萝卜对芜菁花叶病毒病和黑腐病抗性的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萝卜(Raphanus Sativus L.)为十字花科萝卜属蔬菜作物,栽培历史悠久,在我国蔬菜生产中一直占有重要地位。萝卜病害一直是影响我国萝卜生产的重要因素,其中,发生最为普遍同时危害也最为严重的是芜菁花叶病毒(TuMV)病和黑腐病两大病害。为了实现对病害的有效防治,提高萝卜产品的品质和产量,最根本的解决办法是培育抗病品种。我国作为萝卜的起源地之一,种质资源丰富。开展萝卜资源对TuMV和黑腐病的抗性鉴定和评价,筛选优异抗源,解析其抗性遗传规律和挖掘抗性基因,对萝卜抗病基础理论研究和抗病遗传育种均具有重要的理论和现实意义。
     基于以上背景和目的,本研究对前人初步鉴定评价获得的部分代表性的萝卜抗、感种质资源进行TuMV和黑腐病抗性的重复鉴定,筛选出典型抗、感种质资源;在此基础上进行萝卜特定抗源对TuMV和黑腐病抗性遗传规律研究;通过分子遗传图谱的构建、QTL定位分析以及分子标记的方法,对萝卜TuMV和黑腐病抗性基因的遗传进行解析,挖掘抗病基因源。主要研究结果如下:
     1.萝卜代表性种质对TuMV和黑腐病抗性的重复鉴定:在萝卜种质对TuMV和黑腐病田间和苗期抗性初步鉴定筛选的基础上,对其中的26份抗、感特性存在明显差异的自交系进行了苗期抗性重复鉴定。筛选出对TuMV高抗的材料12份,抗病材料8份,中抗材料5份,感病材料1份;对黑腐病抗病的材料3份,中抗材料6份,感病材料6份,高感材料11份。在这些材料中,发现对TuMV和黑腐病均表现抗病的材料2份,均表现感病的材料1份。
     2.萝卜对TuMV和黑腐病抗性的遗传规律研究:采用完全双列杂交的配合力分析法对萝卜抗TuMV和黑腐病的遗传规律进行了初步研究,明确了在萝卜对TuMV和黑腐病抗病优势育种中亲本的选择和选配原则。同时,利用数量性状的主基因+多基因混合遗传的世代联合分析法,对萝卜抗两种病害的遗传特性进行了进一步解析,明确了萝卜对TuMV的抗性遗传符合“两对加性-显性-上位性主基因+加性-显性-上位性多基因”遗传模型;对黑腐病的抗性遗传符合“一对加性-显性主基因”遗传模型,同时存在多基因效应。并对各遗传模型中抗性表现的主基因遗传率和多基因遗传率以及基因间的互作效应进行了详细解析。各世代抗病毒病主基因遗传率在55 %~95 %之间,多基因遗传率为0~40.9 %,环境方差仅占总方差的4.3 %~10.1 %;F2世代抗黑腐病主基因遗传率为72.4%,多基因遗传率为9.07%,环境方差占表型方差的比率为18.5%。
     3.萝卜分子遗传图谱的构建:利用同时对萝卜TuMV和黑腐病存在明显抗性差异的自交系构建了包括360个单株的F2分离群体,以此群体为研究对象,首次采用优化的萝卜SRAP分子标记技术和SSR分子标记技术相结合的方法,构建萝卜分子遗传图谱,该图谱包括9个连锁群,由196个标记组成,图谱总长度736.2 cM,平均图距3.76 cM。
     4.萝卜对TuMV和黑腐病抗性基因的QTL定位和分子标记:应用构建的萝卜分子遗传图谱,通过多QTL模型作图法,首次对控制萝卜TuMV和黑腐病的抗性基因进行了QTL定位与遗传效应分析,共发现了控制萝卜对TuMV抗性和黑腐病抗性的4个QTL,这4个QTL分布在LG3和LG5连锁群上。在控制萝卜对TuMV抗性的2个QTL中,1个为增效位点,1个为减效位点,QTL的贡献率分别为7.3 %和11.7 %;控制黑腐病抗性的2个QTL中,有1个为增效位点,QTL的贡献率为26.6%,1个为减效位点,QTL的贡献为45.3 %。
     同时采用混合分组分析法(BSA)法对萝卜TuMV不同抗源的抗性基因进行分子标记研究,结果找到一个与抗病基因连锁的分子标记CoMe7F/BEm12R-120,连锁遗传距离为7.9 cM。
     5.与无毒基因对应的萝卜抗黑腐病基因的分子标记:首次应用从黑腐病菌Xcc_8004中分离出来的8个含有特定无毒基因的菌株对20份萝卜黑腐病抗、感材料进行筛选,发现有12份材料对不同的无毒基因菌株存在抗性反应,表明这12份材料中含有与相应的无毒基因对应的抗性基因。同时,应用以KB07-3和KB07-10为亲本构建的F2分离群体,采用BSA方法和SRAP分子标记技术对与无毒基因Xcc_3176对应的抗病基因进行了分子标记研究,找到了一个与该抗病基
Radish (Raphanus sativus L.) is a kind of cruciferous vegetable crops, and it has a very long history of cultivation and has occupied an important position in the vegetable production of China. Disease in radish has been always an important factor affecting the production of radish in China, and the most prevalent and serious diseases are turnip mosaic virus (TuMV) and black rot. In order to achieve effective prevention and treatment of the diseases and improve the quality and yield of radish, the most fundamental solution is to develop resistant varieties. China is one of the origins of radish and it is rich in radish genetic resources, so it has great significance to evaluate the resistance of the rich germplasm resources to TuMV and black rot, discover elite resistant genetic resources, further clarify its resistance inheritance and mine resistant genes for disease-resistance theory study and radish breeding practice.
