大型特低扬程泵装置水力性能优化与综合比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型特低扬程泵站在水资源调配、水环境改善、城市防洪和农业灌排等工程中应用广泛。特低扬程泵站具有扬程低、流量大的特点,用于调水和水环境改善的泵站还具有年运行时间长的特点。这些泵站对泵装置效率要求很高,并要求泵装置具有结构简单、电机通风散热条件好、安装检修方便、运行维护方便和投资少等优点。适用于特低扬程泵站的特低扬程泵装置具有流道水力损失小、泵装置效率高的优点,其包括水平轴伸泵装置、灯泡贯流泵装置、竖井贯流泵装置和潜水贯流泵装置等4种类型。每种类型的泵装置具有各自的特点,不同型式泵装置的水力性能有何差距、选择何种型式的泵装置应用于特低扬程泵站是需要研究的问题。
     本文以我国大型特低扬程泵站的建设为背景,对不同型式的特低扬程泵装置分别进行较为深入细致的优化水力设计研究,最大限度地提高其水力性能;在优化水力设计研究的基础上对其水力性能进行比较,并对不同型式特低扬程泵装置的机组结构、安装检修、运行管理及投资等综合指标进行比较研究;力争找出水力性能优异且具有结构简单、安装检修方便、运行管理方便和投资少等优点的特低扬程泵装置。主要研究内容和成果如下:
     (1)根据特低扬程泵装置进、出水流道的作用和水力设计的要求,提出了泵装置及进、出水流道优化水力设计的目标,并建立了进、出水流道优化水力设计的目标函数。基于泵装置效率与水泵效率及流道效率的关系,指出流道效率与水泵效率同等重要,分析了水泵效率的水平和发展趋势,研究了水泵水力模型测试段与低扬程泵装置中泵段的差别,修正了水泵水力模型测试段效率:研究了流道效率与泵装置扬程和流道水力损失之间的关系,提出了减少流道水力损失是特低扬程泵装置优化水力设计的关键问题,并从降低流速和改善流态的角度提出了减少流道水力损失的具体途径。对特低扬程泵装置优化水力设计的方法进行了研究,分析了泵装置模型试验和泵装置数值模拟研究方法的优缺点,提出了流道模型试验和流道数值模拟的研究方法,研究了几种研究方法相互之间的关系,提出了低扬程泵装置优化水力设计采用“以流道分析研究方法为主、以泵装置整体研究方法为辅,以数值模拟研究方法为主、以模型试验研究方法为辅”的研究方法思路。
     (2)采用流道数值模拟方法对水平前轴伸泵装置进、出水流道分别进行了三维流动数值模拟和优化水力设计研究,提高了流道的水力性能,并揭示了流道内的水流运动和湍动能分布规律;采用泵装置数值模拟方法对水平前轴仲泵装置优化方案进行三维流动数值模拟,分析了其内部水流运动状态,并验证了流道数值模拟的结果;采用流道模型试验方法对水平前轴伸泵装置进、出水流道优化方案分别进行模型试验,观察了流道内的流态、测试了流道的水力损失,并检验和确认了流道数值模拟的结果。采用流道数值模拟方法对水平后轴伸泵装置进、出水流道分别进行三维流动数值模拟和优化水力设计研究,提高了流道的水力性能,并揭示了流道内的水流运动和湍动能分布规律;采用泵装置数值模拟方法对水平后轴伸泵装置优化方案进行三维流动数值模拟,分析了其内部水流运动状态,并验证了流道数值模拟的结果。在对水平前轴伸和水平后轴伸泵装置分别进行优化水力设计的基础上比较了其水力性能,水平前轴伸泵装置的水力损失小于水平后轴伸泵装置。
     (3)采用流道数值模拟方法对前置灯泡贯流泵装置进、出水流道分别进行了三维流动数值模拟和优化水力设计研究,提高了流道的水力性能,并揭示了流道内的水流运动和湍动能分布规律;采用泵装置数值模拟方法对前置灯泡贯流泵装置优化方案进行三维流动数值模拟,分析了其内部水流运动状态,并验证了流道数值模拟的结果;采用流道模型试验方法对前置灯泡贯流泵装置进、出水流道优化方案分别进行模型试验,观察了流道内的流态、测试了流道的水力损失,并检验和确认了流道数值模拟的结果。采用流道数值模拟方法对后置灯泡贯流泵装置进、出水流道分别进行三维流动数值模拟和优化水力设计研究,提高了流道的水力性能,并揭示了流道内的水流运动和湍动能分布规律:采用泵装置数值模拟方法对后置灯泡贯流泵装置优化方案进行三维流动数值模拟,分析了其内部水流运动状态,并验证了流道数值模拟的结果;采用流道模型试验方法对后置灯泡贯流泵装置进、出水流道优化方案分别进行模型试验,观察了流道内的流态、测试了流道的水力损失,并检验和确认了流道数值模拟的结果。在对前置灯泡和后置灯泡贯流泵装置分别进行优化水力设计的基础上比较了其水力性能,前置灯泡贯流泵装置的水力损失小于后置灯泡贯流泵装置。
     (4)分析了前置竖井贯流泵装置进、出水流道的特征,分别建立了进、出水流道的几何数学模型,以实现流道的参数化设计;采用流道数值模拟方法对前置竖井贯流泵装置进、出水流道分别进行了三维流动数值模拟和优化水力设计研究,提高了流道的水力性能,并揭示了流道内的水流运动和湍动能分布规律:研究了流道长度、宽度和高度等3个控制尺寸对前置竖井贯流泵装置进、出水流道水力性能的影响,得到流道水力性能与各控制尺寸变化的关系曲线;采用泵装置数值模拟方法对前置竖井贯流泵装置优化方案进行三维流动数值模拟,分析了其内部水流运动状态,并验证了流道数值模拟的结果;采用流道模型试验方法对前置竖井贯流泵装置进、出水流道优化方案分别进行模型试验,观察了流道内的流态、测试了流道的水力损失,并检验和确认了流道数值模拟的结果。采用流道数值模拟方法对后置竖井贯流泵装置进、出水流道分别进行三维流动数值模拟和优化水力设计研究,提高了流道的水力性能,并揭示了流道内的水流运动和湍动能分布规律;采用泵装置数值模拟方法对后置竖井贯流泵装置优化方案进行三维流动数值模拟,分析了其内部水流运动状态,并验证了流道数值模拟的结果;采用流道模型试验方法对后置竖井贯流泵装置进、出水流道优化方案分别进行模型试验,观察了流道内的流态、测试了流道的水力损失,并检验和确认了流道数值模拟的结果。在对前置竖井和后置竖井贯流泵装置分别进行优化水力设计的基础上比较了其水力性能,前置竖井贯流泵装置的水力损失小于后置竖井贯流泵装置。对前置竖井贯流泵装置进、出水流道的流场进行了多角度的详细剖析,研究表明其具有优异水力性能的原因是因其具有优异的内特性。采用泵装置模型试验方法对前置竖井贯流泵装置的水力性能进行了测试,前置竖井贯流泵装置在设计扬程工况(设计扬程3.1m、设计流量33.4m3/s)和平均扬程工况(平均扬程2.7m、设计流量33.4m3/s)时的泵装置效率分别达83.11%和83.02%,临界空化余量分别为4.63m和4.28m,泵装置水力性能十分优异。
     (5)在对不同型式特低扬程泵装置分别进行优化水力设计研究的基础上,对其水力性能进行了定量比较,按流道水力损失从小到大排依次为前置灯泡贯流泵装置、前置竖井贯流泵装置、后置灯泡贯流泵装置、水平前轴伸泵装置、水平后轴伸泵装置和后置竖井贯流泵装置。对水平前轴伸泵装置、后置灯泡贯流泵装置和前置竖井贯流泵装置等3种型式泵装置的泵装置效率和土建尺寸、泵组结构、轴承受力条件、电机散热冷却、设备投资、安装检修及运行维护等综合指标进行了比较研究,比较结果表明:前置竖井贯流泵装置在特低扬程条件下获得了十分优异的水力性能,并具有结构较简单、电机通风散热条件较好、安装检修较方便、投资较低和运行维护较方便等优点。前置竖井贯流泵装置在特低扬程泵站中具有十分广阔的应用前景。
Large pumping station with especial low head is applied widely to projects of water diversion, water environment improvement, urban flood control, agriculture irrigation and drainage, etc. The large pumping station with especial low head has characters of low head and large discharge, and the pumping station which is applied to the projects of water diversion and water environment improvement also has character of long run time. The pumping station has high standard in pump system efficiency, and requires that the pump system has advantages of simple structure, good electromotor radiating and cooling condition, convenient installation and service, convenient operating maintenance and low equipment investment. Especial low head pump system which is suitable to the pumping station has advantages of little hydraulic loss and high pump system efficiency, and the pump system includes four types:horizontal extension shaft pump system, bulb tubular pump system, shaft tubular pump system, submerged tubular pump system. Each type of pump system has each character, what is the difference among different type of pump systems and which type of pump system should be chosen to be applied to the pumping station with especial low head are the questions that need to be researched.
     With the background of construction of large pumping station with especial low head in our country, sufficient optimum hydraulic design for different type of pump systems have been completed respectively, so as to improve their hydraulic performance as far as possible. Based on the optimum hydraulic design research, their hydraulic performance was compared, and their comprehensive index including pump assembly structure, installation and service, operating management and equipment investment were compared. According to the comparative results, the especial low head pump system which has excellent hydraulic performance and has advantages of simple structure, convenient installation and service, convenient operating management and low investment was find out. The main research contents and achievements are as follows:
