General Virol,1995,76:3229–3232
    84. Huang T.S., Wei T.Y., Laliberte J.F., Wang A. AHost RNAHelicase-Like Protein, AtRH8, interactswith the potyviral genome-linked protein, VPg, associates with the virus accumulation complex,and is essential for infection. Plant Physiol,2010,152:255–266
    85. Hughes S.L., Green S.K., Lydiate D.J., Walsh J.A. Resistance to turnip mosaic virus in Brassicarapa and B.napus and the analysis of genetic inheritance in selected lines. Plant Pathol,2002,51:567–573
    86. Hughes S.L., Hunter P.J., Sharpe A.G. Kearsey M.J., Lydiate D.J., Walsh J.A. Genetic mapping ofthe novel Turnip mosaic virus resistance gene TuRB03in Brassica napus. Theor Appl Genet,2003,107(7):1169–1173
    87. Il2Yong Kim, Genetics and screening of resistance to turnip mosaic virus in Chinese cabbage(Brassica campestris spp. pekinensis)[Masterthesis]. Korea: Seoul National University,1995
    88. Jan F.J., Fagoaga C., Pang S.Z., Gonsalves D. A single chimeric transgene derived from twodistinct viruses confers multi virus resistance intransgenic plants through homology dependentgene silencing. J General Virol,2000,81:2103–2109
    89. Jan F.J., Pang S.Z., Fagoaga C., Gonsalves D. Turnip mosaic potyvirus resistance in Nicotianabenthamiana derived by post2transcriptional gene silencing. Transgenic Res,1999,8:203–213
    90. Jenner C.E., Keane G.J., Jones J.E., Walsh J.A. Serotypic variation in turnip mosaic virus. PlantPathol,1999,48:101–108
    91. Jenner C.E., Wang X., Ponz F. Walsh J.A. A fitness cost for Turnip mosaic virus to overcome hostresistance. Virus Res,2002,86:1–6
    92. Jenner C.E., Keane G.J., Jones J.E., Walsh J.A. Serotypic variation in turnip mosaic virus. PlantPathol,1999,48:101–108
    93. Jenner C.E., Nellist C.F., Barker G.C., Walsh J.A. Turnip mosaic virus (TuMV) is able to usealleles of both eIF4E and eIF (iso)4E from multiple loci of the diploid Brassica rapa. Mol PlantMicrobe In,2010,23:1498–1505
    94. Jenner C.E., Tomimura K., Ohshima K., Hughes S.L., Walsh J.A. Mutations in Turnip mosaicvirus P3and cylindrical inclusion proteins are separately required to overcome two Brassicanapus resistance genes. Virology,2002,300:50–59
    95. Jenner C.E., Walsh J.A. Pathotypic variation in turnip mosaic virus with special reference toEuropean isolates. Plant Pathol,1996,45:848–856
    96. Jenner C.E., Wang X., Tomimura K., Ohshima K., Ponz F., Walsh J.A. The dual role of thepotyvirus P3protein of turnip mosaic virus as a symptom and avirulence determinant in brassicas.Mol Plant Microbe In,2003,16:777–784
    97. Jenner C.E., Sanchez F., Nettleship S.B., Foster G.D., Ponz F., Walsh J.A. The cylindricalinclusion gene of turnip mosaic virus encodes a pathogenic determinant to the brassica resistancegene TuRB01. Mol Plant Microbe In,2000,13:1102–1108
    98. Joshi B., Lee K., Maeder D.L., Jagus R. Phylogenetic analysis of eIF4E-family members. BMCEvol Biol,2005,5:48
    99. Kang B.C., Yeam I., Jahn M.M. Genetics of plant virus resistance. Ann Review Phytopathol,2005,43:581–621
    100.Kang B.C., Yeam I., Frantz J.D., Murphy J.F., Jahn M.M. The pvr1locus in Capsicum encodes atranslation initiation factor eIF4E that interacts with Tobacco etch virus VPg. Plant J,2005,42:392–405.
    101.Kanyuka K., Druka A., Caldwell D.G., Tymon A., Mccallum N., Waugh R., Adams M.J. Evidencethat the recessive bymovirus resistance locus rym4in barley corresponds to the eukaryotictranslation initiation factor4E gene. Mol Plant Pathol,2005,6:449–458
    102.Keller K.E., Johansen I.E., Martin R.R., Hampton R.O. Potyvirus genome-linked protein (VPg)determines pea seed borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol PlantMicrobe In,1998,11:124–130.