     Based on above background and purpose, a repeated identification was carried out on the resistance of representative radish germplasm to TuMV and black rot, which were preliminarily identified in the previous study in our lab.Based on the typical resistant and susceptible radish germplasm screened out, the resistance inheritance of the given resistant genetic resources to TuMV and black rot were studied at the phenotype, and their resistant inheritance were further analyzed at molecular level by constructing radish molecular genetic map, locating QTLs and developing molecular markers. The main conclusions of this paper are as follows:
     1. Repetitive identification on the resistance of representative radish gerplasm to TuMV and black rot: The twenty-six inbred lines with obvious difference in the resistance to TuMV and black rot were repeatedly indentified in the light of previous preliminary identification in field conditions and at seedling stage.The result showed that 12 inbred lines were high resistant to TuMV , 8 inbred lines resistant, 5 inbred lines moderate resistant and 1 inbred lines susceptible; and 3 inbred lines were resistant to black rot , 6 inbred lines moderate resistant , 6 inbred lines susceptible, 11 inbred lines high susceptible. From the results, we found 2 inbred lines were resistant both to TuMV and black rot, and 1 sample was susceptible both to TuMV and black rot among them.
     2. Genetic analysis on the resistance of the given resistant germplasm to TuMV and black rot at the phenotype level: The resistance inheritance of radish germplasm to TuMV and black rot were studied through the combining ability analysis of complete diallel cross. It was made definite that the resistances to both diseases were dominant or partly dominant to susceptibility. The principle of parent choice and matching on the basis of the S.C.A and G.C.A was stressed in cross breeding of disease-resistance. The resistance inheritance of typcal resistant resources to TuMV and black rot was further analyzed using the joint segregation analysis of a mixed genetic model of major gene plus polygene in generations. It was proved that the inheritance of radish resistance to TuMV obeyed the“two pairs of additive - dominance– epistasis major gene plus additive - dominance– epistasis polygenes”genetic model; and the resistance inheritance of radish to black rot disease obeyed the“a pair of additive - dominance major gene”genetic model, and the polygenes effect existed at the same time. and the major gene heritability(MGH), the polygene heritability(PGH) and the ratio of environmental variance (EV) to total variance (TV) were estimated on the base of the genetic models. The MGH and the PGH for the resistance to TuMV were respectively 55 %~95 % and 0~40.9 % , the ratio of EV to TV was 4.3 %~10.1 % in different segregation populations; MGH and PGH for the resistance to black rot were 72.4% and 9.07%, the ratio of EV to TV was 18.5% in F2 population.
     3. Construction of radish molecular linkage map: A F2 segregation population was established applying two radish inbred lines which were obviously different in the resistance both to TuMV and black rot. A molecular genetic linkage map of radish was constructed on the basis of the population by two optimized molecular marker methods of SRAP and SSR. The molecular genetic linkage map included nine linkage groups and 196 markers, its total length was 736.2 cM, with an average map distance of 3.76 cM.
     4. QTL Mapping and molecular tagging of resistant genes to TuMV and black rot: The QTLs and their genetic effects of the genes resistant to TuMV and Black rot were mapped and dissected on the basis of the radish molecular genetic linkage map and with the multi-QTL model. It was found that 4 target QTLs intensively locating in LG3 and LG5 linkage groups. Among them 2 QTLs were related to the resistance to TuMV, of which one was effect-enhancing with the contribution rate of 7.3 %, another was the negative-effect with the contribution rate of 11.7 %. And 2 QTLs were related to the resistance to black rot, of which one was effect-enhancing QTLs and one was the effect-reducing QTL,the contribution rate was 26.6 % and 45.3 %.
     Meanwhile, the resistance gene to TuMV was tagged with help of the bulk segregation analysis (BSA). It was found that a molecular marker CoMe7F/BEm12R-120 was linked to resistance gene with the genetic linkage distance is 7.9 cM.
     5. Molecular tagging of resistant genes corresponding to avirulence genes of black rot pathogen in radish:Twenty radish inbred lines with obvious difference in resistance to black rot were screened with 8 strains containing different avirulence genes that were isolated from black rot pathogen Xcc_8004. It was demonstrated that 12 lines of them appeared resistant response to different avirulence gene strains, suggesting the existence of corresponding resistant genes. The molecular marker for the resistant gene corresponding to avirulence gene Xcc_3176 was studied in a segregation population F2 constructed from KB07-3 and KB07-10. By using of the BSA method and SRAP molecular marker system, a molecular marker CuMe6F/CoEm11R-260 was obtained, which was closely linked to the resistant gene with a genetic linkage distance of 7.6 cM.