     (1) According to the functions and hydraulic design requirements of inlet&outlet conduit of especial low head pump system, objectives of optimum hydraulic design for pump system and inlet&outlet conduit were put forward, and objective functions of optimum hydraulic design for inlet&outlet conduit were set up. Based on the relationship among pump system efficiency, pump efficiency and conduit efficiency, the opinion that the conduit efficiency is as important as the pump efficiency was pointed out. Level and development trend of the pump efficiency was analyzed, different between pump model test section and pump segment of low pump system was researched, and efficiency of the pump model test section was modified. Relationship among the conduit efficiency, pump system head and conduit hydraulic loss was researched, to reduce the conduit hydraulic loss as far as possible which is the key problem of optimum hydraulic design for especial low head pump system was put forward, and detail solution approaches to reduce the conduit hydraulic loss were put forward from angles of lowering the flow velocity and improving the flow pattern in the conduit. Method of optimum hydraulic design for especial low head pump system was studied, advantages and disadvantages of pump system model test research method and pump system numerical simulation research method were analyzed, conduit model test research method and conduit numerical simulation research method were put forward, relationships among these research methods were studied, and study approach of "relying mainly on conduit analysis research method and supplemented by pump system research method, relying mainly on numerical simulation research method and supplemented by model test research method" was put forward for optimum hydraulic design of especial low head pump system.
     (2) By applying the conduit numerical simulation method,3-D turbulent flow numerical simulation and optimum hydraulic design for inlet and outlet conduit of horizontal front extension shaft pump system have been completed respectively, the conduit hydraulic performance was improved, laws of water flow motion and turbulence kinetic energy distribution in the conduit were revealed. By applying the pump system numerical simulation method,3-D turbulent flow numerical simulation for optimization scheme of the pump system has been completed, water flow motion law in the pump system was analyzed, and the conduit numerical simulation results were verified. By applying the conduit model test method, model tests for optimization scheme of the inlet and outlet conduit have been completed respectively, flow patterns in the conduits were observed and conduit hydraulic losses were tested, and the conduit numerical simulation results were verified and validated. By applying the conduit numerical simulation method,3-D turbulent flow numerical simulation and optimum hydraulic design for inlet and outlet conduit of horizontal rear extension shaft pump system has been completed respectively, the conduit hydraulic performance was improved, laws of water flow motion and turbulence kinetic energy distribution in the conduit were revealed. By applying the pump system numerical simulation method,3-D turbulent flow numerical simulation for optimization scheme of the pump system has been completed, water flow motion law in the pump system was analyzed, and conduit numerical simulation results were verified. Based on the optimum hydraulic design for the horizontal front extension shaft pump system and horizontal rear extension shaft pump system respectively, their hydraulic losses were compared, hydraulic loss of the horizontal front extension shaft pump system is less than that of the horizontal rear extension shaft pump system.
     (3) By applying the conduit numerical simulation method,3-D turbulent flow numerical simulation and optimum hydraulic design for inlet and outlet conduit of front-positioned bulb tubular pump system have been completed respectively, the conduit hydraulic performance was improved, laws of water flow motion and turbulence kinetic energy distribution in the conduit were revealed. By applying the pump system numerical simulation method,3-D turbulent flow numerical simulation for optimization scheme of the pump system has been completed, water flow motion law in the pump system was analyzed, and the conduit numerical simulation results were verified. By applying the conduit model test method, model tests for optimization scheme of the inlet and outlet conduit have been completed respectively, flow patterns in the conduits were observed and conduit hydraulic losses were tested, and the conduit numerical simulation results were verified and validated. By applying the conduit numerical simulation method,3-D turbulent flow numerical simulation and optimum hydraulic design for inlet and outlet conduit of rear-positioned bulb tubular pump system have been completed respectively, the conduit hydraulic performance was improved, laws of water flow motion and turbulence kinetic energy distribution in the conduit were revealed. By applying the pump system numerical simulation method,3-D turbulent flow numerical simulation for optimization scheme of the pump system has been completed, water flow motion law in the pump system was analyzed, and conduit numerical simulation results were verified. By applying the conduit model test method, model tests for optimization scheme of the inlet and outlet conduit have been completed respectively, flow patterns in the conduits were observed and conduit hydraulic losses were tested, and the conduit numerical simulation results were verified and validated. Based on the optimum hydraulic design for the front-positioned bulb tubular pump system and rear-positioned bulb tubular pump system respectively, their hydraulic losses were compared, hydraulic loss of the front-positioned bulb tubular pump system is less than that of the rear-positioned bulb tubular pump system.
