有限体积方法在守恒律中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
来自自然科学与工程领域中的大多数微分方程在数学上表现为守恒形式:它是自然界中的守恒定律在数学上的直接反映,对流体力学方程组而言,它就是质量,动量,能量守恒得到的方程。由于双曲守恒律(0.1.1)没有其它项,如色散(dispersion),扩散(diffusion)(某物理量分布不均匀引起的输运),反应(reaction),记忆(memory),阻尼(damping)及松弛(relaxation)(描述非平衡态)等,而仅有输运或对流项(convection)(由于流体的流动引起的输运)时,守恒律(0.1.1)的解失去光滑性(这里不特殊说明守恒律就指该意义下),甚至即使光滑的初始数据,解随着时间的发展会变成不连续,这在物理上表现为激波的形成。从流体力学的角度上看,(0.1.1)事实上就是粘性很小的近似。当考虑粘性后,即在数学上反映为(0.1.1)中多了扩散项(二阶导数项),即使很粗糙的初始数据,解在瞬间内变的很光滑,这由于流体的粘性扩散引起,这种对流-扩散问题可用古典的微分方程来研究。自然的想法就是当粘性趋于零时,带粘性的对流-扩散问题的解在某意义下趋于无粘性问题(0.1.1)的解,这就是正则化方法。另一办法从离散(数值)角度上研究仅有对流项的守恒律(0.1.1),如构造它的差分格式,甚至更一般的有限体积格式,有限元及谱方法等,从这些格式构造近似解(常表现为分片多项式)来逼近原守恒律的解。正则化方法与数值角度研究都在于估计解的构造,其次考虑估计解的稳定性,即在适当度量下估计解大小的上界,而且着重研究与正则化系数(如粘性大小)与数值的离散参数(如时间,空间步长大小)无关的上界。在利用紧框架(如BV紧,L~1紧,补偿紧等)得到估计解有子列在某种模意义下收敛到某一个函数,再利用估计格式(估计解所满足的方程)逼近守恒律来证明所得到的函数就是在某种意义下守恒律的解。由于大时间范围内守恒律(0.1.1)的解表现为很差的正则性,它不能在古典意义下定义,即在每一点下的导数无意义,使得古典办法研究遇到很大困难,它只能在弱意义下定义弱解,但往往这种弱解不唯一,需要某条件限制确保解的唯一性,在数学上称为熵条件,满足该条件的弱解称为熵解。从流体力学来看,它事实上是热力学第二定理的反映,即熵越过激波(一种间断)要增加。各种估计格式构造的估计解应反映这一事实,即满足熵不等式。从实际计算来看,总是通过离散化求解,不考虑计算的积累误差,它的稳定性与计算精度都依赖与真解的光滑性,一般说,在解较光滑的区域有较好的稳定性与计算精度,而在较粗糙的区域则相反。对守恒律(0.1.1)的求解来说,一般保持一定精度的数值格式在光滑性较差的区域计算效果不大好,首先,捕捉解的光滑性较差的区域(间断处)较差,
    
    其次,在该区域附近通近不大好,如不能模拟物理上的展荡.所有这些都反映了解的正
    则性的缺乏给数值研究带来困难.
     Kruzkov【481在70年代用双变t技巧(Double variable teehnique)解决了多维单个双
    曲守恒律(0 .1 .1)的摘解的适定性问题,即嫡解的存在性,唯一性及正规性结果,特别摘解
    的Ll收缩性质.1976年Kuznetsov[sl]把双变t技巧用于双曲守恒律的估计问题,用抛
    物正规(粘性方法)或用R‘上的矩形网格构造差分格式,并得到了相应的L‘收敛速度估
    计.他的估计方法常称为Kuznetsov估计理论.1995年Kuznetsov估计理论被Bouehut
    与Perthame[5}推广到用非线形退化守恒的抛物问题通近双曲守恒律(0.1.1),并得到两
    者嫡解的误差的显式表示,1 999年Coekburn与Gripenbeg[12]把双变t技巧得到非线形
    退化守恒的抛物问题半群解在Ll惫义下如何显式依赖翰运流,扩散流及初始数据,在一
    维时半群解就是嫡解,但对于多维情形,这种半群解是否仍为摘解还没有得到解决.