    103.Kelley L.A., Sternberg M.J.E. Protein structure prediction on the web: a case study using thePhyre server. Nat Protoc.2009,4:3
    104.Khan M.A., Miyoshi H., Gallie D.R., Goss D.J. Potyvirus genome-linked protein, VPg, directlyaffects wheat germ invitro translation: interactions with translation initiation factors eIF4F andeIFiso4F. J Biol Chem,2008,283:1340–1349
    105.Khan M.A., Miyoshi H., Ray S., Natsuaki T., Suehiro N., Goss D.J. Interaction of genome-linkedprotein (VPg) of Turnip mosaic virus with wheat germ translation initiation factors eIFiso4E andeIFiso4F. J Biol Chem,2006,281:28002–28010
    106.Lam Y.H., Wong Y.S., Wang B., Wong R.N.S., Yeung H.W., Shaw P.C. Use of trichosanthin toreduce infection by turnip mosaic virus. Plant Sci,1996,114:111–117
    107.Lee J.H., Muhsin M., Atienza G.A., Kwak D.Y., Kim S.M., De Leon T.B., Angeles E.R., ColoquioE., Kondoh H., Satoh K., Cabunagan R.C., Cabaua-tan P.Q., Kikuchi S., Leung H., Choi I.R.Single nucleotide polymor-phisms in a gene for translation initiation factor (eIF4G) of rice (Oryzasativa) associated with resistance to Rice tungro spherical virus. Mol Plant Microbe In,2010,23:29–38
    108.Lehmann P., Jenner C.E., Kozubek E., Greenland A.J., Walsh J.A. Coat protein mediatedresistance to turnip mosaic virus in oilseed rape (Brassica napus). Mol Breeding,2003,11(2):83–94
    109.Lellis A.D., Kasschau K.D., Whitham S.A., Carrington J.C. Loss-of-susceptibility mutants ofArabidopsis thaliana reveal an essential role for eIF (iso)4E during Potyvirus infection. CurrBiol,2002,12:1046–1051
    110.Leonard S., Plante D., Wittmann S., Daigneault N., Fortin M.G., Laliberte J.F. Complex formationbetween potyvirus VPg and translation eukaryotic initiation factor4E correlates with virusinfectivity. J Virol,2000,74:7730–7737
    111.Leung H., Williams P.H. Cytoplasmic male sterile Brassica campestris breeding lines withresistance to culbroot turnip mosaic and downy mildew. Hortic Sci,1983,18(5):774–775
    112.Liu X.P., Lu W.C., Liu B.X., Li S.Y., Li J.L., Zhao Z.Y., Wang H.J., Wang C.H. A study on TuMVstrain differentiation on cruciferous vegetables from ten regions of China: Identification resultswith Green’s methods. Virologica Sinica,1990a,1:82–87
    113.Liu X.P., Lu W.C., Liu Y.K., Li J.L. A study on TuMV strain differentiation of cruciferousvegetables from ten provinces in China: New host differentiator screening and strainclassification. Chin Sci Bull,1990b,35:1734–1739
    114.Masuta C., Nishimura M., Morishita H., Hataya T. A single amino acid change in viralgenome-associated protein of Potato virus Y correlates with resistance breaking in ‘Virgin AMutant’ tobacco. Phytopathology,1999,89:118–123
    115.McDonald J.G., Hiebert E. Characterization of the capsid and cylindrical inclusion protein of threestrains of turnip mosaic virus. Virology,1975,63:295–303
    116.Michelmore R.W., Paran I., Kesseli R.V. Identification of markers linked to disease-resistancegenes by bulked segregant analysis: a rapid method to detect markers in specific genomic regionsby using segregating populations. Proc Natl Acad Sc,1991,88:9828–9832
    117.Michon T., Estevez Y., Walter J., German-Retana S., Le Gall O. The potyviralvirus genome–linkedprotein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G andreduces eIF4E affinity for a mRNA cap an alogue. FEBS J,2006,273:1312–1322
    118.Miyoshi H., Suehiro N., Tomoo K., Muto S., Takahashi T., Tsukamoto T., Ohmori T., Natsuaki T.Binding analyses for the interaction between plant virus genome-linked protein (VPg) and planttranslational initiation factors. Biochimie,2006,88:329–340
    119.Moury B., Morel C., Johansen E., Guilbaud L., Souche S., Ayme V., Caranta C., Palloix A.,Jacquemond M. Mutations in potato virus Y genome linked protein determine virulence towardsrecessive resistances in Capsicum annum and Lycopersicum hirsutum. Mol Plant Microbe In,2004,17:322–329
    120.Mun J.H., Yu H.J., Park S., Park B.S. Genome-wide identification of NBS-encoding resistancegenes in Brassica rapa. Mol Genet Genomics,2009,282:617–631
    121.Murphy J.F., Kyle M.M. Isolation and viral infection of Capsicum leaf protoplasts. Plant Cell Rep,1994,13:397–400.