     (4) In order to realize parameter design of conduit, on the basis of analyzing the characters of inlet and outlet conduit of front-positioned shaft tubular pump system, geometry mathematic models of inlet and outlet conduit were set up respectively. By applying the conduit numerical simulation method,3-D turbulent flow numerical simulation and optimum hydraulic design for inlet and outlet conduit of front-positioned shaft tubular pump system have been completed respectively, the conduit hydraulic performance was improved, laws of water flow motion and turbulence kinetic energy distribution in the conduit were revealed. Influence of conduit control dimensions that are length, width and height on hydraulic performance of inlet and outlet conduit were studied, and relationship curves between conduit hydraulic performance and control dimensions were gained. By applying the pump system numerical simulation method,3-D turbulent flow numerical simulation for optimization scheme of the pump system has been completed, water flow motion law in the pump system was analyzed, and the conduit numerical simulation results were verified. By applying the conduit model test method, model tests for optimization scheme of the inlet and outlet conduit have been completed respectively, flow patterns in the conduits were observed and conduit hydraulic losses were tested, and conduit numerical simulation results were verified and validated. By applying the conduit numerical simulation method,3-D turbulent flow numerical simulation and optimum hydraulic design for inlet and outlet conduit of rear-positioned shaft tubular pump system have been completed respectively, the conduit hydraulic performance was improved, laws of water flow motion and turbulence kinetic energy distribution in the conduit were revealed. By applying the pump system numerical simulation method,3-D turbulent flow numerical simulation for optimization scheme of the pump system has been completed, water flow motion law in the pump system was analyzed, and the conduit numerical simulation results were verified. By applying the conduit model test method, model tests for optimization scheme of the inlet and outlet conduit have been completed respectively, flow patterns in the conduits were observed and conduit hydraulic losses were tested, and conduit numerical simulation results were verified and validated. Based on the optimum hydraulic design for the front-positioned shaft tubular pump system and rear-positioned shaft tubular pump system respectively, their hydraulic losses were compared, hydraulic loss of the front-positioned shaft tubular pump system is less than that of the rear-positioned shaft tubular pump system. Flow patterns of the inlet and outlet conduit of front-positioned shaft tubular pump system were analyzed in detail from all angles of view, the research indicates that main reason of the excellent hydraulic performance of the pump system is due to its excellent internal characteristics. By applying the pump system model test method, hydraulic performance of the front-positioned shaft tubular pump system was tested, test results indicate that hydraulic performance of the pump system is very excellent:pump system efficiency at design head operation point(the design head is3.1m, the design discharge is33.4m3/s) and average head operation point(the average head is2.7m, the design discharge is33.4m3/s) are83.11%and83.02%respectively, and the critical net positive suction heads at the two operation points are4.63m and4.28m respectively.
     (5) Based on sufficiently optimum hydraulic design for different types of especial low head pump system, their hydraulic performance was compared quantitative, according to the conduit hydraulic loss the pump systems are in turn as follows:front-positioned bulb tubular pump system, front-positioned shaft tubular pump system, rear-positioned bulb tubular pump system, horizontal front extension shaft pump system, horizontal rear extension shaft pump system and rear-positioned shaft tubular pump system. Pump system efficiency and comprehensive index of three types of pump systems which are horizontal front extension shaft pump system, rear-positioned bulb tubular pump system and front-positioned shaft tubular pump system were compared, and the comprehensive index includes civil works dimension, pump assembly structure, bearing load condition, electromotor radiating and cooling, equipment investment, installation and service, operating maintenance, etc. The comparative result indicates that the front-positioned shaft tubular pump system gains very excellent hydraulic performance under the condition of especial low head, and has advantages of simpler structure, better electromotor radiating and cooling condition, more convenient installation and service, lower investment and more convenient operating maintenance. So it can be extensively applied to especial low head pumping stations.
引文
[1]中华人民共和国水利电力部.SD 204-86泵站技术规范(设计分册)[S].北京:水力电力出版社.1987.
    [2]古智生.平面S型轴流泵设计中应注意的问题[J].中国农村水利水电,2001(10):49-50.
    [3]汤方平,刘超,王国强,等.平面S形流道双向轴流泵装置水力模型研究[J].农业机械学报,2003,34(6):50-53.
    [4]蒋小欣,王玲玲,李龙.数值模拟及可视化技术在旋转水力机械设计中的应用[J].河海大学学报(自然科学版),2006,34(4):414-417.
    [5]蒋小欣,王玲玲,郑源,等.特低扬程泵站水力性能研究[J].水利水电科技进展,2007,27(5):10-13.
    [6]李龙,王泽.轴伸式贯流泵装置全流场三维湍流数值模拟[J].机械工程学报,2007,43(10):62-66.
    [7]李龙,王泽,胡荣霞,等.双向贯流泵装置水力性能的数值分析[J].农业机械学报,2007,38(1):76-79.
    [8]Li Long, Wang Ze, Cen Mei, et al. Influence of two-way operation on performance in horizontal axial-pumping systems[C]. ICOPE-2007:489-493
    [9]陆林广,梁金栋,陈阿萍,等.卧式前轴伸泵装置流道三维流动及水力损失[J].排灌机械,2009,27(1):47-50.
    [10]林仁,宋月清.南水北调东线工程二级坝泵站选用灯泡贯流泵的论证[J].水利水电技术,1989(8):32-36.
    [11]由彩堂,何成连,闵京声,等.定桨贯流泵模型装置水力特性测试[J].水利水电工程设计,1995(4):51-55.
    [12]郑源,张德虎,刘益民,等.贯流泵装置能量特性试验研究[J].流体机械,2003,31(2):1-4.
    [13]张德虎,戴正,廖锐,等.贯流泵装置特性模型试验与节能[J].能源利用与研究,2003(3):22-24.
    [14]汤方平,刘超,周济人,等.低扬程贯流泵装置模型试验研究[J].水泵技术,2004(4):28-31.
    [15]莫为泽,杨荣娣,张海平,等.后置灯泡式贯流泵装置水力模型成果简介[J].水泵技术,2005(5):10-11.
    [16]张仁田,邓东升,朱红耕,等.不同型式灯泡贯流泵的技术特点[J].南水北调与水利科技,2008,6(6):6-9.
    [17]关醒凡,商明华,谢伟东,等.后置灯泡式贯流泵装置水力模型[J].排灌机械,2008,26(1):25-28.
    [18]冯旭松,关醒凡,井书光,等.南水北调东线灯泡贯流泵水力模型及装置研究开发与应用[J].南水北调与水利科技,2009,7(6):32-35.
    [19]李万荣.南水北调东线一期工程蔺家坝泵站水泵模型装置验收试验[J].南水北调与水利科技,2009,7(6):278-281.
    [20]黄九常,张平.南水北调二级坝泵站灯泡贯流泵方案比选[J].科技信息,2009(1):49-50.
