黄土高原马栏林区植物群落生态梯度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的及意义黄土高原马栏林区位于子午岭南部末梢,是泾河主要支流三水河的发源地,是黄土高原森林分布面积较大、植被覆盖最大的林区之一。以往对该植被的研究较多,但系统的从植物群落水平、不同演替阶段和不同层次结构上探讨该区的植物群落的生态梯度及变化的原因比较罕见;乔木种对环境因子的响应关系如何的研究比较罕见。尤其是回答环境因子对植被格局变异的影响程度有多大?空间因子对植被格局变异的影响程度有多大?两者是否存在交互作用?交互作用有多大?用于解释植被分布格局的环境因子是否越多越好?在环境因子中有没有主导因子,主导因子所占的权重有多大?比较少见:在植被与环境分析中,多数学者都是对实测环境梯度的探讨,对潜在的环境梯度涉及较少,尤其对潜在梯度是什么?有多重要?这样的研究更是少见。本文对黄土高原马栏林区植被分布现状及其环境因子的特征进行了研究,以期解决上述问题。解决上述问题不仅从理论上可以丰富植被格局的定量化研究内容,深化对不同演替阶段植物群落的性质及其格局与生境关系的理解,而且从实践上可以对森林植被的保护、抚育、更新和恢复具有重要的意义。
     研究方法在对马栏林区森林植被进行全面考查的基础上,选择具有代表性的不同森林群落地段进行典型取样。设置10个草本样地,5个灌木样地和45个森林样地共60个样地:45个森林样地中包括5个人工刺槐林样地,3个山杨林,3个白桦林样地,10个人工油松样地,8个天然油松林及其混交林样地及16个辽东栎林及其混交林样地。采用17个环境指标刻画植物群落的空间位置、地形和土壤特征:利用双向指示种分析(TWINSPAN)划分了植物群落的类型:利用前向选择法(forward selection)及Monte Carlo检验对植物群落物种组成影响显著(p<0.05)的环境因子进行筛选;利用DCCA、CCA及partial DCA方法探讨不同植物群落类型之间在环境梯度上的生态关系;利用偏典范对应分析(pCCA)定量分离了空间位置、环境因子及交互作用对不同演替阶段植物群落及植物群落不同层次格局总体变异变异的影响:利用利用GLM模型研究主要乔木种对土壤主导因子的响应关系。
     研究的结果1)影响马栏林区森林群落分布的最重要实测环境因素是枯落物、坡向、海拔与有机质,而坡度及其它的速效养分等是分异梯度,起次要作用;潜在环境因素解释马栏林区57.7%森林群落乔木种组成变化的信息,其中干扰是影响该区森林群落分布最重要的潜在环境因素。
     2)演替系列中,影响初期阶段群落显著的环境因子是含盐量和碱解氮,提取环境信息量的82%;影响中期阶段群落显著的环境因子是海拔和腐殖质,提取环境信息量的67%;影响亚顶级阶段群落显著的因子是海拔、坡向、枯落物、腐殖质和pH值,提取环境信息量的65%;影响顶级阶段群落分异显著的因子是海拔、坡向、pH值和速效磷,提取环境信息量的64%。随着演替的进行,环境因子单独对植物群落的影响越来越大,最终形成适合于当地气候、地形和土壤条件的顶级群落(环境因子单独引起可解释变异的66.5%);样地位置单独对植物群落的影响在演替的初期和过渡期最大(27.4%,41.6%),其它时期相对较小;而两者的交互作用对植物群落的影响在演替初期最大(46.4%),对其它三个时期的作用相对恒定(14.0%~22.6%)。
     3)不同演替阶段群落的分布与环境空间的生态梯度格局吻合较好,说明在不同演替阶段的群落内部无论在物种组成上,还是在生境上都非常的相似;随着演替的进行,该区群落空间分布的环境梯度从简单到复杂的变化,说明该区演替顶级群落结构与环境的复杂性;同时环境因子单独对植物群落的影响越来越大,而样地位置单独作用和它们交互作用之和越来越小,说明在演替早期和过渡阶段的群落中是由广泛分布的物种组成,由于它们强的散布能力和生活史特征,决定演替前期植物群落的分布状况,而演替后阶段植物种与环境的关系越来越密切。
     4)海拔、pH值及枯落物厚度对乔灌草层都有显著的影响:腐殖质厚度对乔木层和草本层有显著的影响;有机质对草本层有显著的影响;全氮、坡度及坡向对灌木层有显著的影响。从解释的数值来看:环境单独作用既大又稳定(21.1-23.3%),空间单独作用即小又稳定(3.4-4.4%),而两者的交互作用在不同层次之间的变化非常不稳定(2.3-8.7%);从森林不同层次之间的比较来看:乔木层和灌木层对环境因子、空间因子及交互作用的表现比较相似,但是草本层却不同,草本层对空间因子的响应较小(3.4%),而交互作用却很大(8.7%),是乔木层的3.8倍,是灌木层的2倍,表现出草本层在森林群落中的不稳定性。不可解释的数值在乔木层中占72.2%;在灌木层中占68.3%,在草本层中占64.5%,说明黄土高原马栏林区植被特征是比较复杂,不仅仅受所实测的环境梯度的影响,还受到其它潜在环境变量的影响。
