基于变分偏微分方程的医学B超图像处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医用B超已越来越广泛地应用于临床诊断中,然而B超图像中存在大量的斑点噪声,不同于传统的加性噪声,斑点噪声是一种乘性噪声。乘性噪声广泛存在于合成孔雷达成像,超声成像,激光成像及显微镜图像中,相比较于加性噪声图像,乘性噪声对图像的损坏更为严重,且乘性噪声图像对比度往往更低。合理地去除乘性噪声,将极大地提高医生的分析效率及临床诊断的准确率。B超图像处理的另一项工作是图像分割。通过对组织或器官精确的分割和提取,可以定量地分析组织或器官的大小,形状等变化情况,从而判断组织的病理变化情况,协助医生进行诊断和手术等。B超图像精确分割的困难在于B超图像中存在的各种干扰信息,如大量斑点噪声、组织或器官的边缘缺失、阴影等。图像多相分割问题是图像处理及计算机视觉中的一项重要内容。过去,有许多针对加性高斯噪声图像的多相分割模型及算法。然而这些模型并不适合具有乘性噪声图像的多相分割。另外,以往的模型常考虑图像灰度为分片常数,然而,真实图像灰度常有起伏,因此,更实际的多相分割模型应考虑图像灰度的不均匀性。变分偏微分方程在对加性噪声图像的处理中已取得很大成功,已积累了许多经典模型,相应的理论分析工作也已开展得比较完善。然而乘性噪声与加性噪声是两种完全不同的噪声,因此,利用变分偏微分方程处理乘性噪声图像将面临新的挑战。一方面需要建立更适合斑点噪声图像特点的模型;另一方面,相应的理论分析工作需要近一步深入地探讨;最后,B超图像处理有很强的工程应用背景,对模型求解算法的精度和速度提出更高要求。
     本文主要研究以下四方面内容:一是针对临床B超图像模型,提出去B超斑点噪声的凸模型,并针对所提模型设计行之有效的快速算法。二是利用B超图像的灰度分布特征,提出针对B超图像的分割模型。三是结合人体肾脏解剖结构的先验形状,考虑在边缘缺失的情形下,B超肾脏图像的分割问题。四是提出针对具有乘性Gamma噪声图像的多相分割模型及算法,并讨论解的存在性。
     本文结构如下:
     第一章我们简单介绍B超图像的成像原理及图像特点。并介绍基于变分偏微分方程的去斑点噪声模型,分割模型,以及基于TV模型的快速算法的研究背景、进展,以及本文的研究内容。
     第二章我们研究B超图像的去斑点噪声问题。针对一种描述B超中斑点噪声的图像模型,我们提出一种去除B超图像斑点噪声的凸模型,并讨论所提模型解的存在惟一性及有界性问题。此外,我们提出利用分裂Bregman方法,将原模型分解为两个较简单的子问题,再分别交替求解两个子问题。数值试验表明,相比较于直接利用梯度下降法求解,所提方法速度提高近一倍。我们给出模拟图像和真实B超图像的数值试验,并同其它相关方法比较,试验结果表明所提方法对B超图像的斑点噪声处理效果更好。
     第三章考虑B超图像的分割问题。通过对B超成像原理的学习,我们提出针对B超图像分割的活动轮廓线模型。在水平集方法的基础上,我们提出利用求解其相应的凸松弛模型来得到原模型的解。进一步,我们讨论了水平集模型与其对应的凸松弛模型之间的关系。针对凸松弛模型中TV正则项的不可微性问题,我们提出一种基于主对偶式的快速算法。数值试验表明,利用凸松弛方法及主对偶算法,可极大地提高分割速度,并且分割结果具有某种全局最优性。
     第四章我们考虑B超肾脏图像的分割。结合肾脏解剖结构的先验形状,在第三章所提模型的基础上,我们提出基于广义超椭圆的B超肾脏图像分割模型。由于该方法利用肾脏解剖结构的全局先验形状,因此不需要建立肾脏先验形状的数据库,省时方便。试验结果表明,在具有边界缺失的B超肾脏图像中,该模型能有效分割出图像的肾脏器官。与人工手绘的器官形状相比,误差在6%以内。
     第五章我们考虑具有乘性Gamma噪声和灰度不均匀的图像多相分割问题。该问题的求解涉及以下几方面的难题。一是图像的多相分割问题,相比较于二相分割,图像多相分割问题会增加更多的约束性条件,这使得算法的设计会困难很多。二是乘性噪声较加性噪声更强,对图像的损坏更为严重,乘性噪声图像的对比度往往更差,因此针对乘性噪声图像的多相分割更为复杂;三是考虑图像灰度分布的不均匀性。针对以上问题,我们提出一种处理具有乘性Gamma噪声和灰度分布不均匀的图像多相分割模型,并讨论解的存在性问题。结合分裂Bregman算法和交替极小算法,我们给出一种有效的求解算法。并给出模拟图像和真实SAR图像以及B超图像的数值试验来验证所提模型和算法的有效性。
Medical B ultrasound imaging has been largely used in clinical diagnosis. However, speckle noise widely exists in B ultrasound images. Unlike traditional additive white Gaussian noise, speckle noise is a type of multiplicative noise. Multiplicative noise widely exists in SAR im-ages, ultrasound images, laser images and microscope images,and multiplicative noise is much stronger than additive Gaussian noise. The contrast of images corrupted with multiplicative noise is quite low. Suitably removing speckle noise will largely improve the accuracy of clini-cal diagnosis and the efficiency of image analysis. Image segmentation is important for medical B-ultrasound images. In some clinical diagnosis, one needs to quantitatively measure the shape, area, volume and so on, therefore, accurate detection of tissue or organs from a ultrasound image is favorable to judge the pathology state of the tissue and is helpful for surgeons to perform an operation. The difficulties for accurate segmentation of ultrasound images are the appearance of speckle noise, boundary dropout, shadow, etc.. Multi-phase image segmentation is an important task in image processing and computer vision. In the past few years, many multi-phase segmen-tation models and numerical methods have been proposed for images corrupted with additive Gaussian noise. However, these models are not suitable for images corrupted with multiplica-tive noise. Besides, most of previous multi-phase segmentation models are based on piecewise constant image model. However, intensity inhomogeneity occurs in many real world images, for example, it can be caused by non-uniform illumination. Thus, more practical image models should consider the intensity inhomogeneity of images. Variational partial differential equations have been very successful in image processing and many classic models have been proposed to deal with images corrupted with additive Gaussian noise. Corresponding theoretical analysis of these models is well presented. However, multiplicative noise is totally different from additive noise, therefore, new mathematical models and the corresponding theoretical analysis should be developed.
