水平轴风机空气动力学性能的时域仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于风力发电系统来说,叶片作为唯一的汲取能量的部件,在整个风机系统中处于至关重要的地位。本文就是研究时域内叶片以及整机的空气动力学性能。
     首先,需要仿真出与自然界比较一致的风速序列。本文在已知Von Karman功率谱密度函数的情况下,选择利用自回归滑动平均(ARMA)模型来仿真风速。在此过程中,首先进行开创性的模型定阶工作,这样得到的ARMA模型的阶数将能够更为符合Von Karman谱。随后,在得到了满足可逆性和稳定性条件的模型系数后,建立起短期风速模型。通过对ARMA模型仿真结果的分析,并与已有的风速模型进行比对,结果表明,该模型能够产生满足研究需要的风速序列。
     本文的第二个工作,就是将仿真产生的风速序列作为输入量,利用AeroDyn和YawDyn程序,研究在自然随机风作用下,动量-叶素理论仿真出来的叶片和整机的空气动力学性能。分别针对是否考虑叶片挥舞运动,支撑结构是固定式亦或是浮式两种情况进行了计算和比较。结果表明,叶片挥舞运动对于风机性能具有至关重要的影响,因此应该在计算时考虑叶片的挥舞运动。同时,浮式海上风力发电机由于其特有的纵摇运动,使得叶片受力变小,但是发电功率的波动和叶片自身在挥舞方向上的振动都更为剧烈。
Because it’s the unique component of the wind turbines for getting energy from wind, the blade plays the important role in wind turbines. This paper researches the aerodynamic performance of the blade and the whole machine in the time domain.
     First of all, the wind speed records which accords with nature is required. This paper uses Auto-regressive moving-average (ARMA) model to simulate the wind records based on Von Karman spectral. During the process, firstly the model’s order is identified. Thereby the ARMA model accords with the Von Karman spectral more. Then, the short-term wind speed model is set up after getting coefficients which satisfy the reversibility and stability. Through the analysis of simulation results of ARMA model and contrast with the other model, the conclusion is that the ARMA model can simulate wind speed records which satisfy the need of research.
     Then based on blade element momentum (BEM) theory, this paper uses the AeroDyn and YawDyn to calculate the aerodynamic performance of the blade and wind turbine. Two comparisons are made. One is whether considering the flap motion. The other comparison is made between the floating wind turbine and fixed wind turbine.The results show, for floating wind turbine, the generator power fluctuates more widely and the flap of the blades is more acute, although the aerodynamic loads of blade are smaller.
引文
[1]李俊峰,时璟丽,施鹏飞,等.风力12在中国[M].北京:化学工业出版社,2005.
    [2] Mukund R. Patel. Wind and Solar Power Systems Design, Analysis and Operation (Second Edition) [M]. USA:CRC Press,2006.
    [3]廖明夫,R. Gasch,J. Twele.风力发电技术[M].陕西:西北工业大学出版社,2009.
    [4]都志杰,马丽娜.风力发电[M].北京:化学工业出版社,2009.
    [5]张希良.风能开发利用[M].北京:化学工业出版社,2005.
    [6]世界风能协会. 2009年世界风能报告[R]. 2010.
    [7]肖创英.欧美风电发展的经验与启示[M].北京:中国电力出版社,2010.
    [8]中国气象局风能太阳能资源评估中心.中国风能资源评估(2009)[R].北京:气象出版社,2010.
    [9] Thomas Ackermann, Vladislav Akhmatov, E. Ian Baring-Gould, et al. Wind Power in Power Systems [M]. UK:John Wiley & Sons, Ltd,2005.
    [10]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [11]原鲲,王希麟.风能概论[M].北京:化学工业出版社,2010.
    [12]张志英,赵萍,李银凤,等.风能与风力发电技术(第二版)[M].北京:化学工业出版社,2010.
    [13]佟德纯,张黛华.时序分析与工程应用[M].上海:上海交通大学出版社,1990.