     5)有机质和pH值是影响森林群落物种组成的关键土壤因子,辽东栎对pH的最大响峰值出现在8左右,山杨出现在8.3左右,白桦大于8.5,油松生长在低pH(<7.4)和高pH(>8.7)两种环境之中:伴生种的响应峰值可以分成两个区域,即7~7.4区域和8~8.5区域。辽东栎对有机质的响应峰值出现在>40mg·kg~(-1)区域,油松在28mg·kg~(-1)。左右,白桦在<20mg·kg~(-1)区域,山杨在<12mg·kg~(-1)区域;伴生树种的响应峰值比较复杂,被分成四个区域:<10mg·kg~(-1)区域、20-25mg·kg~(-1)区域、30-40mg·kg~(-1)区域、>50mg·kg~(-1)区域。
     6)从演替的角度来看,白桦/山杨→油松→辽东栎的演替系列中,有机质的含量不断的增加。白桦/山杨→辽东栎的演替过程中,pH是不断降低的。油松→辽东栎演替过程中,pH的变化比较特殊,油松生长在低pH(<7.4)、高pH(>8.7)两种环境之中(与人工种植油松有关),而辽东栎生长在pH中等的环境中,演替中pH值的这种变化过程与群落物种组成的变化有关。
     7)人工油松林下枯枝落叶层比较厚,枯枝落叶的分解能够增加土壤有机质含量。但人工油松林下pH值较低,枯枝落叶分解缓慢,凋落物这一重要归还土壤养分途径受阻。因此,人工油松林能否加快该区植物群落的演替进程的关键因素在于能否促进人工林下凋落物的分解,为辽东栎种子的萌发、幼苗的生长提供较好的条件。
Purpose and Significance
     Malan Forest Region in the east of Xunyi County in Shaanxi Province locates in the south of the Loess Plateau of China. It is birthplace of the Jin River system and it is one of the forests which have the biggest forest cover rate in the loess plateau. There are few system researches on the whole and the structure of plant communities, such as different successions, different layers and so on in this region. How tree response to environmental factors? How much vegetation pattern variation can be explanted by environmental factors? How much vegetation pattern variation can be explanted by spatial factors? Whether there exits interaction between environmental and spatial factors? Whether there are the more environmental factors the better? Are there dominant factors? How much information could they take up? We always use measured factors to explain vegetation pattern variation, but what is the potential environmental factors? How important they are? Those questions weren't be answered by predecessors. Our research is due to solve those questions based on the vegetation in Malan Forest region. Solving those problems above not only enrich the quantitative research contents about the community distribution pattern theoretically, and deepen the understanding about the relationship between community and environment at different succession stages, but also has a significant meaningful to forest vegetation about protection, tending, renewal and restoration in practice.