    [21]秦钟建,伍杰,张仁田.蔺家坝灯泡贯流泵机组水力性能及结构分析[J].排灌机械,2009,27(3):177-170.
    [22]陆林广,黄金军,陈坚,等.灯泡贯流泵装置的三维流动数值模拟[J].排灌机械,2007,25(3):15-20.
    [23]陆林广,陈坚,陈阿萍,等.灯泡贯流泵装置的基本流态分析[J].南水北调与水利科技,2007,5(3):30-32.
    [24]金燕,刘超,汤方平,等.灯泡体支撑件对贯流泵水力性能的影响[J].农业机械学报,2009,40(11):78-82.
    [25]金燕,刘超,汤方平,等.大型贯流泵内部流动数值模拟和特性分析[J].水泵技术,2010(1):26-30.
    [26]金燕,刘超,汤方平.灯泡贯流泵装置内部流动数值模拟[J].排灌机械工程学报,2010,28(2):155-159.
    [27]金燕,刘超,汤方平.后置灯泡贯流泵装置三维紊流计算[J].机械工程学报,2010,46(22):167-173.
    [28]王新,李同春,赵兰浩.大型灯泡贯流泵站全流道非定常湍流数值模拟[J].水电能源科学,2010,28(4):119-123.
    [29]冯旭松,金燕,刘超.扩散导叶对贯流泵装置性能影响[J].排灌机械工程学报,2010,28(4):344-348.
    [30]张仁田,Jaap Arnold,朱红耕,等.变频调速灯泡贯流泵装置结构开发与优化[J].水力发电学报,2010,29(5):226-231.
    [31]岳永起,高峰,徐瑞兰.南水北调二级坝泵站泵型研究[J].排灌机械,2004,22(5):15-16.
    [32]陆林广,陈坚,梁金栋,等.灯泡贯流泵装置的优化水力设计[J].水利学报,2008,39(3):55-60.
    [33]陆林广,武昌新,纪建中,等.灯泡贯流泵流道模型水力损失的测试[J].南水北调与水利科技,2007,5(1):82-84.
    [34]须伦根,郑源,范道宇.大型可逆式贯流泵的气蚀检测及原因探析[J].排灌机械,2006,24(4):29-32
    [35]孙洪斌,鲁靖华,郑源,等.淮安三站大型贯流机组运行存在问题及分析[J].水泵技术,2007(5):36-40.
    [36]郑源,张飞,蒋小欣,等.贯流泵装置模型试验转轮出水口压力脉动研究[J].流体机械,2007,35(1):1-3.
    [37]葛强,陈松山,汪桂钦,等.灯泡式贯流泵站机组起动过程过渡仿真计算[J].中国电机工程学报,2006,26(5):159-163.
    [38]陈松山,周正富,何钟宁,等.贯流泵站液压快速闸门断流停泵过渡过程分析[J].河海大学学报(自然科学版),2008,36(2):179-164.
    [39]陈松山,蒋红梅,周正富,等.大型贯流泵站机组启动过渡过程仿真计算[J].扬州大学学报(自然科学版),2009,12(3):74-78.
    [40]王新,李同春,塔娜.大型灯泡贯流式泵站振动研究概述[J].中国农村水利水电,2009(2):83-85.
    [41]秦钟建,伍杰.大型齿联灯泡贯流泵的结构设计与研究[J].南水北调与水利科技,2009,7(6):392-395.
    [42]王星梅,刘远胜.南水北调东线第一期工程淮阴三站结构设计[J].水利水电科技进展,2010,30(4):60-63.
    [43]刘军,黄海田,刘丽君.江苏南水北调一期工程泵站选用贯流泵机组的探讨[J].南水北调与水利科技,2004,2(5):15-16.
    [44]杨洪群,黄良勇,夏军,等.淮河入海水道芦杨泵站工程伞齿轮传动贯流泵机组结构选型[J].排灌机械,2004,22(4):9-13.
    [45]夏军,杨丽娟,魏海倪.锥齿轮传动贯流式水泵机组设计研究[J].排灌机械,2004,22(6):14-18.
    [46]彭光华,沈继华,周红兵.淮河入海水道工程芦杨泵站泵型选用[J].治淮,2005(9):14-16.
    [47]魏光新,张爱霞,孟凡有.南水北调东线工程贯流泵机组选型与结构初探[J].水泵技术,2005(2):5-7.
    [48]夏军,乘鸣声,杨洪群,等.大型圆锥齿轮传动贯流泵机组方案研究[J].江苏水利,2005(7):6-7.
    [49]张爱霞,魏光新,王颐合,等.圆锥齿轮传动大型贯流泵的研制[J].流体机械,2005,33(3):11-14.
    [50]黄良勇,杨洪群,袁寿其,等.大型锥齿轮传动贯流泵机组结构选型[J].中国农村水利水电,2006(2):114-116.
    [51]张德虎,冯源.贯流式泵站主机和辅助设备的节能设计及应用[J].能源研究与利用,2006(4):33-35.
    [52]刘海宏.芦杨泵站的主要技术关键及监理要点[J].城市道桥与防洪,2004(3):73-76.
    [53]戴清华,夏军,杨敏.妇女河泵站的设计[J].江苏水利,2004(1):16-18.
    [54]谢伟东,卜舸,魏军.南水北调东线一期工程江苏段低扬程泵站的机组选型研究[J].南水北调与水 利科技,2005,3(1):4-6.
    [55]郑源,张德虎,廖锐,等.竖井贯流泵能量特性试验研究[J].排灌机械,2003,21(3):31-34.
    [56]陈松山,葛强,严登丰,等.泵站竖井进水流道数值模拟与装置特性试验[J].农业机械学报,2006,37(10):58-61.
    [57]陈松山,葛强,严登丰,等.大型泵站竖井贯流泵装置能量特性试验[J].中国农村水利水电,2006(3):54-56.
    [58]严继松,郑源,佟晨光,等.贯流泵模型装置能量特性试验研究[J].水泵技术,2008(3):5-7.
    [59]关醒凡,商明华,谢伟东,等.不同型式贯流泵装置模型特性试验研究[J].水泵技术,2010(4):5-8.
    [60]朱红耕,张仁田,冯旭松,等.不同型式贯流泵装置结构特点与水力特性分析[J].灌溉排水学报,2009,28(5):58-60.
    [61]郑源,肖玉平,刘文明,等.大型竖井式贯流泵装置的数值模拟与性能预测[J].排灌机械,2009,27(6):393-397.
    [62]肖玉平,郑源,黄昱.基于CFD的大型竖井式贯流泵装置的流动研究[J].水泵技术,2009(6):24-27.
    [63]肖玉平,郑源,江汉如,等.竖井式贯流泵装置的数值模拟与优化[J].水电能源科学,2010,28(2):143-146.
    [64]刘君,郑源,周大庆,等.前、后置竖井贯流泵装置基本流态分析[J].农业机械学报,2010,41(增刊):32-38.