    122.Murphy J.F., Blauth J.R., Livingstone K.D., Lackney V.K., Jahn M.M. Genetic mapping of thepvr1locus in Capsicum spp. and evidence that distinct potyvirus resistance loci control responsesthat differ at the whole plant and cellular levels. Mol Plant Microbe In,1998,11:943–951
    123.Naderpour M., Lund O.S., Larsen R., Johansen E. Potyviral resistance derived from cultivars ofPhaseolus vulgaris carrying bc-3is associated with the homozygotic presence of a mutated eIF4Eallele. Mol Plant Pathol,2010,11:255–263
    124.Nicaise V., German-Retana S., Sanjuan R., Dubrana M.P., Mazier M., Maisonneuve B., CandresseT., Caranta C., LeGall O. The eukaryotic translation initiation factor4E controls lettucesusceptibility to the potyvirus Lettuce mosaic virus. Plant Physiol,2003,132:1272–1282
    125.Nicolas O., Dunnington S.W., Gotow L.F., Pirone T.P., Hellmann G.M. Variations in the VPgprotein allow a potyvirus to overcome a gene resistance in tobacco. Virology,1997,237:452–459
    126.Nieto C., Morales M., Orjeda G., Clepet C., Monfort A., Sturbois B., Puigdomènech P., Pitrat M.,Caboche M., Dogimont C., Garcia-Mas J., Aranda M.A., Bendahmane A. An eIF4E allele confersresistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J,2006,48:452–462
    127.Ohshima K., Yamaguchi Y., Hirota R., Hamamoto T., Tomimura K., Zhongyang T., Sano T.,Azuhata F., Walsh J.A., Fletcher J., Chen J., Gera A., Gibbs A. The molecular evolution of turnipmosaic virus: evidence of host adap tation, genetic recombination and geographical sp read. JGeneral Virol,2002,83:1511–1521
    128.Ohshima K., Tanaka M., Sako N. The complete nucleotide sequence of turnip mosaic virus RNAJapanese strain. Arch Virol,1996,141:1991–1997
    129.Pellio B., Streng S., Bauer E., Stein N., Perovic D., Schiemann A., Friedt W., Ordon F., Graner A.High-resolution mapping of the Rym4/Rym5locus conferring resistance to the barley yellowmosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp. vulgareL.). Theor Appl Genet,2005,110:283–293
    130.Pink D.A.R., Walkey G.A. Genetic analysis of resistance in Brussels sp rout to cauliflower mosaicand turnip mosaic viruses. Ann Appl Biol,1986,109:199–208
    131.Piron F., Nicola M., Mino a S., Piednoir E., Moretti A., Salgues A., Zamir D., Caranta C.,Bendahmane A. An induced mutation intoma to eIF4E leads to immunity to two potyviruses. PloSONE,2010,5: e11313
    132.Plante D., Viel C., Le′onard S., Tampo H., Laliberte′J.F., Fortin M.G. Turnip mosaic virus VPgdoes not disrupt the translation initiation complex but interferes with cap binding. Phys Mol PlantPathol,2004,64:219–226
    133.Pound G.S., Walker J.C. Differentiation of certain crucifer viruses by the use of temperature andhost immunity reactions. J Agric Res,1945,71:255–278
    134.Prins M., Goldbach R. The emerging problem of to spovirus infection and nonconventionalmethods of control. Trends Microbiol,1998,6:31–35
    135.Provvidenti R. Evaluation of Chinese cabbage cultivars from Japan and the People’s Republic ofChina for resistance to Turnip mosaic virus and Cauliflower mosaic virus. J Am Soc Hortic Sci,1980,105:571–573
    136.Provvidenti R., Hampton R.O. Sources of resistance to viruses in the Potyviridae. Arch Virol,1992,5:189–211
    137.Qian W., Zhang S.J., Zhang S.F., Li F., Zhang H., Wu J., Wang X.W., Walsh J.A., Sun R.F.Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02inChinese cabbage (Brassica rapa L.). Theor Appl Genet.2012,126:179–188