     Research methods
     On the base of investigation the whole types of communities in Mala Forest Region completely, different representative community types were selected, including 60 plots which contains 45 forest plots, 10 herb plots and 5 shrub plots. Forest plots contain 5 Robinia pseudoacacia plots, 3 Populus davidiana plots, 3 Betula platyphylla plots, 10 planted Pinus tabulaeformis plots, 8 natural Pinus tabulaeformis plots and 16 Quercus liaotungensis plots. 17 variables were used as indicators of spatial position, soil characteristics and topography. Plant community types in different successional stages in this region were analyzed by TWINSPAN. Environmental factors which have significant influence (p<0.05) on the composition of plant communities in different successional stages were selected by forward selection and Monte Carlo tests. The relationship between the distribution pattern of plant communities and environmental factors was identified by DCCA、CCA and partial DCA. The influence of environmental and spatial variables and their interaction on the variation of community distribution patterns was quantitatively separated by partial CCA. How tree response to dominant soil factors was researched by GLM model.
     Research Results
     1) Forest floor, aspect, elevation and organic matter were the important measured environment gradients which impacted the distribution of forest types while other available nutrients were secondary important. Potential environmental factors could explain 57.7% information of tree composition variation. Disturbance was the important potential environment gradient which impacted the distribution of forest types.
     2) Salt and available nitrogen were the important environmental factors which effected the plant communities composition significantly at the early stage, and they had extracted 82% environmental information; Elevation and humus were the important environmental factors which effected the plant community structures significantly at transitional stage, and they had extracted 67% environmental information. Elevation, aspect, forest floor, humus and pH value effected plant communities composition significantly at the sub-climax stage, and they had extracted 65% environmental information. Elevation, aspect, pH value and available phosphorus were the environmental factors which effected species composition significantly at the climax stage, and they had extracted 64% environmental information. With the succession processing, environmental gradients were becoming more and more complex and climax community formed finally which were suitable to local climate, topography and soil condition (explained variation caused by environment factors alone was 66.5%). The effect of spatial position alone on plant community was the biggest at preliminary stage and the transition stage (27.4%, 41.6%) comparing to other stages. Interaction of spatial position factors and environmental factors was the most influential at preliminary stages (46.4%) while the effect was relative constant at other three succession stages (14%-22.6%).
     3) DCCA ordination at different succession stages suggested that distribution pattern of plant communities were in good agreement with ecological gradients in Malan forest region. The result showed that either the species composition or the habits were similar at different succession stages internal and it also corroborated the viewpoint above at the same time. With the succession processing, environmental gradients were becoming more and more complex and there were the most complex relationship between plant community and environmental factors at climax stage. As succession proceeds, the impact of environmental conditions on plant communities increases, while the total influence of spatial location, and the interaction between spatial and environmental factors decreases. The answer might be that communities were constituted by widely distributed species at early stage. Those species tended to be widespread owing to dispersal ability and other life-history traits such as long seed viability.
     4) Elevation, pH value and forest floor are significant factors to the structures of tree, shrub and herb layers; Humus are significant factors to the structures of tree and herb layers; Organic matter effects herb structure significantly; Total nitrogen, slop and aspect effect shrub structure significantly. From the size of explanted variation, the effect of environmental factors is big and stable (21.1-23.3%); the effect of spatial factors is small and stable (3.4-4.4%); the effect of interaction is very unstable (2.3-8.7%) in different layers. Comparing the different layers of the forest, tree and shrub layers response to environment and spatial are similarity, but herb layer is different significantly. Herb layer response to spatial factors is small (3.4%), while interaction is the biggest (8.7%). It is 3.8 time to tree layer, and it is 2 time shrub layer. That indicates the structure of herb layer is unstable. Unexplained variation take up 72.2% in tree layer, 68.3% in shrub layer and 64.5% in herb layer. The result show vegetation character is complex in Malan Region of loess plateau. They are not only affected by measured environmental factors but also affected by some potential environmental factors.