    [65]徐春雷.梅梁湖泵站枢纽工程的泵型选择[J].江苏水利,2004(10):13-14.
    [66]颜红勤.梅梁湖泵站竖井贯流泵装置主要参数的确定[J].水利水电科技进展,2005,25(6):91-94.
    [67]杜书文,陈茂益.佛山市南海区水口泵站机组选型设计[J].广东水利水电,2010(3):72-74.
    [68]赵洁.沙坪联围泵站改造主机设备选型探讨[J].水电与新能源,2010(4):52-54.
    [69]杜军.大型贯流泵在串场河闸站工程中的应用[J].治淮,2010(5):34-35.
    [70]谢伟东,蒋小欣,刘铭峰,等.竖井式贯流泵装置设计[J].排灌机械,2005,23(1):10-12.
    [71]徐春雷.梅梁湖泵站流道的施工质量控制[J].江苏水利,2006(4):17,19.
    [72]黄建.裴家圩泵站卧式贯流泵轴密封与导轴承的故障与修复改造[J].水泵技术,2007(1):43-45.
    [73]徐辉,郑源,夏军,等.贯流式泵站[M].北京:中国水利水电出版社,2008,
    [74]黄道见,曹卫东,李维斌.1400QGL—125贯流泵模型装置试验[J].农机化研究,2003(4):180-181.
    [75]方桂林,谢伟东,邓悌康.通榆河北延送水工程灌北、善南泵站泵装置的选型和设计[J].江苏水利,2009(11):19-20,22.
    [76]谢伟东,方桂林,刘建龙,等.灌北、善南泵站潜水贯流泵装置的水力特性研究[J].中国水利,2010(16):13-15.
    [77]郑源,刘君,陈阳,等.基于Fluent的贯流泵数值模拟[J].排灌机械工程学报,2010,28(3):233-237.
    [78]肖丽,张建华.杨树浦港贯流泵流道流态的计算分析[J].上海水务,2007,23(1):7-10,29.
    [79]潘强,王锋.CFD软件在龙子湖泵站设计中的应用[J].华北水利水电学院学报,2010,31(5):55-57.
    [80]魏东,殷新建,杨圣华.潜水贯流泵开发研制概况[J].水泵技术,2002(6):12-14,18.
    [81]杨军虎,张炜,王春龙,等.潜水轴流泵全流道三维湍流数值模拟及性能预估[J].排灌机械.2006,24(4):5-9.
    [82]张炜,杨军虎,马雷.潜水轴流泵全流道三维湍流数值模拟[J].甘肃科学学报,2007,19(1):105-107.
    [83]陈璐.新型水泵在城市防洪工程的应用探讨[J].湘潭师范学院学报(自然科学版),2002,24(1):81-84.
    [84]邢中杰,沙治银.贯流泵的特点和56GZ-3.7-GP型贯流泵维修工艺探讨[J].上海水务,2007,23(4):50-52.
    [85]钱润礼,孙小明.基于有限元分析的潜水贯流泵出线段优化设计[J].机械工程师,2008(9):150-152.
    [86]方桂林,谢伟东.大型潜水贯流泵装置设计与应用[J].中国水利,2010(16):8-10
    [87]崔健,张剑,徐静,等.潜水贯流泵装置在低扬程大流量排水泵站的设计应用[J].治淮,2010(6):40-42.
    [88]水利部南水北调规划办公室,中国水利水电科学研究院水力机电研究所.不同形式低扬程水泵的同台对比试验及轴流泵泵段模型试验成果鉴定文件汇编[C].北京:水利水电科学研究院,1993.
    [89]罗洪.南水北调东线工程大型低扬程轴伸式轴流泵开发研究综述[J].水力机械,1995(2):10-21.
    [90]张仁田.不同型式贯流式水泵特点及在南水北调工程中的应用[J].中国水利,2005(4):42-44.
    [91]张仁田.贯流式机组在南水北调工程中的应用研究[J].排灌机械,2004,22(5):1-6.
    [92]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [93]是勋刚.湍流直接数值模拟的进展与前景[J].水动力学研究与进展,A辑,1992,7(1):103-109.
    [94]米志立,蒋明.大涡模拟在水利中的研究进展[J].邵阳学院学报(自然科学版),2004,1(1):88-91.
    [95]C C Chin, N Hutchins, A S H Ooi, et al. Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence[J]. Measurement science and technology,2009,20:1-10.
    [96]Jun Wu, Xin Wang, Xiaodong Lee, et al. Investigating sequential patterns of DNS usage and its applications[J]. ADMA 2010, Part I, LNCS:565-576.
    [97]Shin-ichi Satake, Naoshi Yoshida, Tomoaki Kunugi, et al. DNS of turbulent heat transfer under a uniform magnetic field at high Reynolds number[J]. Fusion Engineering and Design,2008,83:1092-1096.
    [98]Florian Schwertfirm, Michael Manhart. DNS of passive scalar transport in turbulent channel flow at high Schmidt numbers[J]. International Journal of Heat and Fluid Flow,2007,28:1204-1214.
    [99]Pacale Domingo, Luc Vervisch. DNS of partially premixed flame propagating in a turbulent rotating flow[J], Proceedings of the Combustion Institute,2007,31:1657-1664.
    [100]Alisa V. Trofimova, Andres E. Tejada-Martinez, Kenneth E.Jansen, et al. Direct numerical simulation of turbulent channel flows using a stabilized[J]. Computers & Fluids,2009,38:924-938.
    [101]R. Friedrich, T. J. Huttl, M. Manhart, et al. Direct numerical simulation of incompressible turbulent flows[J]. Computers & Fluids,2001,30:555-579.
    [102]R. Violette, E. de Langre, J. Szydlowski. computation of vortex-induced vibrations of long structures using a wake oscillator model:comparison with DNS and experiments[J]. Computer & structures,2007, 85:1134-1141.
    [103]S. Laizet, E.Lamballais, J.C.Vassilicos. A numerical strategy to combine high-order schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence[J]. Computers & Fluids,2010,39:471-484.
    [104]Vittorio Michelassi, Jan Wissink, Wolfgang Rodi. Analysis of DNS and LES of flow in a low pressure turbine cascade with incoming wakes and comparison with experiments[J]. Flow, Turbulence and Combustion,2002,69:295-330.
    [105]罗川旭,林文贤,刘滔,等.过渡区内喷泉流动的直接数值模拟与分析[J].水动力学研究与进展,A辑,2008,23(3):244-254.
    [106]孙在,黄震,王嘉松.室内空气流动的直接数值模拟[J].上海交通大学学报,2007,41(5):677-680.
    [107]王汉青,王志勇,寇广孝.大涡模拟理论进展及其在工程中的应用[J.流体机械,2004,32(7):23-27.
    [108]邓小兵.不可压缩湍流大涡模拟研究[D].中国空气动力研究与发展中心研究生部,2008.
    [109]Smagorinsky J. General circulation experimental with the primitive equations[J]. Monthly Weather Review,1963,91(3):99-164.