    138.Rajamaki M.L., Valkonen, J.P. Viral genome-linked protein (VPg) controls accumulation andphloem-loading of a potyvirus in inoculated potato leaves. Mol Plant Microbe Int,2002,15:138–149
    139.Revers F., Le G.O., Candresse T., Maule A.J. New advances in understanding the molecularbiology of plant/potyvirus interactions. Mol Plant Microbe In,1999,12:367–376
    140.Riechmann J.L., Lain S., Garcia J.A. Highlights and prospects of potyvirus molecular biology. JGeneral Virol,1992,73:1–16
    141.Robaglia C., Caranta C. Translation initiation factors: a weak linkin plant RNA virus infection.Trends Plant Sci,2006,11:40–45
    142.Robbins M.A., Witsenboer H., Michelmore R.W., Laliberte J.F., Fortin M.G. Genetic mapping ofturnip mosaic virus resistance in Lactuca sativa. Theor Appl Genet,1994,89:583–589
    143.Roberts J.M.F., Hodgson C.J., Jackai L.E.N., Thottappilly G., Singh S.R. Interaction between twosynthetic pyrethoroids and the spread of two non-persistent viruses in cowpea. Ann Appl Biol,1993,122:57–67
    144.Rodriguez C.M., Freire M.A., Camilleri C., Robaglia C. The Arabidopsis thaliana cDNAs codingfor eIF4E and eIF (iso)4E are not functionally equivalent for yeast complementation and aredifferentially expressed during plant development. Plant J,1998,13:465–473
    145.Ruffel S., Dussault M.H., Palloix A., Moury B., Bendahmane A., Robaglia C., Caranta C. Anatural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryoticinitiation factor4E (eIF4E). Plant J,2002,32:1067–1075
    146.Ruffel S., Gallois J.L., Lesage M.L., Caranta C. The recessive potyvirus resistance gene pot-1isthe tomato orthologue of the pepper pvr2-eIF4E gene. Mol Gen. Genomics,2005,274:346–353
    147.Rusholme R.L., Higgins E.E., Walsh J.A., Lydiate D.J. Genetic control of broad-spectrumresistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J General Virol,2007,88:3177–3186
    148.Rusholme R.L. The genetic control of resistance to turnip mosaic virus (TuMV) in Brassica. PhDThesis, University of East Anglia, Norwich,2000
    149.Sanchez F., Wang X., Jenner C.E. Strains of turnip mosaic potyvirus as defined by the molecularanalysis of the coat protein gene of the virus. Virus Res,2003,94:33–43
    150.Sato M., Nakahara K., Yoshii M., Ishikawa M., Uyeda I. Selective involvement of members of theeukaryotic initiation factor4E family in the infection of Arabidopsis thaliana by potyviruses.FEBS L,2005,579:1167–1171
    151.Schaad M.C., Anderberg R.J., Carrington J.C. Strain-specific interaction of the tobacco etch virusNIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology,2000,273:300–306
    152.Schaad M.C., Lellis A.D., Carrington J.C. VPg of tobacco etch potyvirus is a hostgenotype-specific determinant for long distance movement. J Virol,1997,71:8624–8631
    153.Schultz E.S. A transmissible mosaic disease of Chinese cabbage, mustard and turnip. J Agric Res,1921,22:173–177
    154.Siaw M.F., Shahabuddin M., Ballard S., Shaw J.G., Rhoads R.E. Identification of a protein linkedto the terminus of tobacco vein mottling virus RNA. Virology,1985,142:134–43
    155.Soumounou Y., Laliberté J.F. Nucleic acid-binding properties of the P1protein of turnip mosaicpotyvirus produced in Escherichia coli. J General Virol.1994,75:2567–2573.