     5) Organic matter and pH value are the key factors to forest community structures. The response peak of pH to Q. liaotungensis is about 8, to P. davidiana is about 8.3, to B. platyphylla is more than 8.5 while P. tabulaeformis is less than 7.4 or more than 8.7. The response peak of Associated species to pH is divided into two regions: 7-7.4 and 8-8.5. The response peak of organic matter to Q. liaotungensis is more than 40 mg·kg~(-1), to P. tabulaeformis is about 28 mg·kg~(-1), to B. platyphylla is less than 20 mg·kg~(-1), and to P. davidiana is less than 12 mg·kg~(-1). The response peak of associated species to organic matter is divided into four regions: <10mg·kg~(-1), 20~25mg·kg~(-1), 30~40mg·kg~(-1) and >50mg·kg~(-1).
     6) From the point of succession, organic matter will became richer and richer in the succession of B. platyphylla / P. davidiana→P. tabulaeformis→Q. liaotungensis while pH value will became more and more acidic in the succession of B. platyphylla / P. davidiana→Q. liaotungensis. The succession of P. tabulaeformis→Q. liaotungensis is more special than others, because yousong exist in two different environment condition, such as pH<7.4 and pH>8.7 (related to human planted). Q. liaotungensis grow in pH=8 environments, the change action is related to the change of species composition in succession.
     7) Forest floor is always thicker in planted P. tabulaeformis, and it could enrich the soil organic matter. But the soil is always more acidic, which makes forest floor decomposition more slowly. Nutrient cycling is blocked. So, the key question of accelerating succession was to find a proper way to promote forest floor decomposition, which will provide a good condition for Q. liaotungensis seeds germination and growth.
引文
[1]张维邦.黄土高原整治研究[M].北京:科学出版社,1992.
    [2]李斌,张金屯.黄土高原地区植被与气候的关系[J].生态学报,2003,23(1):82-89.
    [3]刘文清,郭永清,王国贤.黄土高原沙化草地牧草飞播技术的试验研究[J].草业科学,2003,20(11):30-31.
    [4]张富胡,朝阳.黄土高原植被对位配置技术[J].中国水土保持,2003,1(250):20-22.
    [5]陈云明,梁一民,程积民.黄土高原林草植被建设的地带性特征[J].植物生态学报,2002,26(3):339-345.
    [6]贺秀斌,唐克丽.黄土高原植被建造的潜势[J].中国水土保持,1999,3(204):31-35.
    [7]信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学),2007,37(11):1504-1514.
    [8]王辉,王天明,杨明博,熊友才.基于航片的黄土高原丘陵沟壑区沟谷侵蚀定量监测[J].应用生态学报,2008,19(1):127-132.
    [9]何永涛,李文华,李贵才,闵庆文.黄土高原地区森林植被生态需水研究[J].环境科学,2004,25(3):35-39.
    [10]许炯心.黄土高原植被.降水关系的临界现象及其在植被建设中的意义[J].生态学报,2005,25(6):1233-1239.
    [11]信忠保,许炯心.黄土高原地区植被覆盖时空演变对气候的响应[J].自然科学进展,2007,17(6):770-778.
    [12]张希彪,郭小强,周天林,等.子午岭种子植物区系分析[J],西北植物学报,2004,24(2):267-274.
    [13]汪超,王孝安,王玲.不同种植年代油松林植物多样性及土壤养分变化[J].生态学杂志,2007,26(8):1182-1186.
    [14]王辉,任继周.子午岭主要森林类型土壤种子库[J].干旱区资源与环境,2004,18(3):130-136.
    [15]陈智平,王辉,袁宏波.研究了子午岭辽东栎林土壤种子库及种子命运[J].甘肃农业大学学报,2005,40(1):7-12.
    [16]田丽,王孝安,郭华,等.黄土高原马栏林区辽东栎更新特性研究[J].广西植 物,2007,27(2):191-196.
    [17]王彬,王辉,杨君珑,等.子午岭次生油松林主要乔木树种的更新特点[J].浙江林学院学报,2007,24(5):559-563.
    [18]方坚,王孝安,郭华,等.黄土高原马栏林区辽东栎林种内、种间竞争研究[J].西北植物学报,2007,27(2):0334-0339.
    [19]张文辉,徐学华,李登武,等.黄土高原丘陵沟壑区封禁30年前狼牙刺种群动态研究[J].应用生态学报,2006,17(2):182-183。
    [20]安丽娟,朱志红,王孝安,等.子午岭马栏林区主要森林群落的稳定性分析[J].西北植物学报,2007,27(5):0859-0863.