    [110]Hong-Wen Wu, Shiang-Wuu Perng. LES analysis of turbulent flow and heat transfer in motored engines with various SGS models[J]. International journal of heat and mass transfer,2002,45(11):2315-2328.
    [111]Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds number[J]. Journal of Fluid Mechanics,1970,41:453-480.
    [112]F. Porte-Agel, C. Meneveau, M. Parlange. A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer[J]. Journal of Fluid Mechanics,2000,415:261-284.
    [113]Zhiqiang Cui, Xiaoming Cai, Chrisj. Bakeer. Large-eddy simulation of turbulent flow in a street canyon [J]. Q. J. R. Meteorol. Sol.,2004,130:1373-1394.
    [114]Stuart Chester, Charles Meneveau, Marc B. Parlange. Modeling turbulent flow over fractal trees with renormalized numerical simulation[J]. Journal of Computational Physics,2007,225:427-448.
    [115]S. Richard, O. Colin, O. Vermorel, A. Benkenida, et al. Towards large eddy simulation of combustion in spark ignition engines[J]. Proceedings of the Combustion Institute,2007,31:3059-3066.
    [116]Yi Jiang, Donald Alexander, Huw Jenkins, et al. Natural ventilation in buildings:measurement in a wind tunnel and numerical simulation with large-eddy simulation[J]. Journal of wind engineering and industrial aerodynamics,2003,91:331-353.
    [117]MIAO Shiguang, JIANG Weimei. Large eddy simulation and study of the urban boundary layer[J]. Advances in atmospheric sciences,2004,21(4):650-661.
    [118]S. Sarkar, Peter R. Voke. Large-eddy simulation of unsteady surface pressure over a low-pressure turbine blade due to interactions of passing wakes and inflexional boundary layer[J]. Journal of turbomachinery, 2006,128:221-231.
    [119]罗华玲,乔渭阳,许开富.大负荷低压涡轮叶型分离转捩流动的大涡模拟[J].推进技术,2009,30(4):11-18.
    [120]L. Shen, D. K. P. Yue. Large-eddy simulation of free-surface turbulence[J]. Fluid Mechanics,2001,440: 75-116.
    [121]A. A. Feiz, M. Ould-Rouis, G. Lauriat. Large eddy simulation of turbulent flow in a rotating pipe[J]. Heat and Fluid Flow,2003,24(3):412-420.
    [122]A. Vire, B. Knaepen. On discretization errors and subgrid scale model implementations in large eddy simulations[J]. Journal of computational physics,2008,12:1-27.
    [123]Mahesh T. Dhotre, Bojan Niceno, Brian L. Smith, et al. Large-eddy simulation (LES) of the large scale bubble plume[J]. Chemical engineering science,2009,64:2692-2704.
    [124]L. H. Hu, R. Huo, D. Yang. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow[J]. Journal of hazardous materials,2009,166: 394-406.
    [125]崔桂香,许春晓,张兆顺.湍流大涡数值模拟进展[J].空气动力学学报,2004,22(2):121-129.
    [126]杨小龙,符松.直接数值模拟/大涡模拟中数值误差影响的研究[J].应用数学和力学,2008,29(7):790-798.
    [127]V. Yakhot, S. A. Orzag. Renormalization group analysis of turbulence:basic theory[J]. Journal of scient comput,1986,1:3-11.
    [128]T. H. Shin, W. W. Liou, A. Shabbir, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Comput fluids,1995,24(3):227-238.
    [129]B. E. Launder, D. B. Spalding. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [130]江帆,黄鹏Fluent高级应用与实例分析[M].北京:清华大学出版社.2008.
    [131]于勇,张俊明,姜连田Fluent入门与进阶教程[M].北京:北京理工大学出版社.2008.
    [132]John D. Anderson. Computational fluid dynamics:the basics with application[M]. American: McGraw-Hill, inc.1995.
    [133]J. Blazek. Computational fluid dynamics:principle and application[M]. Netherlands:Elsevier Ltd.2005.
    [134]Turner M. J., Clough R. W., Matrin H. C., et al. Stiffness and deflection analysis of complex structures [J]. Journal of aeronautical society,1956,23:805.
    [135]McDonald P. W.. The computation of transonic flow through two-dimensional gas turbine cascades[J]. ASME Paper,1971:71-89.
    [136]S. V. Patanker, D. B. Splading. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows[J], Int J Heat Mass Transfer,1972,15:1787-1806.
    [137]郑秋亚,刘三阳,左大海,等.多块结构化网格CFD并行计算和负载平衡研究[J].工程数学学报,2010,27(2):219-224.
    [138]常煜,张志荣,赵峰.多块结构化网格在含附体水面船模粘性流场数值计算中的应用[J].船舶力学,2004,8(1):19-25.
    [139]周浩澜,陈洋波.混合网格和谐有限体积法[J].中国农村水利水电,2010(5):69-71.
    [140]赵燕,刘克轩,张军鹏.混合网格的可调细分算法[J].计算机工程与应用,2006(9):77-79,102.
    [141]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社.2006.
    [142]Yerry M A, Shephard M S. A modified quad tree approach to finite element mesh generation[J]. IEEE computational graphics & application,1983,3(1):39-46.
    [143]Walson D. Computing the n-dimensional delaunay tessellation with application to voronoipolytopes [J]. The computer journal,1981,24(2):167-172.
    [144]Lo S H. Volume discretization into tetrahedral Ⅱ:3D Triangulation by advancing front approach [J]. Computers and structures,1991,39(5):501-511.
    [145]左旭,卫平原,陈军,等.基于Jacobian矩阵的三维有限元网格质量优化[J].上海交通大学学报,1998,32(5):142-144.
    [146]聂春戈,刘剑飞,孙树立.四面体网格质量度量准则的研究[J].计算力学学报,2003,20(5):579-582.
    [157]曹红梅,郭彦,计算网格质量评估方法[J].太原师范学院学报(自然科学版),2008,7(4):41-43.
    [158]赵福云,汤广发,刘娣,等.CFD数值模拟的系统误差反馈及其实现[J].暖通空调,2004,34(6):1-8.
    [159]张金凤.带分流叶片离心泵全流场数值预报和设计方法研究[D].江苏大学,2007.
    [150]刘重阳,于芳,徐让书.CFD计算网格误差分析的一个算例[J].沈阳航空工业学院学报,2006,23(4):21-24.
    [151]Faeth G M, Samuelsen G S. Fast reduction nopremixed combustion[J]. Progr energy combustion,1986, 12(4):305-370.
    [152]周俊杰,徐国权,张华俊.工程技术与实例分析[M].北京:中国水利水电出版社,2010.
    [153]Lu Lin-guang, Cao Zhi-gao, Zhou Ji-ren. Study on hydraulically optimum design of pump sumps[J]. Journal of Hydrodynamics, Ser. B,1996,8(2):42-51.
    [154]Tang Xue-lin, Wang Wu-chang, Wang Fu-jun. Application of LBM-SGS model to flows in a pumping station forebay[J]. Journal of Hydrodynamics, Ser. B,2010,22(2):196-206.