     1985年DIPerna!31」引人多维单个双曲守恒律的测度值嫡解概念,用双变t技巧证
    明了测度值摘解的唯一性与一个更深刻的结论:满足平均LI界,与初始数据相容的测度
    值墒解在(x,t)的值就是嫡解在(x,t)值处的Dirac质t,称之为Dipema唯一性结果,
    这也给出了多维单个双曲守恒律摘解与测度值摘解的联系.1983年r几rtar[s5}得到一
    致Lco的估计序列的连续函数复合的弱星极限就是某一Young测度对该函数的作用(称
    该y’oung测度为与估计序列相联系的(概率)测度族)并进一步说明了一致LOO序列有
    子列几乎处处收敛到某函数与该序列的相应的Yoimg测度为Dirac质t等价.该结论与
    DIPema唯一性结果给出了估计解序列收敛到多维单个双曲守恒律的摘解的一般框架:
     10:构造多维单个双曲守恒律的估计格式,得到估计解序列,并证明它在Lco愈义
    下为一致的.
     20:与该估计解序列联系的Young测度满足DIPerna唯一性结论的条件.
     30:由Diperna唯一性结果及Tartar结论,估计解序列有子列几乎处处收敛到多维
    单个双曲守恒律的摘解.
     一致L戈序列lu:}有子列(仍记为{丫}弱星收敛到某函数tL不能推得对任惫的光
    滑函数f有f(丫)弱星收敛到f(司,这是由于紧性的缺乏引起,需要补偿一些紧性,称它
    为补偿紧.1983年工成ar!85]得到补偿紧引理,并推得著名的Div一curl引理,他给出了
    当一致L加估计序列的任意嫡消失测度在式
Most of partial differential equation arising from physical or engineering science can be formulated into conservation form:
    It directly reflects conservation laws in natural sciences.From viewpoints of fluid dynamics,it can be obtained from the mass,momentum,energy conservation laws.Because the form (0.2.1) has no other terms such as dispersion,diffusion(caused by nonuniformity of some physical states) ,reaction,memory,damping and relaxation etc, smoothness of solution of (0.2.1) may be loss as times goes on. Even for the smooth inital data, solutions of (0.2.1) become discontinuous in a finite time. This feature reflects the physical phenomenon of breaking of waves and development of shock waves.In the fields of fulid dynamics,(0.2.1) is an approximation of small visvosity phenomenon.If viscosity(or the diffusion term, two derivatives) are added to (0.2.1),it can be researched in the classical way which say that the solutions become very smooth immediately even for coarse inital data because of the diffusion of viscosity.A natural idea(method of regularity) is obtained as follows: solutions of the viscous convection-diffusion pr
    oblem approachs to the solutions of (0.2.1)when the viscosity goes to zeros.Another method is numerical method such as difference methods,finite element method,spectrum method or finite volume method etc.Numerical solutions which is constructed from the numerical scheme approximate to the solutions of the hyperbolic con-ervation laws(0.2.1) as the discretation parameter goes to zero.The aim of these two methods is to construct approximate solutions and then to conside the stability of approximate so-lutions(i,e.the upper bound of approximate solutions in the suitable norms,especally for that independent of the approximate parameters).Using the compactness framework(such as BV compactness,L1 compactness and compensated compactness etc) and the fact that the truncation is small,the approximate function consquence approch to a function which is exactly the solutions of (0.2.1) in some sense of definiton. Due to the poor regularity of solutions at large time.(0.2.1) can not defined in classical way.i,e.,the defi
    nition of the derivatives at any points has no sense. So it may be rather difficult in the research of classical way and must be defined in weak sense.In order to guarantee the uniqueness of weak solutions, a condition (entropy inequality) must be need to pick out 'good' solution (entropy solutions). In the fields of fluid dynamics, entropy inequality reflects the second law of thermodynamics.i.e..entropy must increase across shock waves(a kind of discontinuity).All kind of approximate schemes should reflect the fact that it must satisfies some kind
    
    
    of discrete entropy inequality) .From the view of practical computation,stability and theo-retical error of any kind discrete schemes all dependend of the smoothness of the solution of (0.2.1).Generally,the approximate solution have good stability and theoretial error in the area where the solutions have more regularity and poor stability and theoretial error in other area. For the practical computation of (0.2.1),usual approximate schemes has poor computation results in the area of poor regularity such as discontinuities.Firstly,the location of areas of poor regularity is rather difficult.Secondly,approximation in such area is poor.For example,simulation of physical ossciation is a difficult task. All facts reflects that the lackness of smoothness of solution causes difficulties in numericall research.