    [21]秦娟,上官周平.子午岭林区山杨-辽东栎混交林的生理生态效应[J].应用生态学报,2006,17(6):972-973.
    [22]张希彪,周天林.人类活动对黄土高原子午岭森林景观格局的影响[J].西北农林科技大学学报(自然科学版),2007,35(10):115-121.
    [23]杨君珑,王辉,王彬,等.子午岭油松林灌木层主要树种的空间分布格局和种间关联性研究[J].西北植物学报,2007,27(4):0791-0796.
    [24]刘勇,刘光明.黄土高原子午岭群落演替特性研究[J].安徽农业科学,2007,35(18):5550-5551,5598.
    [25]张红,吕家珑,赵世伟,等.不同植被覆盖下子午岭土壤养分状况研究[J].干旱地区农业研究,2007,24(2):66-69.
    [26]周正朝,上官周平.人为干扰下子午岭次生林土壤生态因子动态变化[J].应用生态学报,2005,16(9):1586-1590.
    [27]王力,邵明安,王全九,等.黄土高原子午岭天然林与刺槐人工林地土壤干化状况对比[J].西北植物学报,2005,25(7):1279-1286.
    [28]王百群,吴金水,赵世伟.子午岭林区植被类型对土壤氮素的效应[J].水土保持通报,2002,22(6):23-25.
    [29]赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水土保持学报,2002,16(4):119-122.
    [30]王百群,吴金水,吴振海.子午岭次生林区植被中有机碳的储量[J].西北植物学报,2004,24(10):1870-1876.
    [31]赵世伟,卢璐,刘娜娜,等.子午岭林区生态系统转换对土壤有机碳特征的影响[J].西北植物学报,2006,26(5):1030-1035.
    [32]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性[J].生态学报,2006,26(10):3270-3275.
    [33]武吉华,张坤,江源,等.植物地理学[M].北京:高等教育出版社,2004.
    [34]林文雄.生态学[M].北京:科学出版社,2007.
    [35]Hill MO.DECORANA-AFORTRAN program for detrended correspondence analy- sis a reciprocal averaging[M].Cornell University,Ithaca,New York,1979.
    [36]Hill MO.TWINSPAN-A FORTRAN programme for arranging multivariate date in an ordered two-way table by classification of individuals and attributes.Cornell Un-iversity,Ithaca,New York,1979.
    [37]Bray JR,Curtis JT.An ordination of the upland forest communities of southern Wisconsin[J].Ecol.Mon.1957,27:325-49.
    [38]Whittaker RH.Gradient analysis of vegetation[J].Biol.Rev.1967,42:207-64.
    [39]Gauch HG.Noisereduction by eigenvalue ordinations[J].Ecology,1982,63:1643-9
    [40]Hill MO.Reciprocal averaging:an eigenvector method of ordination[J].J.Ecol.1973,61:237-49
    [41]Pielou EC.The interpretation of ecological data:a primer on classification and ordination[M].Wiley,New York,1984.
    [42]Gauch HG.Multivariate analysis and community structure[M].Cambridge University Press,Cambridge,1982.
    [43]Ter Braak CJF,Smilauer P.CANOCO reference manual and User's guide to Canoco for Windows:Software for Canonical Community Ordination(version 4)[M].Microcomputer Power,Ithaca,1998.
    [44]Ter Braak CJF.CANOCO - A FORTRAN program for canonical correspondence analysis and detrended correspondence analysis[M].Iwis-Tno,Wageningen,The Netherlands,1985.
    [45]Palmer MW.Putting things in even better order:the advantages of canonical correspondence analysis[J].Ecology,1993,74:2215-2230.
    [46]Mcune B.Influence of noisy environmental data on canonical correspondence analysis[J].Ecology,1997,78:2617-2623.
    [47]Borcard D,Legendre P,Drapeau P.Partialling out the spatial component of ecological variation[J].Ecology,1992,73:1045-55.