     In this paper, we are concentrated on following four problems:first, for a clinical ultra-sound image model, we propose a convex speckle reduction model, and design a fast and effec-tive algorithm for the proposed model; secondly, we propose a ultrasound image segmentation model by combining the gray level statistics of clinical ultrasound images, then, we propose a fast primal-dual algorithm to solve the proposed model; thirdly, to deal with the boundary dropout of ultrasound kidney images, we propose a ultrasound kidney segmentation model by incorporation the prior shape information of kidney; at last, we propose a multi-phase image segmentation model and algorithm for images with multiplicative Gamma noise and intensity inhomogeneity, and give an existence theorem of solutions.
     This paper is organized as follows:
     In the first chapter, we briefly introduce the procedure of ultrasound imaging and the char-acteristics of ultrasound images. Then, we introduce the backgrounds and development of vari-ational partial differential equations in speckle reduction and image segmentation. At last, we show the goal of our research work.
     In the second chapter, we work on removing speckle noise in ultrasound images. For a clinical ultrasound image model, we propose a convex variational model and existence, u-niqueness and boundedness of the solution to the variational model is discussed. Besides, we introduce an auxiliary variable, and solve an equivalent constrained problem by using a Breg-man iteration method. By doing this, we get two simple subproblems, and each subproblem is solved alternatively until a stopping rule satisfied. The numerical experiments show that the proposed algorithm is about two times faster than the traditional gradient descent method. We also compared our method with other popular methods on synthetic images and real ultrasound images, and the experiments show the advantage of the proposed method.
     In the third chapter, we consider fast segmentation of ultrasound images. By considering the ultrasound imaging procedure and the gray level statistics of log-compressed ultrasound images, we propose a ultrasound image segmentation model based on a maximum likelihood estimation method. On the basis of level set method, we propose to solve the corresponding relaxed model related to a membership function. The relaxed model is convex with respect to the membership function. We discuss the relation between the proposed active contour model and the corresponding relaxed model. To overcome the non-differentiable TV term, we pro-pose a primal dual algorithm to solve the relaxed model. Numerical experiments show that the proposed method is quite fast and efficient, and the solution is in some sense of a global optima.
     In the fourth chapter, we consider the segmentation of ultrasound kidney images. Based on the segmentation model in the third chapter, we propose a ultrasound kidney segmentation mod-el by combining the prior shape information of kidney anatomical structure. The prior shape information relies on the anatomical structure of the kidney, therefore, it is not necessary to con-struct a prior shape data base. As we know, the construction of a prior shape data base is very time consuming and quite complicated. Numerical experiments show that the proposed method can effectively segment a ultrasound kidney images when the ultrasound kidney images suffer from boundary dropout. We compare the segmentation results of our method with the hand drawing kidney boundaries by radiologists, and the errors are below6%in all our experiments.