    Double variable technique is used by Kruzkov in 70's to obtain the existence,uniqueness and regularity of entropy solution to (0.2.1) for the scalar case,especially the contractive properity of entropy solution.Kuznetsov applied this technique to approximation of scalar hyperbolic conservation laws (0.2.1) in 1976. A parabolic regularity(viscosity method) and difference schemes in the rectangle mesh is constructed and convergence rata is obtained in the norm L1.His approximation method is lately called Kuznetsov approximation t
引文
[1] Christos Arvanitis,Theodores Katsaounis and Charalambos Makridakis, Adaptive finite element relaxation schemes for hyperbolic conservation laws,Math.Model.and Nu-mer.Anal.Vol.35,No.1 PP.17-33(2001) .
    [2] Paul Arminjon and Marlie-Claude Villon,Convergence of finite volume extension of the Nessyahu-Tadmor scheme on unstructured grids for a two-dimensional linear hyperbolic equation. SIAM J.Numer.Anal.vol 36. No.3,738-771,1999.
    [3] S.Benharbit, A.Chalabi and J.P.Vila, Numerical viscosity and convergence of finite volume mmethods for conservation laws with boundary conditions. SIAM J.Numer.Anal.vol 32. No 3,775-796,1995.
    [4] C.Bourdarias.Convergence of fluctuation-splittingschemes for two dimensional scalar conservation laws with a kinetic solver.Numer.Math,87(2001) ,pp.645-667.
    [5] F.Bouchut abd B.Perthame,Kurzkov"s estimate for scalar conservation laws re-visted,Math.Transactions of the American Mathematical Society.Vol 350,No.7(1998) 2847-2870.
    [6] Bernardo Cockbern,Frederic Coquel and Philippe Lefloch.An error estimate for finite volume methods for multidimensional conservation laws.Math of Comp.vol 63. No 207(1994) 77-103.
    [7] G.-Q.Chen, C.M. Dafermos. The vanising viscosity method in one-dimensional thermoflasticity. Transactions of the American Mathematical Society.Vol 34. No 2(1995) 531-541.
    [8] G.-Q.Chen, C.M. Dafermos.Global solution in L∞ for a system of conservation laws of vis-coelastic materials with memory.J.Partial Diff.Equ., 10(1997) 369-383.
    [9] G.-Q.Chen,Qiang Du and Eitan Tadmor.Spectal viscosity approximations to multidimensional conservation laws. Math of Comp.vol 61. No.204(1993) 629-643.
    [10] G.-Q.Chen. Hermano Frid. Uniqueness and asymptotic stability of Riemaan solutions for the compressible Euler equations The vanising viscosity method in one-dimensional thermoflastic-ity.Transactions of the American Mathematical Society.Vol 353. No 3(2000) 1103-1117.
    [11] G.-Q.Chen. Hermano Frid. Decay of entropy soluiton of nonlinaer conservation laws, Arch.Rational Mech.Anal..(1999) .