    [155]成立,刘超,van Esch B P M,等.泵站开敞式进水池流动特性数值模拟[J].扬州大学学报(自然科学版),2009,12(2):58-61.
    [156]刘新阳,高传昌,石礼文,等.泵站前池与进水池整流数值模拟[J].排灌机械工程学报,2010,28(3):242-246.
    [157]郭加宏.水泵吸水管和进水池内三维湍流的数值模拟[J].流体机械,2005,33(6):14-17
    [158]CHEN Hong-xun, GUO Jia-hong. Numerical simulation of 3-D turbulent flow in the multi-intakes sump of the pump station[J]. Journal of Hydrodynamics, Ser. B,2007,19(1):42-47.
    [159]Lu Lin-guang. Basic flow patterns and optimum hydraulic design of a suction box of pumping station[J]. Journal of Hydrodynamics, Ser. B,2000,12(4):46-51.
    [160]陆林广,周济人.泵站进水流道三维紊流数值模拟及优化水力设计[J].水利学报,1995(12):67-75.
    [161]朱红耕,袁寿其.大型泵站肘形进水流道三维紊流仿真计算[J].中国农村水利水电,2005(4):42-43,48
    [162]成立,刘超,薛坚,等.基于CFD流动分析的泵站肘形进水流道水力特性研究[J].应用基础与工程科学学报,2008,16(6):891-899.
    [163]施伟,李彦军,邓东升,等.肘形进水流道优化设计与数值计算[J].流体机械,2009,37(12):19-22.
    [164]徐磊,刘荣华,陈伟,等.3种泵轴倾角斜式进水流道水力性能的比较[J].水力发电学报,2011,30(2):128-132.
    [165]周正富,陈松山,葛强,等.大型泵站钟形进水流道三维紊流数值模拟[J].中国农村水利水电,2006(4):61-64.
    [166]李彦军,颜红勤,严登丰,等.非对称入流工况下钟形进水流道数值模拟试验研究[J].中国农村水利水电,2008(2):70-73.
    [167]陆林广,周济人.簸箕形进水流道的优化水力设计[J].水利学报,1997(9):31-36.
    [168]成立,刘超,周济人,等.大型立式泵站簸箕型进水流道三维紊流数值模拟[J].水力发电学报,2004,23(4):65-68.
    [169]Wang Fu-jun, Li Yao-jun, Cong Guo-hui, et al. CFD simulation 3D flow in large-bore axial-flow pump with half-elbow suction sump[J]. Journal of Hydrodynamics, Ser. B,2006,18(2):243-247.
    [170]陆林广,陈阿萍,黄金军,等.低扬程立式泵进水流道基本流态及水力性能的比较[J].南水北调与水利科技,2007,5(5):135-138.
    [171]陆林广,徐磊,梁金栋,等.泵站进水流道三维流动及水力损失数值模拟[J].排灌机械,2008,26(5):55-58.
    [172]陆林广,杲东彦,祝婕.大型泵站虹吸式出水流道优化水力设计[J].农业机械学报,2005,36(4):60-63,68.
    [173]朱红耕.虹吸式出水流道内流数值计算与水力设计优化[J].山东理工大学学报(自然科学版),2006,20(1):24-27.
    [174]杲东彦,陆林广.基于RNG模型的虹吸式出水流道三维紊流数值模拟[J].南京工程学院学报(自然科学版).2008,6(2):22-25.
    [175]陆林广,吴开平,冷豫,等.大型低扬程泵站直管式出水流道优化水力设计[J].农业机械学报,2007,38(8):196-198.
    [176]陆林广,陈阿萍,黄金军,等.低扬程立式轴流泵出水流道基本流态及水力性能的比较[J].南水北调与水利科技,2007,5(2):72-74.
    [177]陆林广,刘军,梁金栋,等.大型泵站出水流道三维流动及水力损失数值模拟[J].排灌机械,2008,26(3):51-54.
    [178]陆林广,伍杰,陈阿萍,等.立式轴流泵装置的三维湍流流动数值模拟[J].排灌机械,2007,25(1):29-33.
    [179]张改兰,冯卫民,程茜,等.大型轴流泵装置性能预测的研究[J].节水灌溉,2007(6):24-27.
    [180]朱红耕,张仁田,邓东升,等.大型水泵装置全流道数值模拟与性能预测[J].排灌机械,2008,26(3):46-50.
    [181]郑明,张改兰.轴流泵装置紊流数值模拟与性能预测[J].人民长江,2008,39(15):67-69.
    [182]梁雪杰,陈红勋,魏培茹.轴流泵装置的数值实验分析[J].上海大学学报(自然科学版),2009,15(2):160-163.
    [183]成立,刘超,汤方平,等.基于RNG紊流模型的立式轴流泵站三维流动数值模拟及性能预测[J]. 机械工程学报,2009,45(3):252-257.
    [184]冯卫民,宋立,左磊,等.轴流泵装置三维非定常湍流流场的数值模拟[J].排灌机械工程学报,2010,28(6):531-536.
    [185]柴胜凯,罗兴锜,廖伟丽.轴流泵叶轮内部三维流动分析[J].排灌机械,2004,22(1):16-19.
    [186]周春良,郑洪涛.水泵内部的三维数值模拟[J].应用科技,2004,31(7):59-61.
    [187]彭玉成,张克危,陈喜阳.基于CFD数值解析的轴流泵优化设计[J].水泵技术,2005(5):24-26.
    [188]曾永忠,刘小兵.轴流泵叶轮内部流场的数值模拟[J].农机化研究,2007(9):44-46.
    [189]梁开洪,曹树良,陈炎,等.轴流泵叶轮内部流场大涡模拟及分析[J].流体机械,2009,37(11):9-14.
    [190]LI Yao-jun, WANG Fu-jun. Numerical investigation of performance of axial-flow pump with inducer[J]. Journal of Hydrodynamics, Ser. B,2007,19(6):705-711.
    [191]朱红耕,鄢必鹏,周济人.壁面粗糙度对轴流泵水力性能影响的研究[J].灌溉排水学报,2006,25(1):85-88.
    [192]Zhang De-sheng, Shi Wei-dong, Chen Bin, et al. Unsteady flow analysis and experimental investigation of axial-flow pump[J]. Journal of Hydrodynamics, Ser. B,2010,22(1):35-43.
    [193]Zhongdong Qian, Yan Wang, Wenxin Huai, et al. Numerical simulation of water flow in an axial flow pump with adjustable guide vanes[J]. Journal of Mechanical Science and Technology,2010,24(4): 971-976.
    [194]A Santolin, G Cavazzini, G Ardizzon, et al. Numerical investigation of the interaction between jet and bucket in a Pelton turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Jouranl of Power and Energy,2009,223:721-728.
    [195]Wang Wen-quan, ZHang Li-xiang, Yan Yan. Large-eddy simulation of turbulent flow considering inflow wakes in a francis turbine blade passage[J]. Journal of Hydrodynamics, Ser. B,2007,19(2):201-209.