     In the last chapter, we consider multi-phase segmentation of images in presence of inten-sity inhomogeneity and multiplicative noise. This problem involves following three difficult subproblems. The first problem is the multi-phase image segmentation problem. Comparing with binary segmentation, multi-phase segmentation models usually bring more constraints, which is much more difficult to be numerically solved. The second problem is the existence of multiplicative noise, which is much stronger than additive noise. The contrast of a multiplica-tive noise image is quite low, therefore, the multi-phase segmentation of a multiplicative noise image is more difficult. The third problem is the combination of intensity inhomogeneity in multi-phase segmentation. We first present a multi-phase segmentation model for images with intensity inhomogeneity and multiplicative Gamma noise, and show the existence of a mini-mizer of the proposed model. Then, we propose an effective numerical algorithm by combining split Bregman method and alternating minimization method. Numerical experiments are shown by comparison with other two methods on both synthetic images and real images to illustrate the efficiency of the proposed method.
引文
[1]罗述谦,周果宏,医学图像处理与分析,科学出版社,2010年12月,第二版。
    [2]章鲁, 陈瑛, 顾顺德,医学图像处理与分析, 上海科学技术出版公司,2006年8月,第一版。
    [3]O.V. Michailovich, Despeckling of medical ultrasound images, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,53(1)(2006),64-78.
    [4]J. C. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzyc-means clustering algorithm, Com-puters and Geosciences,10(2-3)(1984),191-203.
    [5]S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell,6(1984),721-741.
    [6]M. Kass, A. Witkin, D. TerzopoulosSnakes, Active contour models.International Journal of Computer Vision,1(4)(1988),321-331.
    [7]R.C. Dubes, A.K. Jain, S.G. Nadabar, C.C. Chen, MRF model-based algorithms for im-age segmentation,10th International Conference on Pattern Recognition, Atlantic City, NJ,1990, Vol(1), pp:808-814.
    [8]L. Vincent, P. Soille, Watersheds in Digital Spaces: An Efficient Algorithm Based on Im-mersion Simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6)(1991),583-598.
    [9]J.B. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Transctions on Pattern Analysis and Machine Intelligence,22(8)(2000),888-905.
    [10]G.M Chung, L.A. Vese, Image segmentation using a multilayer level-set approach, Com-puting and Visualization in Science 12(6)(2000),267-285.
    [11]L.A. Vese, T.F. Chan, A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model, International Journal of Computer Vision,50(3)(2002), 271-293.
    [12]T. Brox, J. Weickert, Level Set Segmentation With Multiple Regions, IEEE Transactions on Image Processing,15(10)(2006),3213-3218.
    [13]S. Webb, The physics of Medical Imaging, Adam Hilger Bristol,1988.
    [14]D.J. Dowsett, P. A. Kenny, R.E. Johnston The physics of Diagnostic Imaging, Champman and Hall Medical,1998.
    [15]J.M. Thijssen, B.J. Oosterveld, R.F. Wagner, Grey level transforms and lesion detectabil-ity in echographic images, Utrason. Imag.,10(1988),171-195.
    [16]V. Dutt, J.F. Greenleaf, Statistics of the log-compressed echo envelope, J. Acoust. Soc. Am.,99(6)(1996),3817-3825.
    [17]A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-posed Problems, Winston and Sons, Wash-ington, D.C.,1977.
    [18]L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms, Physica D,60(1992),259-268.
    [19]S. Osher, L.I. Rudin, Feature oriented image enhancement using shock filters, SIAM J. Num. Anal.,27(1990),919.
    [20]A. Chambolle, P. L. Lions, Image recovery via total variational minimization and related problems, Numer. Math.,76(1997),168-188.
    [21]T.F. Chan, S. Osher, J.H. Shen, The Digital TV Filter and Nonlinear Denoising, IEEE Transactions on Image Processing,10(2)(2001),231-240.
    [22]T.F. Chan, G.H. Golub, P. Mulett, A nonlinear primal-dual method for Total Variation-based image restoration, SIAM Journal on Scientific Computing,20(6)(1999),1964-1977.
    [23]G. Aubert, L. Vese, A variational method in image recovery, SIAM Journal of Numerical Analysis,34(5)(1997),1948-1979.
    [24]T.F. Chan, C.K. Wong, Total variation blind deconvolution, IEEE Transactions on Image Processing,7(3)(1998),370-375.