    [12] Bernardo Cockbern and G.Gripenberg, Continuous dependence on the nonlinearities of solution degenerate parabolic equations.Journal of Differential equations 151,231-251(1999) .
    [13] Bernardo Cockbern, Hou.S. Shu. C.W. .The Runge-Kutta local projection discontinuous Galerkin element method for conservation laws IV. the multidimension case. Math of Comp.vol 54. (1990) 545-531.
    [14] Abdallah Chalabi.On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms.Math of Comp.vol 60. No.218(1997) 527-545.
    [15] Panagiotis Chatzipanteliols.A finite volume method based on the Crouzix Raviart element for the elliptic PDE's in two dimensions.Numer.Math..82(1993) .pp.409-432.
    [16] S.H.Chou.A covolume element method based on rotated bilinear for the general Stokes problem. SIAM. J.Aual..33(1998) .pp.499-507.
    
    
    [17] S.H.Chou,Analysis and convergence of a MAC-like scheme for the generalized Stokes prob-lem,Numerer. Method for PDE, 13(1997) , 147-162.
    [18] Claire Chainais-Hillairet, Finite volume scheme for a nonlinear hyperbolic equation towards to the entropy solution and error estimate.Math.Model.and Numer.Anal.1999 vol 33. 129-156.
    [19] Claire Chainais-Hillairet, Second order finite volume scheme for a nonlinear hyperbolic equation, error estimate.Math.Meth Appl Sci.vol 23 467-490(2000) .
    [20] M.G.Crandall,T.M.Liggett,Generation of semi-groups of nonlinear transformations on gereral Banach space,Amer.J.Math,93(1971) ,265-297.
    [21] Frederic Coquel and Philippe Lefloch,Convergence of finite difference schemes conservation laws in several space dimensions,The corrected antidiffusive flux approach, Math.Comp.,57(1991) ,pp.l69-210.
    [22] Frederic Coquel and Philippe Lefloch,Convergence of finite difference schemes conservation laws in several space dimensions,a general theory,SIAM J.Numer.Anal. .,30(1993) ,pp.675-700.
    [23] G.-Q.Chen and Jian-Guo Liu, Convergence of difference schemes with high resolution for conservation law. for isentropoic gas dynamics, Math.of Comp.,vol 61,No.204,607-627(1993) .
    [24] G.-Q.Chen and Jian-Guo Liu, Convergence of econd-order schemes for isentropoic gas dynam-ics,Math.of Comp.,vol 86?,No.219 1027-1053(1997) .
    [25] G.-Q.Chen,C.D.Levermore and T.-P. Liu .Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl.Math.,47(1994) ,pp.787-830.
    [26] Michel G.Crandall and Andrew Majda, Monotone difference approximations for scalar conser-vaton laws.Math of Comp.Vol 34. No 149. 1-21,1980.
    [27] E.Conway.J.Smoller,Global solution of the cachy problem for quasilinear first order equations in several space variables, Comm.Pure Appli.Math.,19(1966) 95-105.
    [28] Mishev Liya D.,Finite volume element methods for nondefinite problem,106(1993) ,ppl62-175.
    [29] X.Ding,G.-Q.Chen,P.Luo.Convergence of th e Lax-Friedrivhs scheme for isentropic gas dynamics(1) -(3) ,Acta Math.Sci.5(1985) ,483-500.
    [30] R.DiPerna.Convergence of viscosity method for isentropic gas dynamics. Comm. Math.Phys.,91. 1-30(1983) .
    [31] R.DiPerna,The measure valued solution to conservation law.Arch.Rational Mech Anal.,88(1985) .pp.223-270.
    [32] R.Eymard,T.Gallouet,M.Ghilani.R.Herbin.Error estimates for the approximate solution of a nonlinear hyperbolic equation given by finite volume scheme.IMA Jour of Xumer.Anal(1998) 18. 563-594.
    [33] Steiner Evje.Kenneth Hvistendahl Karlson,Monotoe difference approximations of BV solution to degenerate convection diffusion equations, SIAM.J.Numer.Anal.Vol. 37,No.6,P.1838-1860(2000) .