引文
1.曹光亮,曹寿椿.不结球白菜抗病育种研究.南京农业大学学报,1995,18 (1):106~108.
    2.曹越平,杨庆凯.大豆抗灰斑病主基因的发现与遗传研究.遗传学报,2002,29(1):67~71.
    3.曹寿椿,朱月林,黄保健,等.不结球白菜抗病育种的研究ⅡTuMV抗源鉴定与筛选,南京农业大学学报,1990,13(2):28~32.
    4.陈惠明,卢向阳,刘小红,等.两个新发现的黄瓜性别决定基因遗传规律的研究.园艺学报,2005,32(5):895~898.
    5.陈学军,陈劲枫,方荣,等.辣椒始花节位遗传研究.园艺学报,2006,33(1):152~154.
    6.程伯英,武永慧,王翠仙,等.惠丰甘蓝对黑腐病的抗性鉴定研究.北方园艺,2002,(6):48~49.
    7.程振家,王怀松,张志斌,等.甜瓜白粉病抗性遗传机制的研究.江苏农业科学,2006(6):224~225.
    8.崔继哲.甘蓝抗病毒病遗传的研究.北方园艺,1989,6:1~5.
    9.段有德,李加纳.甘蓝型黄籽油菜种子皮壳率的遗传研究.西南农业大学学报,2004, 26(2):180~184.
    10.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    11.方中达.植病研究方法.北京:农业出版社,1998.
    12.冯辉,王五宏,徐娜,等.串番茄主要株型性状的遗传研究.中国农业科学,2008,41(12):4134~4139.
    13.冯兰香,徐玲.北京地区十字花科蔬菜芜菁花叶病毒株系分化研究.植物病理学报,1990,20:185~188.
    14.樊妙姬,M.J. Daniels.克隆包含拟南芥为寄主的甘蓝黑腐病菌Xcc1067无毒基因的DNA片段[J].广西农业大学学报,1996,15(1):30-37.
    15.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科学出版社,2002: 224~265.
    16.高军,徐海,苏小俊,等.普通丝瓜果长遗传规律分析.江苏农业科学,2007(5):123~125.
    17.高力,陈飞,周立人,等.小麦品种望水白的抗赤霉病性遗传分析.麦类作物学部,2005,25(5):5~9.
    18.龚静,朱玉英,吴晓光.甘蓝黑腐病抗性材料筛选及接种方法研究.上海农业科技, 2001,4:87~88.
    19.顾慧,戚存扣.甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析.作物学报,2008,34(3):376~381.
    20.韩德俊,曹莉,陈耀锋,李振岐.植物抗病基因与病原菌无毒基因互作的分子基础.遗传学报,2005,32(12):1319~1326.
    21.韩和平,孙日飞,张淑江,等.大白菜中与芜菁花叶病毒(TuMV)感病基因连锁的AFLP标记.中国农业科学,2004,37(4):539~544.
    22.侯北伟,窦秉德,章元明,等.小麦雌性育性的主基因+多基因混合遗传分析.遗传,2006,28(12):1567~1572.
    23.胡学军,邹国林.甘蓝分子连锁图谱的构建与品种性状的QTL定位.武汉植物学研究,2004,22(6):482~485.
    24.黄方,孟庆长,赵团结,等.大豆短叶柄性状的遗传分析和RAPD标记研究.作物学报,200531(6):818~820.
    25.黄祖仪.萝卜对TuM V抗性遗传的初步研究[硕士论文].南京:南京农业大学,1991.
    26.何礼远,孙福在,华静月,等.油菜黑腐病病原菌的鉴定.植物保护学报,1982,10(3):179-184.
    27.继九如,黄智慧,倪红伟.正交设计优化兴兴草ISSR-PCR反应体系研究.中国草地学报,2006,28(6):52~55.
    28.金梦阳.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱的构建.分子植物育种,2006,4(4):520~526.
    29.孔秋生,李锡香,向长萍,等.萝卜种质资源亲缘关系的RAPD分析.植物遗传资源学报,2004,5(2):156~160.
    30.刘志荣,王子欣.大白菜抗TuMV抗源选选育,华北农学报,1990,5(1):85~88.
    31.黎炎,李文嘉,王益奎,等.节瓜果皮颜色遗传规律的研究.北方园艺,2007(10):14~15.
    32.李广军,程利国,张国政,等.大豆对豆卷叶螟抗性的主基因+多基因混合遗传.大豆科学,2008,27(1):33~37.
    33.李广军,程利国,张国政,等.大豆对豆卷叶螟的主基因+多基因混合遗传.大豆科学,2008,27(1):34~41.
    34.李经略,赵晓明,李惠兰.甘蓝苗期黑腐病菌致病性分化研究.陕西农业科学,1990,(3):26~27.
    35.李省印.大白菜抗芜菁花叶病毒遗传规律研究.陕西农业科学,1991,4:1~3.
    36.李媛媛,沈金雄,王同华,等.利用SRAP、SSR和AFLP标记构建甘蓝型有才连锁图谱.中国农业科学,2007,40(6):1118~1126.
    37.李红双.番茄抗根结线虫病基因的分子标记研究[硕士论文].哈尔滨:东北农业大学,2006.