    [25]T.F. Chan, S.H. Kanga, J.H Shen, Total Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models, Journal of Visual Communication and Image Representation,12(4)(2001),422-435.
    [26]J.M. Bioucas-Dias, M.A.T. Figueiredo, J.P. Oliveira, Total Variation-Based Image De-convolution: a Majorization-Minimization Approach, Acoustics,2006 IEEE Internation-al Conference on Speech and Signal Processing, (2).
    [27]L.A. Vese, S.J. Osher, Modeling Textures with Total Variation Minimization and Oscil-lating Patterns in Image Processing, Journal of Scientific Computing,19(1-3)(2003), 553-572.
    [28]P. Blomgren, T.F. Chan, Color TV: total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing,7(3)(1998),304-309.
    [29]T. Chen, W.T. Yin, X.S. Zhou, D. Comaniciu, T.S. Huang, Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence,28(9)(2006),1519-1524.
    [30]S. Durand, J. Froment, Geometric methods for nonlinear optimal control problem, SIAM Journal on scientific computing,24(5)(2003),1754-1767.
    [31]P.M.V.D. Berg, R.E. Kleinman, A total variation enhanced modified gradient algorithm for profile reconstruction, Inverse Problems,11(3)(1995), L5-L10.
    [32]L. A. Vese, S. J. Osher, Image Denoising and Decomposition with Total Variation Mini-mization and Oscillatory Functions, Journal of Mathematical Imaging and Vision,20(1-2)(2004),7-18.
    [33]E.Y. Sidky, X.C. Pan, Image reconstruction in circular cone-beam computed tomog-raphy by constrained total-variation minimization, Physics in Medicine and Biology, (53)(2008),4777-4807.
    [34]Inrets-Dart, Ceremade, Total variation based interpolation, European signal processing conference, Rhodes, Greece, Vol.9,1998, pp:1745-1748.
    [35]T.F. Chan, J.H Shen, H.M. Zhou, Total Variation Wavelet Inpainting, Journal of Mathe-matical Imaging and Vision,25(1)(2006),107-125.
    [36]T.F. Chan, H.M. Zhou, Total variation improved wavelet thresholding in image compres-sion,2000 International Conference on Image Processing, Vancouver, Canada, Vol.2, 2000, pp:391-394.
    [37]C.R. Vogel, M.E. Oman, Iterative methods for total variation denoising, SIAM Journal on Scientific Computing,17(1)(1996),227-238.
    [38]F. Dibos and G. Koepfler, Global total variation minimization, SIAM J. Numer. Anal., 37(2)(2000),646-664.
    [39]D.C. Dobson, C.R. Vogel, Convergence of an iterative method for total variation denois-ing, SIAM J. Numer. Anal.,34(5)(1997),1779-1791.
    [40]Y. Li, F. Santosa, Acomputational algorithm for minimizing total variation in image restoration, IEEE Transactions on Image Processing,5(1996),987-996.
    [41]P.L. Combettes, J. Luo, An adaptive level set method for nondifferentiable constrained image recovery, IEEE Transactions on Image Processing,11(11)(2002),1295-1304.
    [42]Chambolle, An Algorithm for Total Variation Minimization and Applications, Journal of Mathematical Imaging and Vision, (20)(2004),89-97.
    [43]J.F. Aujol, G. Gilboa, T. Chan, S. Osher, Structure-Texture Image Decomposi-tion -Modeling, Algorithms, and Parameter Selection, International Journal of Com-puter Vision,67(1) (2006),111-136.
    [44]X. Bresson, S. Esedoglu, P.Vandergheynst, J.P. Thiran, S. Osher, Fast global minimiza-tion of the active contour/snake model, J. Math Imaging Vis.,28(2007),151-167.
    [45]C. Zach, T. Pock, H. Bischof, A Duality Based Approach for Realtime TV-L1 Optical Flow, Pattern Recognition Lecture Notes in Computer Science,4713(2007),214-223.
    [46]T. Pock, T. Schoenemann, G. Graber, H. Bischof, D. Cremers, A Convex Formulation of Continuous Multi-label Problems, ECCV 2008 Lecture Notes in Computer Science, 2008, Vol.5304/2008,792-805.
    [47]Y.L. Wang, J.F. Yang, W.T. Yin, Y. Zhang,A New Alternating Minimization Algorithm for Total Variation Image Reconstruction, SIAM Journal on Imaging Sciences, 1(3)(2008), 248-272.
    [48]S.J. Wright, R.D. Nowak, M.A.T. Figueiredo, Sparse Reconstruction by Separable Ap-proximation, IEEE Transactions on Signal Processing,57(7)(2009),2479-2493.