    [34] Jurgen Fuhrmann and Hartmut Langmach, Stability and existence of solutions of time-implicit finite volume schemes for viscous nonlinear conservation laws. Applied Numerical Mathmatics 37(2001) 201-230.
    [35] G.Fairweather and J.C.Lopenz-Marcos. A box method for a nonlinear equation of popuation
    
    dynamiics.IMA Journal of Numerical Analysis(1991) 11,525-538.
    [36] Forstythe G.E.,Wasow W.R.,Finite difference methods for partial differential equations,New York:John Wiley and Sons.
    [37] J.Glimm,solutions in the large time for nonlinear hyperbolic system of equations,Comm.Pure Appli.Math.,18(1965) 95-105.
    [38] Yoshikazu Giga and Tetsuro Miyakawa,A kinetic construction of golbal solutions of the first quasilinear equations,Duke Mathematical Journal,vol.50,No.2,505-515(1983)
    [39] Laurent Gosse and Athanasios E.Tzavaras Convergence of relaxation schemes to the equations of elastdynamics,Math. of Comp. ,70(2000) ,pp555-577.
    [40] Raphaele Herbin and Emmanuelle Marchand, Finite volume approximation of a class of vari-ational inequality.IMA Journal of Numerical Analysis(2001) 21,553-585.
    [41] David Hoff and Joel Smoller,Error bounds for finite-difference approximations for a class of nonlinear parabolic systems.Math of Comp.vol 45. No.171(1985) 35-49.
    [42] Jameson A.,Acceleration of transonic potential flow calculations on arbitrary meshes by the multiple grid method.AIAA Paper 79,1458,1979.
    [43] A.Jamson,W.Schmidt,E.Turkel,Numerical solution of the Eurler equations by finite volume methods using Runge-Kutta time-Marching schemes,Paper pp.1259,AIAA,New York,1981.
    [44] S.Jin,Z.Xin,The relaxation schemes for systems of conservation laws in arbitary space dimensions,Comm.Pure Appl.Math.Comp.,48( 1995) ,25-277.
    [45] M.A.Katsoulakis,G.Kossioris and Ch.Makridakios, Convergence and error estimates of relaxation schemes for mulitdimensiona conservation laws,Comm.in Partial Diff.Equ., 24(1999) ,pp.395-424.
    [46] Dietmar Kroner,S.Noelle.and Rokyta.Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions.Numer. Math..71 (1995) ,pp.527-560.
    [47] Dietmar Kroner and Mario Ohlberger. A posteriori error estimate for upwind finite volume schemes for nonlinear conservation laws in muli dimensions,Math of Comp.vol 69. No.229(1999) 257-39.
    [48] S.Kruzkov,First order quasilinear equations with several independent variables.Math.USSR Sb,10(1970) .pp217-243.
    [49] Dietmar Kroner and Mirko Rokyta.Convergence of upwind finite volume schemes for scalar conservation laws in two dimension.SIAM J.Numer.Anal.vol 31. No 2. 324-343. 1994
    [50] D.Kroner,Numerical schemes for consevarion laws.Teubner,Stuttgart. 1997.
    [51] N.Kuznetsov.Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation.USSR Compt.Math and Math phys.16(1976) p105-119.
    [52] Lax.P.D.Shock waves and entropy,in contribution to functional analysis,ed.E.A.Zarantonello Academic Press,(1971) ,603-624.
    [53] Laurant Levi.Obstacle problems for scalar conservation laws. Math.Model.and Nu-mer.Anal.Vol.35. No.3. PP.575-593(2001) .
    [54] D.-M.Li.Finite Volume Method Based on the Crouzetx-Raviart Element for the Stokes Equa-
    
    tion,Jour of Zhejiang University(Sience), V.2,No.2,Pl65-169,Apr-June 2001.