    38.梁景霞,祁建民,吴为人,等.烟草DNA的提取与SRAP反应体系的建立.中国烟草学报,2005,11(4):33-38
    39.林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图谱的构建.科学通报,2003,48(15):90~93.
    40.林忠旭,张献龙.棉花SRAP遗传图谱的构建.科学通报,2003,48(15):1676~1679.
    41.刘朝晖,张旭,李浩兵,等.小麦品种纹枯病抗性遗传的初步研究.南京农业大学学报,1999,22(3):5~8.
    42.刘进元,丛靖莉,潘明祥.植物抗病基因的结构、功能与进化.植物科学进展1998,(第一卷).
    43.刘来福,毛盛贤,黄远樟.作物数量遗传.北京:农业出版社,1984.
    44.刘栩平.我国十省(市)十字花科蔬菜芜菁花叶病毒(TuMV)株系分化研究.病毒学杂志,1990,1:82~87.
    45.刘雪平,等.甘蓝型油菜遗传图谱的构建及芥酸含量的QTL分析.作物学报,2005,31(3):275~282.
    46.刘松,宋文芹,赵前程,等.与花椰菜(Brassica oleracea ssp .botrytis)抗黑腐病基因连锁的RAPD标记[J].南开大学学报(自然科学版),2002,35(1):126~128.
    47.刘雅辉,闫红飞,杨文香,等.小麦抗叶锈病基因Lr19的SRAP标记[J].华北农学报,2007,22(4):193~196.
    48.刘金元,刘大钧,陈佩度,等.分子标记辅助育种新新尝试与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用.南京农业大学学报,1997,20(2):1~5.
    49.刘金元,段霞瑜.分子标记辅助鉴定小麦抗白粉病品种(系)所含Pm基因.植物病理学报,2000,30(2):133~139.
    50.芦燕,张鲁刚,惠麦侠,等.陕西省大白菜主产区黑腐病致病型的研究.西北农林科技大学学报(自然科学版),2008,36(10):331~831.
    51.陆光远,杨光圣.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004,31(11):1309~1315.
    52.鹿英杰.大白菜对抗性遗传规律的研究.黑龙江农业科学,1988,6:27~31.
    53.罗庆云,於丙军,刘友良,等.栽培大豆耐盐性的主基因+多基因混合遗传分析.大豆科学,2004,23(4):239~244.
    54.马渐新,周荣华,董玉琛,等.来自长穗燕麦草的Fv, J,麦条锈病基因的定位.科学通报,1999,44(1):65~69.
    55.缪体云,刘玉梅,方志远,等.一个结球甘蓝DH群体主要农艺性状的遗传效应分析.园艺学报,2008,35(1):59~64.
    56.莫成库,韩见思,靳长思,等.萝卜品种配合力分析研究初报.吉林农业科学,1992,(1):70~71.
    57.莫惠栋.质量一数量性状的遗传分析I.遗传组成和主基因基因型鉴别.作物学报,1993,19(1):1~6.
    58.钮心恪.大白菜抗霜霉病、病毒病原始材料的筛选及抗性遗传规律的研究.中国蔬菜,1984, 4:28~32.
    59.潘俊松,王刚,李效尊,等.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.自然科学通报,2005,15 (2):167~172.
    60.彭锐,雷建军.甘蓝抗黑腐病研究现状.西南园艺,1998,(3):29~32.
    61.彭飒,郭美丽,陈跃华,等.红花SRAP扩增体系的建立和优化.第二军医大学学报,2006,27(5):544~547
    62.戚存扣,盖钧镒,章元明.甘蓝型油菜芥酸含量主基因+多基因遗传.遗传学报,2001,28(2):182~187.
    63.钱虎君,盖钧镒,喻德跃.大豆豆腐产量、品质及加工性状德遗传变异和遗传规律研究.作物学报,2001,27(6):880~885.
    64.裘维蕃.植物病毒学.北京:科学出版社,1985.
    65.申时全,曾亚文,李绅崇,等.应用主基因-多基因混合模型研究昆明小白谷孕穗期耐冷性的遗传.植物遗传资源学报,2004,5(3):252~255.
    66.沈利爽,何平,徐云碧,等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115~1122.
    67.盛志廉,陈瑶生.数量遗传学.北京:科学出版社,1999.
    68.苏小俊,徐海,袁希汉,等.普通丝瓜第1雌花节位遗传研究.福建农业科学.2007,22(2):154~157.
    69.孙小镭,王永强,王冰,等.黄瓜嫩果果皮叶绿素含量的遗传.园艺学报,2004,31(3):327~331.
    70.孙祖东,盖钧镒,崔章林.大豆抗食叶性害虫遗传的初步研究.大豆科学,1999,18(4):300~305.
    71.孙祖东,盖钧镒.大豆对食叶性害虫抗性的研究.中国农业科学,1999,32(增刊):81~85.
    72.索文龙,戚存扣.甘蓝型油菜油酸含量的主基因+多基因遗传分析.江苏农业学报,2007,23(5):396~400.
    73.唐纪良.甘蓝黑腐病黄单胞菌胞外蛋白酶的致病作用[J].广西农学院学报,1992,11(1):81~84.