    [49]S. Osher, M. Burger, D. Goldfarb, J.J. Xu, W.T. YIN, An Iterative Regularization Method for Total Variation Based Image Restoration, MULTISCALE MODEL. SIMUL., 4(2)(2005),460-489.
    [50]W.T. Yin, S. Osher, D. Goldfarb, J. Darbon, Bregman iterative algorithms for 11-minimization with applications to compressed sensing, SIAM J. Imaging Science, 1(2)(2008),142-168.
    [51]J.F. Cai, S. Osher, Z.W. Shen, Linearized Bregman iterations for compressed sensing, Mathematics of Computation,78(2009),1515-1536.
    [52]A. Marquina, S.J. Osher,Image Super-Resolution by TV-Regularization and Bregman It-eration Journal of Scientific Computing,37(3)(2008),367-382.
    [53]J.F. Cai, S. Osher, Z.W. Shen, Linearized Bregman Iterations for Frame-Based Image Deblurring, SIAM Journal on Imaging Sciences,2(1)(2009),226-252.
    [54]L. He, T.C. Chang, S. Osher, Mr image reconstruction from sparse radial samples by us-ing iterative refinement procedures, Proceedings of the 13th annual meeting of ISMRM, 2006, pp:696.
    [55]J.F. Cai, S. Osher, Z.W. Shen, Linearized Bregman Iterations for Compressed Sensing, Mathematics of Computation,78(267)(2009),1515-1536.
    [56]T. Goldstein, S. Osher, The Split Bregman Method for L1 Regularized Problems, SIAM Journal on Imaging Science,2(2)(2009),323-343.
    [57]T. Goldstein, X. Bresson, S. Osher, Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction, Journal of Scientific Computing, 45(1-3)(2010),272-293.
    [58]S. Setzer, G. Steidl, T. Teuber, Deblurring Poissonian images by splitBregman tech-niques, Journal of Visual Communication and Image Representation,21(3)(2010),193-199.
    [59]G.B. Ye, X.H. Xie, SplitBregman method for large scale fused Lasso, Computational Statistics and Data Analysis,55(4)(2011),1552-1569.
    [60]A. Szlam, Z.H. Guo, S. Osher, A split Bregman method for non-negative sparsity penal-ized least squares with applications to hyperspectral demixing,2010 IEEE international conference on image processing, HongKong, pp:1917-1920.
    [61]C.L. Wu, X.C. Tai, Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration for ROF, Vectorial TV, and High Order Models, SIAM Journal on Imaging Sciences,3(3)(2010),300-339.
    [62]S. Setzer, Operator Splittings, Bregman Methods and Frame Shrinkage in Image Pro-cessing, International Journal of Computer Vision,92(3)(2011),265-280.
    [63]M. Tur, K.C. Chin, J.W. Goodman, When is speckle noise multiplicative?, Applied Op-tics,21(1982),1157-1159.
    [64]L. Rudin, P.L. Lions, S.Osher, Multiplicative Denoising and Deblurring:Theory and Algorithms in:S.Osher, N.Paragios(Eds.), Geometric Level Sets in Imaging, Vision and Graphics, Springer, (2003) 103-119.
    [65]G. Aubert, J.F. Aujol, A variational approach to removing multiplicative, SIAM J. Appl. Math.,68(2008),925-946.
    [66]Y. Huang, M. Ng, Y. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imaging Sciences,2(1)(2009),20-40.
    [67]J.N. Shi, S. Osher, A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model, SIAM J. Imaging. Sciences, 1(3)(2008),294-321.
    [68]G. Steidl, T. Teuber, Removing multiplicative noise by Douglas- Rachford splitting meth-ods,Journal of Mathematical Imaging and Vision, (36)(2010),168-184.
    [69]J. M. Bioucas-Dias, M.A.T. Figueiredo, Multiplicative Noise Removal Using Vari-able Splitting and Constrained Optimization, IEEE Transctions on Image Processing, 19(7)(2010),1720-1730.
    [70]C.L. Wu, J.Y. Zhang, X.C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging,5(1)(2011),237-261.
    [71]V. Caselles, R. Kimmel, G. Sapiro, On Geodesic Active Contours, Int. J. Comput. Vis., 22(1997),61-79.
    [72]D. Mumford, J. Shah, Optimal Approximation by Piecewise Smooth Functions and As-sociated Variational Problems, Commun. Pure Appl. Math.,42(1989),577-685.
    [73]T.F. Chan, L.A. Vwse,Active Contoure Without Edges, IEEE Trans. Image Processing, 10(2001),266-277.