    [55] D.-M.Li,Convergence of Finite Volume Scheme with Viscosity Method for the Scalar Conservation Law in Two Dimensions, 《应用数学学报》(英文版)待发表。
    [56] D.-M.Li,The convergence of cell-centered finite volume method for the convection-diffusion problem.《数学物理学报》(英文版)
    [57] D.-M.Li, The convergence of the finite volume scheme for the scalar conservation law with nonlinear source in two dimensions,《数学年刊》(英文版)待发表。
    [58] D.-M.Li,An error estimate of finite volume scheme for singular perturbered nonlinear degenerate convection-diffusion equation in several dimensions, Jour.of Comp.Math.
    [59] D.-M.Li,Convergence of relaxation-diffusion systems to a kind of hyperbolic systems of conservation law. 《数学物理学报》(英文版)
    [60] C.Lattanzio and P.Marcati,The zero relaxation limit for the Hydrodynamic Whitham traffic flow model .J.Diff.Equ.,141(1994) ,pp.l50-178.
    [61] C.Lattanzio and P.Marcati,The zero relaxation limit for 2 x 2 hyperbolic systems.Nonlinear Anal., 38(1999) ,pp.375-389.
    [62] T.-P. Liu,Hyperbolic conservation laws with relaxation. Comm. Math. Phys., 108(1987) ,pp.153-175.
    [63] C.Lattanzio,B.Perthame,and Tadmor,Kinetic formulation of multidimensional scalar scalar conservation law.J.Amer.Math.Soc.,7(1994) ,pp169-191.
    [64] C.Lattanzio,Denis Serre.Convergence of a relaxation scheme for hyprbolic systems of conservation law,Numer,Math,88(2001) ,pp121-134.
    [65] Perter Lax and Burton Wendroff. Systemd of conservation laws.Comm. Pure Appl.Math.,(1960) ,pp.217-237.
    [66] Cai.L,Song Wang,The finite volume method and application in combination J.Comp.Appl.Math.,106(1993) 21-53.
    [67] McDonald P.W.,The computation of transonic folw through two-dimensional gas turbine cascdes,ASME paper 1971-GT-89.
    [68] K.W.Morton,On the analysis of finite volume methods for evolutionary problems.SIAM J.Numer.Anal.vol 35. No 6. 2195-2222,1998.
    [69] F.Murat,The injection of the positive cone of H-1 in W-1,q is completely continuous for all q < 2. J.Math.Pure Appl..(9) 1981,309-322.
    [70] R.Natalini. Convergence to equilbrium for the relaxation approximation of conservation laws. Comm. Pure Appl.Math..49(1996) ,pp.795-823.
    [71] R.H.Ni.A multipe grid scheme for the Eurler equation.AIAA J.20(1981) ,1565-1571.
    [72] Sebastian Xoelle,Convergence of higher order finite volume schemes on irregular grids.Adv.Comput.Math..3(1995) .pp1155-218.
    [73] M.Ohlberger.A posteriori estimate for finite volume approximations to singular perturbed nonlinear convection diffusion equations.Xurner.Math.(2001) 87. 737-761.
    [74] O.Oleinik.Discontinuous solutions of nonlinear differential equation.Usp.Mat.Nank., 12(1957) 3-73.
    
    
    [75] Vanselow Reiner, Convergence analysis of a finite volume method via a new nonconforming finite element method,Nuiner.Method for PDE, 14(1998) ,213-231.
    [76] Christian Rohde,Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D.Numer Math(1998) 81,85-123.
    [77] Richard Sander,On convergence of monotone finite difference schemes with variable spatial differencing .Math.Comp.,40(1983) ,pp.91-106.
    [78] S.Schochet,The rate of convergence of Special-viscosity method for periodic scalar conservation laws.SIAM J.Numer.Anal.vol.27,No.5,1142-1159,1990.
    [79] D.Serre,Relaxation semi-linearire et cinetique des systemes delois de conservation. H.Poincare Anal.Non Lineaire,17(2000) ,pp.169-192.