    [14]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社,2004.
    [15] E. O.布莱姆.快速富里叶变换[M].上海:上海科学技术出版社,1979.
    [16]邓贤照,徐英凯.快速傅立叶变换浅谈[M].北京:水利电力出版社,1994.
    [17]杨位钦,顾岚.时间序列分析与动态数据建模[M].北京:北京工业学院出版社,1986.
    [18]何书元.应用时间序列分析[M].北京:北京大学出版社,2003.
    [19] S. M. Pandit,吴宪民.时间序列及系统分析与应用[M].北京:机械工业出版社, 1988.
    [20]孙建锋.风电场建模和仿真研究[D].北京:清华大学电机系, 2004:13-14.
    [21]杨煜,何炎平,李勇刚.基于Simulink/Matlab的变速风力发电机组在低于额定风速时的仿真研究[J].华东电力,2009,37(5):0816-0818.
    [22]阎启,谢强,李杰.风场长期观测与数据分析[J].建筑科学与工程学报,2009,26(1):37-42.
    [23]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [24] Mika Rasila. Torque-and Speed Control of a Pitch Regulated Wind Turbine [D]. Swden, Chalmers University of Technology: Department of Electric Power Engineering, 2003: 19.
    [25]向恺.基于MATLAB的风力发电系统仿真研究[D].华北电力大学:动力工程系, 2007.3.
    [26]郭新生.风能利用技术[M].北京:化学工业出版社,2007.
    [27]牛山泉[日].风能技术[M].北京:科学出版社,2009.
    [28]盛振邦,刘应中.船舶原理(下册)[M].上海:上海交通大学出版社,2004.
    [29] D.勒古里雷斯[法].风力机的理论与设计[M].北京:机械工业出版社,1987.
    [30] Tony Burton , David Sharpe , Nick Jenkins , et al. WIND ENERGY HANDBOOK [M]. UK:John Wiley & Sons, Ltd,2001.
    [31]张仲柱.水平轴风力机叶片气动性能计算模型研究[D].北京:中国科学院工程热物理研究所,2007:13-14.
    [32] David J. Laino, A. Craig Hansen. User’s Guide to the Wind Turbine Aerodynamics Computer Software AeroDyn [R]. USA: National Renewable Energy Laboratory, 2002.
    [33] Patrich J. Moriarty, A. Craig Hansen. AeroDyn Theory Manual [R]. USA: National Renewable Energy Laboratory, Technical Report NREL /EL-500-36881, 2005.
    [34] Marshall L. Buhl. A New Empirical Relationship between Thrust Coefficient and Induction Factor for the Turbulent Windmill State [R]. USA: National Renewable Energy Laboratory, Technical Report NREL/TP -500-36834, 2005.
    [35] David J. Laino, A. Craig Hansen. User’s Guide to the Wind Turbine Dynamics Computer Program YawDyn [R]. USA: National Renewable Energy Laboratory, 2003.
    [36] J. Jonkman, S. Butterfield, W. Musial, et al. Definition of a 5-MW ReferenceWind Turbine for Offshore System Development [R]. USA: National Renewable Energy Laboratory, Technical Report NREL/TP -500-38060, 2009.
    [37] Abhinav Sultania, Lance Manuel. Extreme Loads on a Spar Buoy-Supported Floating Offshore Wind Turbine [A]. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA 2010-2738.
    [38]金忠谋,李红云,孙雁等.材料力学[M].北京:机械工业出版社,2005.
    [39] Yasunori Nihei, Hiroyuki Fujioka. Motion Characteristics of TLP Type Offshore Wind Turbine in Waves and Wind [A]. 29th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2010-21126.
    [40]李南南,吴清,曹辉林. MATLAB 7简明教程[M].北京:清华大学出版社,2006.
    [41] D2阿基累斯.信号处理中的傅里叶变换——用于实践的连续和离散方法[M].北京:科学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700