    [196]Qian Zhong-dong, Yang Jian-dong, Huai Wen-xin. Numerical simulation and analysis of pressure pulsation in francis hydraulic turbine with air admission[J]. Journal of Hydrodynamics, Ser. B,2007, 19(4):467-472.
    [197]Xiao Ye-xiang, Han Feng-qin, Zhou Jing-lin, et al. Numerical prediction of dynamic performance of pelton turbine[J]. Journal of Hydrodynamics, Ser. B,2007,19(3):356-364.
    [198]周晓泉,瞿伦富,吴玉林.水轮机蜗壳和固定导叶内部流动的数值模拟[J].清华大学学报(自然科学版),2000,40(8):93-97.
    [199]肖惠民,杨建东,杨建明,等.混流式水轮机效率的数值预测[J].水力发电学报,2005,24(6):100-103.
    [200]高忠信,邓杰,樊祥生,等.三峡水轮机全流道三维流动数值模拟研究[J].中国水利水电科学研究院学报,2008,6(1):13-18.
    [201]胡秀成,张思青,何士华.水轮机长短叶片转轮三维数值模拟[J].水力发电,2009,35(6):47-49.
    [202]黄剑峰,张立翔,何士华.混流式水轮机全流道三维定常及非定常数值模拟[J].中国电机工程学报,2009,29(2):87-94.
    [203]齐学义,陈大为,胡家昕,等.网格划分对轴流式水轮机数值计算结果的影响[J].水电能源科学,2010,28(1):107-109.
    [204]Shyy W, Braaten E. Three-Dimensional Analysis of the Flow in curved hydraulic Turbine Draft Tube[J], Jnm Meth in Fluid,1986(6):861-882.
    [205]Song C C S,He J M, Chen X Y. Calculation of turbulence flow through afraucis turbine runner and an elbow draft tube[J]. Proceedings of international Power Generation Conference San Diego CA:ASME, 1991:1-6.
    [206]Maji P K, Biswas G. Three-dimensional analysis of flow in the spiral casing of a reaction turbine using a differently weighted Petrov Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering,1998:167-190.
    [207]J.G.I.Hellstrom, B.D.Marjavaara, T.S.Lundstrom. Parallel CFD simulation of an original and redesigned hydraulic turbine draft tube[J]. Advances in Engineering Software,2007(38):338-344.
    [208]J Fernandez, R Barrio, E Blanco, et al. Numerical investigation of a centrifugal pump running in reverse mode[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Jouranl of Power and Energy, 2009,224:373-381.
    [209]Tan Lei, Cao ShuLiang, Gui ShaoBo. Hydraulic design and pre-whirl regulation law of inlet guide vane for centrifugal pump[J]. Science China Technological Sciences,2010,53(8):2142-2151.
    [210]宦月庆,邵春雷,黄星路,等.中比转数离心泵内部流场的三维数值模拟[J].南京工业大学学报(自然科学版),2010,32(2):42-45.
    [211]B.Jafarzadeh, A.Hajari, M.M.Alishahi, et al. The flow simulation of a low-specific-speed high-speed centrifugal pump[J]. Applied Mathematical Modelling,2011,35:242-249.
    [212]Bao-ling Cui, Yong-gang Lin, Ying-zi Jin. Numerical simulation of flow in centrifugal pump with complex impeller[J]. Journal of Thermal Science,2011,20(1):47-52.
    [213]Young-Joon An, Byeong Rog Shin. Numerical investigation of suction vortices behaviour in centrifugal pump[J]. Journal of Mechanical Science and Technology,2011,25(3):767-772.
    [214]郭鹏程,罗兴锜,周鹏,等.不同断面型式蜗壳对离心泵性能的数值模拟[J].排灌机械工程学报,2011,28(4):30-34.
    [215]CHEN Hong-xun. Research on turbulent flow within the vortex pump[J]. Journal of Hydrodynamics, Ser. B,2004,16(6):701-707.
    [216]Yin Junlian, Liu Jintao, Wang Leqin, et al. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode[J]. Science China Technological Sciences,2010,53(12):3302-3309.
    [217]杨琳,陈乃祥,樊红刚.水泵水轮机全流道双向流动二维数值模拟与性能预估[J].工程力学,2006,23(5):157-162.
    [218]陆林广,张仁田.泵站进水流道优化设计[M].北京:中国水利水电出版社,1997:18-19.
    [219]张仁田,张平易,阎文立.大型泵站系统性能参数的换算方法[J].农业机械学报,1999,30(2):49-53.
    [220]王林锁,陈松山,葛强,等.泵及泵装置效率预测方法研究[J].扬州大学学报(自然科学版),2001,4(2):66-70.
    [221]严登丰.泵站工程[M].北京:中国水利水电出版社,2005:363.
    [222]田家山,仲付维.国内外大型排、溉泵站的建设动态及发展趋势[J].水利水电科学进展,1981(4):3-7.
    [223]关醒凡,袁寿其,张建华,等.轴流泵系列水力模型试验报告研究[J].水泵技术,2004,(3):15-27.
    [224]刘宁,汀易森,张纲.南水北调工程水泵模型同台测试[M].北京:中国水利水电出版社,2006.
    [225]冯汉民.谈谈泵和泵站试验研究中的几个问题[J].排灌机械,1986,(2):1-3.
    [226]仇宝云.大中型水泵装置理论与关键技术[M].北京:中国水利水电出版社,2005.
    [227]中华人民共和国水利部.SL 140-2006水泵模型及装置模型验收试验规程[S].北京:中国水利水电出版社,2007.
    [228]徐磊,陆林广,梁金栋,等.低扬程泵装置优化水力设计关键问题研究[J].水利水运工程学报,2012(2):62-69.
    [229]丘传忻.泵站[M].北京:中国水利水电出版社,2004.
    [230]刘军,龚玉栋,王亦斌.叶轮直径对立式泵装置流道水力损失的影响[J].南水北调与水利科技,2008,6(5):67-69.
    [231]Rodi W. Turbulence Models and Their Application in Hydraulics Experimental and Mathematical Fluid Dynamics[M]. Delft:IAHR Section on Fundamentals of Division Ⅱ,1980:44-46.
    [232]栾玉广.自然科学技术研究方法[M].合肥:中国科学技术大学出版社,2003.
    [233]吴持恭.水力学(第三版)[M].北京:高等教育出版社,2003.
    [234]陆林广,吴开平,冷豫,等.泵站出水流道模型水力损失的测试[J].排灌机械,2005,23(5):23-26.
    [235]汤方平,袁家博,周济人.轴流泵站进出水流道水力损失的试验研究[J].排灌机械,1995,13(3):13-14.
    [236]何成连,蒋玉华,张智彬,等.南水北调工程水泵模型同台测试及试验台简介[J].水利水电工程设计,2006,25(2):29-32.
    [237]中华人民共和国水利部.SL 255-2000泵站技术管理规程[S].北京:中国水利水电出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700