    [74]S.C. Zhu, A. Yuille, Region competition:unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, IEEE PAMI,18(1996),884-900.
    [75]N. Paragios, R. Deriche, Geodesic active regions and level set methods for supervised texture segmentation, Int. J. Computer Vision,39(2001),183-206.
    [76]I.B. Ayed, C. Vazquez, A. Mitiche, Z. Belhadj, SAR image segmentation with active contours and level sets,2004 International Conference on Image Processing,4(2004), 2717-2720.
    [77]A. Sarti, C. Corsi, E. Mazzini, Maximum Likelihood Segmentation of Ultrasound Iamges With Ray lei gh Distribution, IEEE Trans. Ultrasonics Ferroelectrics and Frequency Con-trol,52(2005),947-960.
    [78]M. Leventon, O. Faugeraus, W.E.L. Grimson, level set based segmentation with inten-sity and curvature priors, IEEE computer society workshop on mathmatical methods in biomedical image analysis, (2000),4-11.
    [79]A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, A. Grimson, A. Willsky, Model-based Curve Evolution Technique for Image Segmentation, IEEE CVPR, volume I,2001, pp:463-468.
    [80]A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W.E. Grimson, A. Willsky, A Shape-Based Approach to the Segmentation of Medical Imagery Using Level Sets, IEEE Transactions on Medical Imaging,22(2)(2003),137-154.
    [81]D. Cremers, F. Tischhaouser, J. Weichert, C. Schnorr, Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional, International Journal of Computer Vision,50(3)(2002),295-313.
    [82]D. Shen, Y. Zhang, C. Davatzikos, Segmentation of prostate boundaries from ultrasound images using statistical shape model, IEEE Trans. Med. Imag.,22(4)(2003) 539-551.
    [83]Y. Chen, H. Thiruvenkadam, D. Wilson, On the incorporation of shape priors into ge-ometric active contours, Proc. IEEE Int. Workshop Variational and Level Set Methods, Vancouver, BC, Canada, Jul.2001, pp:145-152.
    [84]Y. Chen, H. Tagare, S.R. Thiruvenkadam, Using prior shapes in geometric active con-tours in a variational framework, International journal of computer vision,50(3)(2002), 315-328.
    [85]M. Rousson, N. Paragios, Shape priors for level set representations, In A. Heyden et al., editors, Europ. Conf. on Comp. Vis., volume 2351 of LNCS, Springer,2002, pp:78-92.
    [86]D. Cremers, S. Osher, S. Soatto,. Kernel Density Estimation and Intrinsic Alignmen-t for Shape Priors in Level Set Segmentation, International Journal of Computer Vi-sion,69(3)(2006),335-351.
    [87]D. Cremers, F.R. Schmidt, R. Barthel, Shape Priors in Variational Image Segmenta-tion: Convexity, Lipschitz Continuity and Globally Optimal Solutions,2008 IEEE Con-ference on Computer Vision and Pattern Recognition, Anchorage, USA, CVPR,2008, page:1-6.
    [88]L.X. Gong, S.D. Pathak, D.R. Haynor, P.S. Cho, Y.M. Kim, Parametric shape model-ing using deformable superellipses for prostate segmentation IEEE Trans. Med. Imag., 23(3)(2004),340-349.
    [89]L. Saroul, O. Bernard, D. Vray, D. Friboulet, Prostate segmentation in echographic im-ages: A variational approach using deformable super-ellipse and rayleigh distribution, 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro,2008, Paris, ISBI 2008, pp:129-132.
    [90]S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton - Jacobi Formulation, J. Comput. Phys.,79(1988),12-49.
    [91]C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, Vol.1,2005, pp:430-436.
    [92]T.F. Chan, S. Esedoglu, M. Nikolova, Algorithms for Finding Global Minimizers of Image Segmentation and Denosing Models, SIAM J. APPL. Math,66(2006),1632-1648.
    [93]J. Yuan, E. Bae, X.C. Tai, A study on continuous max-flow and min-cut approaches, 2010 IEEE Conference on Computer Vision and Pattern Recognition, June (2010), pp: 2217-2224.
    [94]M. Berthod, Z. Kato, S. Yu, J. Zerubia Bayesian image classification using Markov Ran-dom Fields, Image and Vision Computing,14(4)(1996),285-293.
    [95]X.M. He, R.S. Zemel, M.A. Carreira-Perpinan, Multiscale conditional random fields for image labeling. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2(2004),695-702.
    [96]C. Samson, L. Blanc-Feraud, G. Aubert, J. Zerubia, A Level Set Model for Image Classi-fication, International Journal of Computer Vision,40(3)(2000),187-197.