    [48]辛晓平,高琼,李镇清,等.松嫩平原碱化草地植物群落分布的空间和环境因素分析[J].植物学报,1999,41(7):775-781.
    [49]沈泽昊,张新时.三峡大老岭地区森林植被的空间格局分析及其地形解释[J].植物学报,2000,42(10):1089-1095.
    [50]φkland RH.Canonical correspondence analysis with variation partitioning:some comments and an application[J].Journal of Vegetation Science,1994,5:117-126.
    [51]Franklin J,Wiser S K,Drake D R,et al.Environment,disturbance history and rain forest composition across the islands of Tonga,Western Polynesia[J].Journal of Vegetation Science,2006,17:233-244.
    [52]Manly BFJ.Randomization and Monte Carlo methods in biology[M].Chapman and Hall,New York,1992.
    [53]Legendre P,Legendre.Numerical ecology[M].Elsevier,Amsterdam,The Netherlands,1998.
    [54]φkland RH.On the variation explained by ordination and constrained ordination axes[J].Journal of Vegetation Science,1999,10:131-136.
    [55]Ter Braak CJF.Update notes:CANOCO version 3.10[M].Agricultural Mathematics Group,Wageningen,The Netherlands,1990.
    [56]Ter Braak CJF.Canonical community ordination,Part Ⅰ:basic theory and linear methods[J].Ecoscience,1994,1:127-140.
    [57]φkland R H.Partitioning the variation in a plot-by-species data matrix that is related to n sets of explanatory variables[J].Journal of Vegetation Science,2003,14:693-700.
    [58]Ter Braak CJF.Unimodal models to relate species to environment[M].Agricultural Mathematics Group,Wageningen,1996,266.
    [59]孙儒泳,李博,诸葛阳,尚玉昌.普通生态学[M].高教出版社,1993:48-50.
    [60]骆世明.普通生态学[M].北京:中国农业大学出版社,2005,8.
    [61]孙晓霞,王孝安,郭华,等.黄土高原马栏林区植物群落的多元分析与环境解释[J].西北植物学报,2006,26(1):0150-0156.
    [62]赵淑清,方精云,宗占江,等.长白山北坡植物群落组成、结构及物种多样性的垂直分布[J].生物多样性,2004,12(1),164-173.
    [63]刘秋锋,康慕谊,刘全儒.中条山混沟地区森林乔木种的数量分类与环境解释[J].植物生态学报,2006,30(3):383-391.
    [64]王孝安.甘南玛曲植物群落多元分析与环境解释[J].生态学报,1997,17(1):61-65.
    [65]相辉,岳明.陕北黄土高原森林植被数量分类与环境解释[J].西北植物学报, 2001,21(4):726-731.
    [66]宋永昌.植被生态学[M].华东师范大学出版社,上海,2001,210-321,423-448.
    [67]范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006,26(3):706-714.
    [68]张希彪,上官周平.人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J].生态学报,2006,26(11):2685-3695.
    [69]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [70]刘世梁,马克明,傅伯杰,等.北京东灵山地区地形土壤因子与植物群落关系研究[J].植物生态学报,2003,27(4):496-502.
    [71]沈泽昊,张新时.三峡大老岭地区森林植被的空间格局分析及其地形解释[J].植物学报,2000,42(10):1089-1095.
    [72]董林水,张旭东,周金星.晋西黄土丘陵边缘土石山区天然次生林群落β多样性研究[J].干旱区研究,2007,24(5):657-660.
    [73]李斌,张金屯.黄土高原植物群落生态关系研究[J].农业环境科学学报,2003,22(4):471-473.
    [74]江洪.川西北甘南云杉林的DCA排序、环境解释和地理分布的模型的研究[J].植物生态学报,1994,18(3):209-218.
    [75]Ter Braak CJF,Prentice I C.A theory of gradient analysis[J].Adv.Ecol.Res,1988,18:271-317.
    [76]Gentry A H.Changes in plant community diversity and floristic composition on environmental and geographical gradients[J].Ann.M o.Bot.Gard,1988,75:1-34.
    [77]Pyke C R,Condit R,Aguilar S,et al.Floristic composition across a climatic gradient in a neotropical lowland forest[J].Journal of Vegetation Science,2001,12:553-556.