    74.万平等,李大钧.SSR标记与植物遗传育种研究.安徽农业大学学报,1998,25(1):92~95.
    75.汪隆植,何启伟.中国萝卜.北京;科学技术文献出版社,2005.
    76.汪隆植.夏秋萝卜抗芜菁花叶病毒品种资源的研究.南京农业大学学报,1994,1l(3):29~34.
    77.王爱民,汪隆植.萝卜对芜菁花叶病毒的抗性和其叶内游离氨基酸含量的关系.植物病理学报,1991,21(3):193~197.
    78.王超.甘蓝抗TuMV遗传规律的研究.东北农业大学学报,1991,22(4):328~332.
    79.王翠花.山东大白菜TuMV株系分化研究.山东农业科学,1993,5:13~15.
    80.王佳,梁国华.正交设计优化黄瓜ISSR体系.分子植物育种,2005,4(3):439~422.
    81.王建康,盖钧镒.数量性状主+多基因混合遗传的P1, P2, F2、和F2:3联合分析方法.作物学报,1998,24(6):651~659.
    82.王庆钰,朱立宏,盖钧镒.水稻广亲和性遗传的主基因一多基因混和模型分析.遗传,2004,26(6):898~902.
    83.王淑芳,石玉真,刘爱英.陆地棉纤维品质性状主基因与多基因混合遗传分析.中国农学通报,2006,22(2):157~161.
    84.王建设,宋曙辉,唐晓伟,等.甜瓜白粉病抗性基因的遗传与分子标记.华北农学报,2005,(1):24-26.
    85.魏毓棠,等.大白菜对芜菁花叶病毒(辽宁一号分离物)的抗性遗传规律研究.植物病理学报,1991,21(3):199~203.
    86.武剑.白菜类蔬菜锌积累和锌胁迫反应的遗传分析[博士学位论文] .北京:中国农业科学院,2005.
    87.徐立彬.大白菜对芜菁花叶病毒(TuMV)抗病性鉴定,北方园艺,1996,6:21~23.
    88.向道权,黄烈健,曹永国,等.玉米产量性状主基因+多基因遗传效应的初步研究.华北农学报,2001,16(3):1~5.
    89.肖崇刚,刘灼均,蔡岳松.甘蓝黑腐病菌细菌学研究.西南农业大学学报.1996,18(2):162~164.
    90.许勇,欧阳新星,张海英,等.与西瓜野生种质抗枯萎病基因连锁的RAPD标记.植物学报,1999,41(9):952-955.
    91.薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗自叶枯病水盘恢复系.浙江农业大学学报,1998,24(6):631~638.
    92.杨勇,李雪雁,李多川.植物病原细菌无毒基因与植物抗病性.生命的化学,2001(21)6:505~506.
    93.叶青静,杨悦俭,王荣青,等.番茄叶霉菌无毒基因的研究进展.分子植物育种,2005,3(1):1~13.
    94.尹天水,王树会,石磊.烤烟烟叶钾含量的遗传分析.烟草科技,2005,5:34~38.
    95.于拴仓.大白菜分子遗传图谱的构建与分析.中国农业科学,2003,36(2):190~195.
    96.于拴仓,柴敏,姜立纲.番茄叶霉病高抗基因Cf-9、Cf-11和Cf-19的分子标记[J].植物病理学报,2005,35(3):286-288.
    97.余艳,陈海山,葛学军.简单重复序列区间(ISSR)引物反应条件优化与筛选.热带亚热带植物学报,2003,11(1):15~19.
    98.曾亚文,申时全,徐绍中.云南软米低直链淀粉含量及相关性状遗传分析.植物遗传资源学报,2004,5(1):12~16.
    99.宗兆锋.植物病理学原理.中国农业出版社,北京:2002.
    100.张德水,陈受宜.植物抗病的分子生物学研究进展.植物病理学报,1997.27(2):97~103.
    101.张洁夫,戚存扣,蒲惠明,等.甘蓝型油菜花瓣缺失性状的主基因+多基因遗传分析.中国油料作物学报,2007,29(3):227~232.
    102.张俊华等.大白菜抗芜菁花叶病毒基因EST-PCR-RFLP分子标记的研究.植物病理学报,2006,36(6):523~527.
    103.张立平,赵昌平,单福华,等.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析.作物学报,2007,33(9):1553~1557.
    104.张立阳.大白菜永久高密度分子遗传图谱额构建.园艺学报,2005,32(2):249~255.
    105.张鲁刚,王鸣,等.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,2(5):485~489.
    106.张素勤,顾兴芳,张圣平,等.黄瓜白粉病抗性遗传机制的研究.园艺学报,2005,32(5):899~901.
    107.张文修,李亚鹏.十字花科蔬菜黑腐病的发生与防治.现代农业,2006,(7):8~9.
    108.张勇,张伯桥,高德荣,等.小麦赤霉病抗源H35的遗传模式分析.麦类作物学报,2005,25(4):39~43.
    109.张玉勋,曲士松,黄宝勇.萝卜种质资源抗黑腐病鉴定.山东农业科学,2000,(6):33~34.