    156.Stein N., Perovic D., Kumlehn J., Pellio B., Stracke S., Streng S., Ordon F., Graner A. Theeukaryotic translation initiation factor4E confers multiallelic recessive Bymovirus resistance inHordeum vulgare (L.). Plant J,2005,42:912–922
    157.Suh S.K., Green S.K., Park H.G. Genetics of resistance to five strains of turnip mosaic virus inChinese cabbage. Euphytica,1995,81(1):71–77
    158.Suh S.K., Cha J.C., Green S.K. Detection of TuMV strain witmonoclonal antibodies inimmunosorbent electron microscopy. J Korea Society for Hortic Sci,1996,37:248–251
    159.Suh S.K., Green S.K., Park H.G. Genetics of resistance to five strains of turnip mosaic virus inChinese cabbage. Euphytica,1995,81:71–77
    160.Tomlinson J.A. Epidemiology and control of virus diseases of vegetables. Ann Appl Bilo,1987,110:661–681
    161.Truniger V.,Aranda M.A. Recessive resistance to plant viruses.Adv Virus Res,2009,75:119–159
    162.Truniger V., Nieto C., González-Ibeas D., Aranda M.A. Mechanism of plant eIF4E-mediated virusresistance: Cap-independent translation of a viral RNA controlled in cis by an (a) virulencedeterminant. Plant J,2008,56:716–727
    163.Urcuqui-Inchima S., Haenni A.L., Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res,2001,74:157–175
    164.Victoria L. Yeast vectors and assays for expression of cloned genes. In Current Protocols inMolecular Biology (Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith,J.A. and Stuhl, K., eds). New York: Wiley,1996,131611–131614
    165.Walsh J.A., Jenner C.E. Turnip mosaic virus and the quest for durable resistance. Mol PlantPathol,2002,3:289–300
    166.Walsh J.A., Sharpe A.G., Jenner C.E., Lydiate D.J. Characterisation of resistance to turnip mosaicvirus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet,1999,99:1149–1154
    167.Wang A., Krishnaswamy S. Eukaryotic translation initiation factor4E-mediated recessiveresistance to plant viruses and its utility in crop improvement. Mol Plant Pathol,2012,00791
    168.Wang Y., Sun S.L., Liu B., Wang H., Deng J., Liao Y.C., Wang Q., Cheng F., Wang X.W., Wu J. Asequence-based genetic linkage map as a reference for Brassica rapa pseudo chromosomeassembly. BMC Genomics,2011,12:239
    169.Ward C.Q., Shukla D.D. Taxonomy of potyviruses: current problems and some solutions.Intervirology,1991,32:269–296
    170.Wicker T., Zimmermann W., Perovic D., Paterson A.H., Ganal M., Graner A., Stein N. A detailedlook at7million years of genome evolution in a439kb contiguous sequence at the barleyHv-eIF4E locus: recombination, rearrangements and repeats. Plant J,2005,41:184–194
    171.Wittmann S., Chatel H., Fortin M.G., Laliberte J.F. Interaction of the viral protein genome linkedof turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso)4E ofArabidopsis thaliana using the yeast two-hybrid system. Virology,1997,234:84–92
    172.Yeam I., Cavatorta J., R. Ripoll, D. R., Kang B., Jahn M. Functional Dissection of NaturallyOccurring Amino Acid Substitutions in eIF4E That Confers Recessive Potyvirus Resistance inPlants. Plant Cell,2007,19:2913–2928
    173.Yoon J.Y., Green S.K., Opena R.T. Inheritance of resistance to turnip mosaic virus in Chinesecabbage. Euphytica,1993,69:103–108
    174.Yoshii M., Yoshioka N., Ishikawa M., Naito S. Isolation of an Arabidopsis thaliana mutant inwhich accumulation of cucumber mosaic virus coat protein is delayed. Plant J,1998,13:211–219
    175.Zhang F.L., Wang M., Liu X.C., et al. Quantitative trait loci analysis for resistance against Turnipmosaic virus based on adoubled haploid population in Chinese cabbage. Plant Breeding,2008,127:82–86
    176.Zhang J.H., Pan C.Q., Zhang Y.W., Cui C.S. EST-PCR-RFLP markers linked to turnip mosaicvirus (TuMV) resistance gene in Chinese cabbage (Brassica rapa ssp. pekinensis). ActaPhytopathol Sinica,2006,36:523–527
    177.Zhang J.H., Qu S.P., Cui C.S. Analysis of QTL for Turnip mosaic virus resistance in Chinesecabbage. Acta Phytopathol Sinica,2008,38:178–184
    178.Zhang X.W., Yuan Y.X., Wang X.W. QTL Mapping for TuMV Resistance in Chinese Cabbage[Brassica campestris L. ssp. pekinensis (Lour.) Olssom]. Acta Hortic Sinica,2009,36:731–736
    179.Zhang Y.Y., Li H.X., Ouyang B., Ye Z.B. Regulation of eukaryotic initiation factor4E and itsisoform: implication for antiviral strategy in plants. J Integr Plant Biol,2006,48(10):1129–1139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700