    [97]C. Samson, L. Blanc-Feraud, G. Aubert, J. Zerubia, A variational model for image clas-sification and restoration, IEEE Transactions on Pattern Analysis and Machine Intelli-gence,22(5)(2000),460-472.
    [98]R. B. Potts, Some generalized order-disorder transformations, Proceedings of the Cam-bridge Philosophical Society.48(1952),106-109.
    [99]C. Zach, D. Gallup, J.M. Frahm, Fast global labeling for real-time stereo using multiple plane sweeps, In Vision, modeling and visualization workshop. (2008).
    [100]H. Yu, W. W. Wang, X. C. Feng, A new fast multiphase image segmentation algorithm based on nonconvex regularizer, Pattern Recognition.45(1)(2012),363-372.
    [101]J. Lellmann, D. Breitenreicher, C. Schnorr, Fast and exact primaldual iterations for vari-ational problems in computer vision., European conference on computer vision (ECCV), (2010).
    [102]E. Bae, J. Yuan, X.C. Tai, Global minimization for continuous multiphase partitioning problems using a dual approach, International Journal of Computer Vision. (92)(2011), 112-129.
    [103]F. Li, M.K. Ng, C.M. Li., Variational Fuzzy Mumford Shah Model for Image Segmenta-tion, SIAM Journal on Applied Mathematics,70(7)(2010),2750-2770.
    [104]T. Loupas, W.N. Mcdicken, PL. Allan, An Adaptive Weighted Median Filter for Speckle Suppression in Medical Ultrasonic Images, IEEE Transactions on Circutts and Systems, 36(1)(1989),129-135.
    [105]J. M. Bioucas-Dias, M.A.T. Figueiredo, Multiplicative Noise Removal Using Vari-able Splitting and Constrained Optimization, IEEE Transctions on Image Processing, 19(7)(2010),1720-1730.
    [106]K. Krissian, R. Kikinis, C.F. Westin, K. Vosburgh, Speckle-Constrained Filtering of Ul-trasound Images,2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2(2005),547-552.
    [107]Z.M. Jin, X.P. Yang, A Variational Model to Remove the Multiplicative Noise in Ultra-sound Images, J Math Imaging Vis.,39(1)(2011) 62-74.
    [108]I. Csiszas, Why least squares and maximum entropy? an automatic approach to inference for linear inverse problems, The Annals od Statistics.19(4)(1991),2032-2066.
    [109]C.L. Byrne, Iterative image reconstruction algorithms based on crossentropy minimiza-tion,IEEE Trans. Imag. Proc.,2(1)(1993),96-103.
    [110]S. Krishnamachari, R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Trans. Imag. Proc.,6(2)(1997),251-267.
    [111]J. Goldberger, S. Gordon, H. Greenspan, An Efficient Image Similarity Measure Based on Approximations of KL-Divergence Between Two Gaussian Mixtures, Ninth IEEE In-ternational Conference on Computer Vision (ICCV03), Nice, France,2003.
    [112]P. Kornprobst, R. Deriche and G. Aubert, Image sequence analysis via partial diffirential equations, J. Math. Imaging Vision,11(1)(1999),5-26.
    [113]S. Setzer, Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage, Scale Space and Variational Methods in Computer Vision, LNCS.,5567(2009),464-476.
    [114]J. Eckstein, D. Bertsekas, On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming,5(1992), 293-318.
    [115]J.W. Goodman, Statistical properties of laser speckle patterns, in Laser Speckle and RelatedPhenomena, J. C. Dainty,-Ed., Berlin:Springer-Verlag,1975, pp:9-75.
    [116]C.B. Burckhardt, Speckle in Ultrasound B-mode Scans, IEEE Transaction on Sonics and Ultrason- ics, SU-25(1)(1978),1-6.
    [117]R.F. Wanger, S.W. Smith, J.M. Sandrik, Statistics of Speckle in Ultrasound B-Scans, IEEE Transaction on Sonics and Ultrasonics,30(3)(1983),156-163.
    [118]R.M. Cramblitt, K.J. Parker, Generation of Non-Rayleigh Speckle Distributions Using Marked Regularity Models, IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-quency Control,46(4)(1999),867-874.
    [119]R.F. Wagner, M.F. Insane, D.G. Brown, Statistical properties of radio-frequency and envelope detected signals with applications to medical ultrasound, J. Opt. Soc. Amer. A, 4(1987),910-922.
    [120]P.M. Shankar, A General Statistical Model for Ultrasonic Backscattering from Tissues, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,47(3)(2000), 727-736.