    110.张月娟,朱秀秀,陈新,等.番茄细菌性斑点病无毒基因研究进展.植物保护,2008,34(4):12~17.
    111.张增翠,候喜林,曹寿椿,等.不结球白菜维生素C和可溶性糖含量的遗传分析.园艺学报,1999,26(3):170~174.
    112.张玉勋,徐月军,张炎光,等.萝卜黑腐病菌致病性测定及苗期抗性鉴定方法的初步研究[J].山东农业科学,1999,2:34-36.
    113.张峰,宋文芹,李凌,等.利用AFLP-银染法筛选与抗甘蓝黑腐病性状连锁的分子标记[J].南开大学学报(自然科学版),1999,32(3):178-180.
    114.赵晋铭,菜用大豆主要品质性状的遗传与基因定位研究,2007,南京农业大学博士学位论文.
    115.赵新亮,马强.玉米SRAP反应体系的建立与优化.安徽农业科学,2006,34(15):3619~3620.
    116.赵建平,周钗美,陈集双,等.芜菁花叶病毒特性的研究进展.微生物学通报,2004,31(6):100~104.
    117.周宝良,朱协飞,郭旺珍,等.异常棉渐渗的陆地棉高品质种质系纤维特性遗传.棉花学报,2006,18(1):60~62.
    118.周桂元,梁炫强.花生抗黄曲霉侵染主微效基因分析.花生学报,2002,3(10):11~14.
    119.A. Levi, C. Thomas, T. Joobeur, X, Zhang, A. Davis. A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var, citroides×C, lanatus var, lanatus)×Citrullus colocynthnis. TAG Theoretical and Applied Genetics. 2002, 105: 555~563.
    120.Aglai-MAR,Biyashey R M,Yang G P,et a1.Extraordinarily pelymorplfic microstate Uite DNA in barley:species diversity,chromosomal locations, and population dynamical. Proc Natl Sci,1994, 91: 5466~5470.
    121.Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphism of simple sequence repeats DNA in soybean. Genetics, 1992, l32:1131~l139.
    122.Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing 2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503~15507.
    123.Allen R L,Bittber-Eddy P D,Grenville-Briggs L J.,et al. Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science,2004,306:1957~1960.
    124.Bain D C. Resistance of Brassica seedling to black rot..Phytopathology. 1952, 42: 497~500.
    125.Bain D C. Resistance of cabbage to black rot. Phytopathology. 1955, 45: 35~37.
    126.Barber M S, Bertram R E, Ride J P, Chitin oligosaecherides elicit lignification in wounded wheat leaves. Physiol Mol Pathol, 1989, 34: 3~12.
    127.Bell C J, Ecker J H. Assignment of 30 microsatellhe loci to the linkage map of Arabidopsis. Genome, 1994, (21)19: 137~144.
    128.Bett, KE, Lydiate DJ. Genetic analysis and genome mapping in Raphanus. Genome, 2003, 46: 423~430.
    129.Botstein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980, 32: 314~331.
    130.Bouchez A, Hospital F, Causse M, et al. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics, 2002, 162(4): 1945~1959.
    131.Chaib J, Lecomte L, Buret M, et al. Stability over genetic backgrounds, generations and years ofquantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet, 2006, 112(5): 934~944.
    132.Chang M M,Horavitz D, Culley D et al. Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding, fungal infection and elicitor chitosam. Plant Mol Biol, 1995, 28: 105~111.
    133.Curtis Ian S. Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering. Transgenic Research. 2002, 11(3): 249~256.
    134.Chowdhury M A, Andrahennadi C P, Slinkard A E et al. RAPD and SCAR markers for resistance to acochyta blight in lentil, Euphytica, 2001,118:331~337.
    135.De Vicente M C, Tanksley S D. QTL analysis of transgressive segregation in an intrespecific tomtto crosses. Genetics, 1993, 134: 585~596.
    136.Dib C. A comprehe nsive genetic map of the human genome based on 5264 nficrosatellites. No, tule, 1996, 380: 152~154.
    137.Dietrich W F, Miller J C. A comprehensive genetive map of the mouse genome. Nature, 1996, 380: 149~152.
    138.Donis-keller, Faure S, et a1. A comprehensive genetic map of the human genome based on RFLP microsatelites. Nature, l996, 380: 152~154.
    139.EdnarG. Wulff,Cames M,Mguni, et al.,Biological control of black rot (Xanthomonas campestris pv. Campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabuce, European Journal of plant pathology, 2002,108:317~325.
    140.Elston R C, Stewart J. The analysis of quantitative trait differences between two homozygous lines. Genetices, 1973, 108: 733~744.
    141.End C V D.Cutionlytic enzymes in relative to pathogenesis. Ann Rev Phytopathol, 1992, 30: 369~389.
    142.Eshed Y, Zamir D. An introgression line population of lycepersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated. Genetics, 1995, 141: 1147~1162.
    143.Ferreira M E. RFLP mapping of Brassica napus using doubled-haploid lines. Appl Genet. 1994, 89: 615~621.
    144.Flor HH. Annu Rev Phytopathol, 1971, 9: 275~296.