    [78]Borcard D,Legendre P,Drapeau P.Partialling out the spatial component of ecological variation[J].Ecology,1992,73:1045-55.
    [79]张文辉,卢涛等.岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报,2004,24(3):532-559.
    [80]朱源,康慕谊.排序和广义线性模型与广义可加模型在植物种与环境关系研究中应用[J].生态学杂志,2005,24(7):807-811.
    [81]祝廷成,钟章成,李建东.植物生态学[M].重庆:高等教育出版社,1988.
    [82]王国宏,杨利民.祁连山北坡中段森林植被梯度分析及环境解释.植物生态学报,2001,25(6):733-740.
    [83]Joshua M B.Comparing explanatory variables in the analysis of species composition of a Tallgrass Prairie[J].Oklahoma Academy of Science,2004,84,33-40.
    [84]李涛,尹林克,严成.塔里木河中游天然植被的数量分类与排序研究[J].干旱区地理,2003,26(2):173-179.
    [85]马明东,罗承德,张健,等.云杉天然林分生境条件数量分类研究[J].中国生态农业学报,2006,14(2):159-163.
    [86]钱亦兵,吴兆宁,张立运,等.古尔班通古特沙漠生境对植物群落格局的影响[J].地理学报,2004,59(6):895-902.
    [87]Woodward F I,Mckoo I F.Vegetation and climate.Environment International[J],1991,17:535-546.
    [88]Gitay H,Noble I R,Connell J H.Deriving functional types for rain-forest trees[J].Journal of Vegetation Science,1999,10:641-650.
    [89]Pyke C R,Condit R,Aguilar S,et al.Floristic composition across a climatic gradient in a geotropically lowland forest[J].Journal of Vegetation Science,2001,12:553-556.
    [90]张硕新,王斌,雷瑞德,等.火地塘林区主要景观类型地形格局及其解释[J].西北农林科技大学学报,2006,34(8),93-97.
    [91]范变娥,焦菊英,张桂英.黄土丘陵沟壑区退耕地植物群落优势种对显著影响因子的响应[J].水土保持通报,2006,26(6),4-9.
    [92]宋洪涛,张劲峰,田昆,等.滇西北亚高山地区黄背栎林植被演替过程中的林地土壤化学响应[J].西部林业科学,2007,2,65-70.
    [93]Critchley CNR,Chambers BJ,Fowbert JA,et al.Association between lowland grassland plant communities and soil properties[J].Biol Conserv,2002,105,199-215.
    [93]Grime JP,Thompson K,Hunt R,etal.Integrated screening validates primary axes of specialization in plants[J].Oikos,1997,79,259-281.
    [94]Mountford JO,Lakhani KH,Kirkham FW.Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a somerset peat moor[J].J Appl Ecol,1993,30,321-332.
    [95]Willems JH,Peet RK,Bik L.Changes in chalk grassland structure and species richness resulting from selective nutrient additions[J].J Veg Sci,1993,4,203-212.
    [96]Palmer MW,Earls PG,Hoagland BW,etal.Quantitative tools for perfecting species lists[J].Environ metrics,2002,13,121-137.
    [97]Janssens F,Peeters A,Tallowin JRB,etal.Relationship between soil chemical factors and grassland diversity[J].Plant Soil,1998,202,69-78.
    [98]Odum EP.The strategy of ecosystem development[J].Science,1969,164,262-270.
    [99]马祥华,焦菊英.黄土高原植被恢复与土壤环境相互作用研究进展[J].水土保持研究,2004,4,158-161.
    [100]赵松岭,陈庆诚,李白珍,王刚,王孝安植物群落演替的线性与非线性系统及数字预测[J].生态学报,1981,3,235-240.
    [101]李典谟,陈玉平.突变论在生态系统中的应用[J].生态杂志,1982,4,35-38.
    [102]冯宁昌,朱桂芳.论系统中的质量互变[J].科学技术与辩证法,1994,11(1),40-43.
    [103]王晗生.黄土高原植被恢复策略回顾[J].中国水土保持科学,2004,1:42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700