    [121]T. El toft, Modeling the Amplitude Statistics of Ultrasonic Images, IEEE Transactions on Medical Imaging,25(2)(2006),229-240.
    [122]M.Q. Zhu, T.F. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for TV Image Restoration, CAM Report 08-34, UCLA,2008.
    [123]E. Esser, X.Q. Zhang, T. F. Chan, A General Framework for a class of first order primal-dual algorithms for TV minimization, CAM Report 09-67, UCLA,2009.
    [124]E. Esser, X.Q. Zhang, T. F. Chan, A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science, SIAM Journal on Imaging Sciences,3(4)(2010),1015-1046.
    [125]S. Bonettini, V. Ruggiero, On the Convergence of Primal-Dual Hybrid Gradient Al-gorithms for Total Variation Image Restoration, Journal of Mathematical Imaging and Vision,2012, in print.
    [126]B.S. He, X.M. Yuan, Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective, SIAM J. Imaging Sci.,5(1)(2012),119-149.
    [127]A. Chambolle, T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging, Journal of Mathematical Imaging and Vision,40(1)(2011),120-145.
    [128]T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization,2011 IEEE International Conference on Computer Vision (IC-CV),2011, Barcelona, pp:1762-1769.
    [129]J.A. Jensen, Field: A Program for Simulating Ultrasound Systems, Biological Engineer-ing and Computing,34(1996),351-353.
    [130]J.A. Jensen, N.B. Svendsen, Calculation of Pressure Fields from Arbitrarily Shaped, Apodized, and Excited Ultrasound Transducers, IEEE Trans. Ultrason., Ferroelec, Freq. Contr.,39(1992),262-267.
    [131]T. Cootes, C. Taylor, D. Cooper and J. Graham, Active shape models their training and application, Comout. Vis. Image Understanding, (61)1995,38-59.
    [132]B.C. Vemuri, A. Radisavljevie, Multiresolution stochastic hybrid shape models with frac-tal priors, ACM. Trans. on Graphics,13(2)(1994),177-207.
    [133]Y. Wang, L. Staih, Boundary funding with corresponding stastistical shape models, IEEE Conf. Como. Vision and Patt. Recog.,1998, pp:338-345.
    [134]M. Sussman P. Smereka, S. Osher, A level set approach for computing solutions to in-compressible twophase flow, J. of Comp. Phys., (1994),146-159.
    [135]X. Bresson, P. Vandergheynst, J.P. Thirau, A priori information in image segmentation: Energy functional based on shape stastical model and image information, Proc. IEEE Int. Conf. Image Processing,2003, pp:425-428.
    [136]F. Solica, R. Bajcsy, Recovery of parametric models from range images: The Case for Superquadrics with Global Deformations, IEEE Trans. Pattern Analysis and Machine Intelligence,12(2)(1990),131-147.
    [137]R.J. Campbell, P. J. Flynn, A survey of free-form object representation and recognition techniques, Comput. Vis. Image Understanding,81(2001),166-210.
    [138]M. Marcuzzo, P.R. Masiero, J. Scharcanski, Quantitative parameters for the assessment of renal scintigraphic images, Proceedings of the 29th Annual International Conference of the IEEE EMBS Cit Internationale, Lyon, France, August,2007,3438-3441.
    [139]G. Charpiat, O. Faugeras, R. Keriven, Approximations of shape metrics and applications to shape warping and empirical shape statistics, Journal of Foundations of Computa-tional Mathematics,5(1)(2005),1-58.
    [140]F. Li, M.K. Ng, T.Y. Zeng, C.L. Shen, A multiphase image segmentation method based on fuzzy region competition, SIAM Journal on Imaging Sciences.3(3)(2010),227-299.
    [141]F. Li, C.M. Shen, C.L. Shen, Multiphase soft segmentation with total variation and HI regularization, J. Math. Imaging Vis., (37)(2010),98-111.
    [142]E.S. Brown, T.F. Chan, X. Bresson, Completely convex formulation of the Chan-Vese image segmentation model, International Journal of Computer Vision.,37(2010),98-111.
    [143]Y. Gu, L. Wang, X.C. Tai, A direct approach towards global minimization for multi-phase labeling and segmentation problems, IEEE Transactions on image processing. 21(5)(2012),2399-2411.
    [144]C.M. Li, R. Huang, Z. Ding, J.C. Gatenby, D.N. Metaxas, J.C. Gore, A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI, IEEE Transactions on Image Processing,20(7)(2011),2007-2016.
    [145]D.L. Pham, J.L. Prince, An adaptive fuzzy C-means algorithm for the image segmentation in the presence of intensity inhomogeneities, Pattern Recognit. Lett.,20(1998),57-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700