    145.Gay P A., Tuzun S. Temporal and spatial assessment of defense responses in resistant and susceptible cabbage varieties during infection with Xanthomonas campestris pv. Campestris. Physiological and Molecular PlantPathology. 2000, 57, (5): 201~210.
    146.Green S K, Deng T C. Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Dis, 1985.69: 28~31.
    147.Greenberg J T, Yao N. The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol, 2004, 6 (3): 201~211.
    148.Guo H, M.H. Dickson, J.E. Hunter. Brassica napus sources of resistance to black rot in crucifers and inheritance of resistance. HortScience. 1991, 26: 1545~1547.
    149.Hamada H, Kakunag T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature,1982,298: 396~398.
    150.Hughes SL, Green SK, Lydiae DJ, et al. Resistance to Turnip mosaic virus in Brassica rapa and B. napus and the analysis of genetic inheritance in selected lines. Plant Pathol, 2002, 51: 567~573.
    151.Hunter, J.E, M.H. Dickson, J.W. Ludwig. Sources of resistance to black rot of cabbage expressed in seedlings and adult plants. Plant Dis 1987, 71: 263~266.
    152.Hopkins C M, White F F, Choi S H, et al .Identification of a family of avirulence genes from Xanthomonas pv oryzae. Mol Plant-Microbe Interact,1992,5:451~459.
    153.J.Y.Yoon. S.K. Green and R.T. Opena. Inheritance of resistance to turnip mosaic virus in Chinese cabbage, Euphytica. 1993, 69:103~108.
    154.Jansen R C. A general mixture model for mapping quantitative trait loci by using molecular markers. Theor Appl Genet, 1992, 85: 252~260.
    155.Jansen R C. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics.1994.138: 871~881.
    156.Jenner C E. Walsh J A.Pathotypic variation in turnip mosaic virus with specid reference to European isolates. Plant Pathology, 1996, 45: 848~856.
    157.Kamoun S, Kadmar HV, Tola E, et al. Incompatible interaction between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpX locus. Molecular Plant-microbe Interactions. 1992, (5): 22~33.
    158.Kearsey M J, Farquhar A G L.QTL analysis in plants; 1998, 80: 137~142.
    159.Kinishita T.Report of the committee on gene symbolization, nomenclature and linkage group.RiceBudak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet., 2004, 108: 328~334.
    160.Koniecyzn A and Ausubel F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR based markers. Plant , 1993, 4: 403~410.
    161.Lander E. S., Botstein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989, 121: 185-199.
    162.Lecomte L, Duffe P, Buret M, et al. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds.Theor Appl Genet, 2004, 109(3): 658~668.
    163.Leung H.and H.Williams. Cytoplasmic, male sterile Brassica campestris breeding lines with resistance to culbroot turnip mosaic and downy mildew. Hort Science.1983, 18(5): 774~775.
    164.Li G, Quiros CF. Sequence-related amplified polymorpgism ( SRAP) a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica .Theor Appl Genet, 2001, 103: 455~ 461.
    165.LIG, GAO M, YANGB,et al. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping.Theor Appl Genet, 2003,107 (1):168-180.
    166.Lin Z X, Zhang X L, Nie Y C, et al. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulletin, 2003, 48(19): 2063~2067.
    167.Lin ZX, Zhang XL, Nie YC, He DH, Wu MQ. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulletin., 2003, 48: 2063~2067.
    168.Mccouch S R, Temnykh S,Lukashova A,et al Micro satellite markers in rice: Abundance, diversity, and applications [A]. Rice Genetics IV[C].New Delhi(India):Science Publishers, lnc 2001 (IRRI SP1):117~l35.
    169.McDonald J G. Hiebert E. Characterization of the capsid and cylindrical inclusion protein of three strains of turnip mosaic virus. Virology, 1975.63: 295~303.
    170.Morton N E, Maclean C J. Analysis of family resemblance. III. Complex segregation of quantitative traits. Am J Hum Genet, 1974, 26: 489~503.
    171.Mguni CM . Bacterial black rot (Xanthomonas campestris pv. campestris) of vegetable brassicas in Zimbabwe. Ph.D thesis, The Royal Veterinary and Agricultural University and Danish Government Institute of Seed Pathology,1996.
    172.Ohshima K. Yamaguchi Y, Hirota R, Hamamoto T, Tomimura K, Zhong yang T, Sano T,Azuhata F, Walsh JA,Fletcher J, Chen J, Ge mA. Gibbs A.The molecular evolution of turnip mosaic virus:Evidence of host adaptation, genetic recombination and geographical spread. Journal of General Virology. 2002. 83: 1511~1521.
    173.Olson M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science, 1989, 254(4925): 1434~1435.
    174.Panda N and G S Khush. Crop plant and insect diversity. In: Host plant resistance to insects. UK: Biddies Ltd, Guildford. 1995b, P8~20.
    175.Paran I, Kesseli R, Michelmore R. Identification of restriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce, using near-isogenic lines. Genorne, 1991, 34(6): 1021~027.
    176.Paul H Williams. Black Rot: A Continuing Threat to Crucifers. Plant Dis.1980, 64, (8): 737~741.