    [80] Joel Smoller,Shock waves and reaction-diffusion equations (second edition) Springer-Verger,Bergin,1994.
    [81] Aans Joachim Schroll, Aslak Tveito, and Ragnar Winther, An L1-error bound for a semi-implicit difference scheme applied to a stiff system of conservation law.SIAM J.Numer.Anal.vol 34. No 3,1152-1166. 1997.
    [82] A.Szepessy,Convergence of a shock capturing streamline diffusion finite element method for a scalar conservation law in two dimension.Math.Comp.,53(1989) ,pp.527-545.
    [83] Huazhong Tang, the fully implicit difference methods for a stiff system of conservation laws.Math Numerica Sinca Vol.23,No.2,129-138(2001) .
    [84] L.C.Tartar,Compensated compactness and applications to partial differential equations,in Nonlinear Analysis and Mechanics,Heriiot-Watt Symposium, Resarch Notes in Mathmatics,Pitman,pp.136-192,1979.
    [85] L.C.Tartar,The compensated compactness method applied to system of conservation laws.Ball,J.M.(ed),systems of nonlinear PDE,NATO ASI Series,263-285,1983.
    [86] John D.Tower, Convergence of a difference scheme for conservation laws with a discontinouus flux.SIAM J.Numer.Anal.vol 38. No 2,681-698,2000.
    [87] Eitan Tadmor and Tao Tang,Pointwise error estimate for relaxation approximations to conservation laws.SIAM J.Math.Anal.vol 32. No.4,pp.870-886,2000.
    [88] Aslak Tveito and Ragnar Winther, Existence,uniqueness,and continuous dependence for an error estimate for a system of conservation laws modeling polymer flooding. SIAM J.Math.Anal.vol 22. No.4. pp.905-933,1991.
    [89] Aslak Tveito and Ragnar Winther.An error estimate for a finite difference scheme approximating a hyperbolic system of conservation laws.SIAM J.Xumer.Anal.vol 30. No 2,401-424,1993.
    [90] Aslak Tveito and Ragnar Winther, On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term.SIAM J.Math.Anal.vol 28. No 1,136-161. 1997.
    [91] Z.Teng and L.Ying, Existence,uniqueness and convergence as vanishing viscosity for a scalar-diffusion-convection system.Acta Math.Sinica (N.S).5(1989) ,pp.114-135.
    [92] A.Tzavaras.Materials with internal variables and relaxation to conservation laws,Arch.Rational Mech.Anal..146(1999) ,129-155.
    [93] J.Vila.Couvergence and error estimates in finite volume schemes for general
    
    multidimensional scalar conservation law;I Explicit monotone scheme.RAIRO Model.Math.Anal.Numer,28(1994) ,pp.267-295.
    [94] A.Volpert,The space BV and quasilinear equation,Mat,Sb., 73(1967) 255-302.
    [95] G.B.Whitham,Linear and Nonlinear Waves.A Wiley Sons,New York 1974.
    [96] Michael westdichkenberg and Sebastian Noelle, A new convergence proof for finite volume scheme using the kinetic formulation of conservation laws.SIAM J.Numer.Anal.voI 37. No 3,742-757. 2000
    [97] Jinghua Wang and Gerald Warnecke, On entropy consistency of large time step schemes I.the Godunov and Gllmm schemes.SIAM J.Numer.Anal.voI 30. No. 5,1229-1251. 1993.
    [98] Jin-chao Xu, convergence of an explicit upwind finite element method to Multi-dimensiomal conservation laws.Comp.Math Vol.19,No.1,2001,87-100.
    [99] W.A.Yong,A differece scheme for a stiff system of conservation law,to appear in Proc.Poyal Soc.Edin,1998.
    [100] Changjiang Zhou,Limit behavior of the aproximate solutions to hyperbolic conservation laws with two linearly degenerate fields no some zero measure sets.Nonlinear Analysis,No. 45,(2001) 1097-1107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700