    177.R.S.Jamwal P.P.Sharma. Inheritance of resistance to black rot (Xanthomonas campestris pv.campestris) in cauliflower (Brassica oleracea Var. botrytis). Euphytica. 1986, 35: 941~943.
    178.Riaz A , Potter D ,Stephen M .Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Amer Soc Hort Sci, 2004, 129: 204~211.
    179.Riaz A, Li G, Quresh Z, Swatic M S, Quiros C F.Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant breeding. ,2001,120: 411~415.
    180.Robertson D S. A possible technique for isolating genetic DNA for quantitative traits inplants. J. Theor Bio, 1985, 117: 1~10.
    181.Rodolphe F, Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134: 1277~1288.
    182.Rusholme RL.The genetic control of resistance to turnip mosaic virus (TuMV) in Brassica. PhD thesis. University of East Anglia, 2000.
    183.Rehmany A P, Gordon A, Rose L.E., et al. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 highly polymorphic resisrance genes from two Arabidopsis lines. The plant cell,2005,17:1839~1850.
    184.S.K.Suh.S.K.Green and H. G. Park. Genetics of resistance to five strains of turnip mosaic virus in Chinese cabbage. Euphytica. 1995.81:71~77.
    185.Sanchez F, Wang X, Jenner C E. Strains of turnip mosaic pot virus as defined by the molecular analysis of the coat protein gene of the Virus Research. 2003.94:33~43.
    186.Schaad NW, JG Dianese. Cruciferous weeds as sources of inoculum of Xanthommonas campestris in black rot of cruciferous. Phytopathology. 1981, 71, (11):1215~1220.
    187.Senior M L, Heun . Mapping maize microsateUites and polymerase chain reaction confirmation of the targeted repeats using act primor.Genome, 1993, 36: 884~889.
    188.Shattuck V I. The biology, epidemiology. And control of turnip mosaic virus. Plant Breed Rev, 1992, 14: l99~238.
    189.Shukla D D, Ward C W,Brunt A A.Turnip mosaic virus In:The Potyvirudae CAB International, Wailing ford, Ox on OXIO 8DE, UK, 1994, 385~389.
    190.Song K M, Osborn. T C. A linkage map of Brassica rapa (syn. Campestris) based on restriction fragment length polymorphism loci J. Theor Appl Gene, 1991, 82: 296~304.
    191.Sprague G F, Tatum L A. General specific combining ability in single crosses of corn. Amer.Soc. Agrom., 1942, (34): 923~932.
    192.Shan W, Cao M, Leung D., et al .The Avr1b locus of Phytophthora sojae encodes anelicitor and a regulator required for avirulence in soybean plants carrying resistance gene RPs1b. Molecular plant-microbe Interaction,2004,17:394~403.
    193.Tominura K, Spark J, Katis N, et al .Comparisons of the genetic structure of populations of Turnip mosaic virus in west and east Eurasia. Virology, 2004, 330(2): 408~423.
    194.Tomlinson J A.Epidemiology and control of virus diseases of vegetables. Ann Appl Bilo, 1987, 110: 661~ 681.
    195.Vander Schaar W, Alonso-blanco C, Leonl, et al. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity, 1997, 79: 190~200.
    196.Vicente J.G., J.D. Taylor, A.G. Sharpe, et al. Inheritance of race-specific resistance toXanthomonas campestris PV. Campestris in Brassica genomes. Phytopathology. 2002, 92: 1134~1141.
    197.Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J,Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407~4414.
    198.Vivian A, Arnold D. Bacterial effector genes and their role in host-pathogen interactions. J Plant Pathol, 2000,82:163~178.
    199.Walsh J A, Jenner C E .Turnip mosaic virus and the quest for durable resistance. Molecular Plant Pathology, 2002, 3(5): 289~300.
    200.Wang G, Pan JS, Li XS, He H, Wu AZ, Cai R. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Science in China Ser. C Life Sciences, 2005, 48: 213~220.
    201.Wiliams J C K, Kubelik A R, Livak K J, Rafalshi J A, Tingey S V .DNA polymorphisms amplified by arbitrary primes are useful as genetic markers. Nucl Acids Res, 1990, 18 (22): 6531~6535.
    202.William et al. Inheritance of Resistance in Cabbage to Black Rot. Phytopathology, 1972, 62: 247~252.
    203.Wu K S, Tanksley S D.Abundance polymorphisms and genetic mapping of microstate Uites in flee. Mole Cen Cenet, 1993, 24 1: 225~235.
    204.Xiao J, Li J, Yuan L, et al, Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from subspecific rice cross. Theor Appl Genet, 1996, 92:230-244.
    205.Xu S J, Singh R J, Hymowitz T. Establishment of a cytogenetic map soybean: progress and prospective. Soybean Genet. Newslet. 1997, 24:121~122.
    206.Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Bio, 1997, 35: 145~153.
    207.Yoshii H. On the strain distribution of turnio mosaic virus Ann. Phytopathol Soc, Jpn.1963, 28: 221~227.
    208.Zhu J, Weir B S. Mixed model approaches for the genetics of quantitative traits. In: Chen LS, Ruan SG, Zhu J (eds) Advanced topics in biomathematics: Proc Int Conf on Mathematical Biology, World Scientific Publishing , Singapore, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700