微合金钢奥氏体晶粒超细化的相关组织控制及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代钢铁工业的发展不再强调数量上的增长,而更多侧重技术层面上的研发。在新一代钢铁材料的开发中注重减量化的思想,即在不增加或者少增加成本的基础上提升产品的综合性能,而其中细晶强化无疑是一种被多数研究所证实的行之有效的方法。本文以此为着眼点,在前期863计划课题(2001AA332020)“500MPa碳素钢先进工业化制造技术”的研究基础上,通过奥氏体晶粒的超细化及对其相变行为的有效控制获得一种实现低碳结构钢组织超细化控制的新思路。
     在轧制技术及连轧自动化国家重点实验室自主课题经费的支持下,本文主要围绕含Nb钢和Nb-V-Ti复合微合金钢的奥氏体晶粒超细化方法、超细晶奥氏体的长大动力学、超细晶奥氏体的高温变形及其γ→α相变行为等方面进行研究,并在实验室现有条件下做了一些尝试性轧制试验。研究取得如下成果:
     (1)在不同原始组织条件下,利用循环加热-淬火工艺细化奥氏体晶粒,将奥氏体晶粒细化至1~3μm。在所采用的原始组织中,以温轧铁素体+珠光体所获得的细化奥氏体晶粒的效果最好;另外,Nb-V-Ti复合微合金钢要比单纯含Nb钢更有利于细化奥氏体晶粒。
     (2)利用形变热处理细化奥氏体晶粒是一个多种相关因素(如变形温度,变形量,应变速率以及变形方向等)耦合的过程,需要对每一个因素进行合理的关联控制才能实现奥氏体晶粒最大程度的细化。
     (3)在温轧铁素体+珠光体原始组织下,可以通过升温过程中的铁素体动态再结晶和变形促进奥氏体相变机制的综合作用实现奥氏体晶粒的亚微米化。
     (4)以Nb-V-Ti复合微合金钢为对象,讨论了原始晶粒尺寸1~3μm的超细晶奥氏体的等温长大行为,并建立了相应的长大动力学模型。分析不同尺寸奥氏体热变形的真应力-真应变曲线发现,随着奥氏体晶粒超细化以后,晶界行为在奥氏体的热变形过程中协调作用更加显著。奥氏体晶粒超细化使得晶粒(或晶粒簇)间对碳浓度的分布变得敏感,造成了单相奥氏体中“类两相”(硬相和软相)特征组织的存在,从而对超细晶奥氏体的热变形行为以及后续变形过程中铁素体相变均产生显著影响。
     (5)超细晶奥氏体在接近A_3点的A_(d3)~A_(r3)温度区间变形初期,除了有变形诱导铁素体相变发生外,同时伴随有超细晶奥氏体的长大行为。
     (6)奥氏体晶粒超细化对相变后铁素体的细化是显著的,应变速率的增加和相变温度的降低均有利于终态组织的细化,在两相区的较低温度变形时可以在高应变速率下将铁素体晶粒细化至100~300nm;而同样的应变量,低应变速率(0.1s~(-1))时所获得的铁素体晶粒尺寸相对较大,约在500nm。
     (7)在实验条件下,分别制备了晶粒尺寸1μm左右的超细晶C-Mn钢样品和铁素体晶粒为100~300nm的Nb-V-Ti复合微合金钢样品,其室温拉伸曲线显示了超细晶钢所普遍具有的低应变硬化能力,且结合超细晶C-Mn钢样品的EBSD分析认为超细晶钢的低应变硬化能力除了与位错累积能力差有关之外,晶界的滑动也是原因之一。但是通过合理控制终态组织可以有效提高超细晶材料的应变硬化能力,如超细晶铁素体+珠光体(渗碳体)+马氏体复合组织所具有的加工硬化能力要明显优于超细晶铁素体+珠光体(渗碳体)。
More emphasis has being laid on the improvement of technical content instead of quantitative increase in the modern steel industry. As for new generation steel, reduced rolling technology has already successfully applied to its research and development, where the most effective method utilized is fine-grained strengthening. By taking this strengthening method into account, basing on the advance researches in the 863 project of The Advanced Industrial Manufacture Technology of 500MPa Carbon Steel, a new way was explored to better control of ultra-fine microstructures in combination with ultra-refinement of austenite grains and reasonable control of transformation behaviors during the subsequent cooling stage.
     Being sponsored by autonomic-project fund of State Key Lab. of Rolling & Automation, researches about the processes for ultrafining austenite grains in Nb-containing steel and Nb-V-Ti steel, growth kinetics of ultra-fine austenite grains, hot-deformation of ultra-fine grained austenite and subsequentγ→αtransformation behaviors etc. were systematically undertaken in the current paper, including some tentative rolling experiments in laboratory. The main works involved as follows:
     (1) Ultra-fine austenite grains in size of 1~3μm can be prepared with different initial microstructures in the process of repetitive reheating and quenching, while the most effective initial microstructure used is warm-rolled ferrite + pearlite. Moreover, ultra-fine austenite grains obtained in Nb-V-Ti steel are much smaller than those in Nb-containing steel.
     (2) All the influencing factors are related to each other and should be controlled well in the thermomechanial treatment which is a coupling process, in order to minimize the obtained austenite grain size.
     (3) Submicron crystallization of austenite grains can be obtained through recrystallization of ferrite and deformation promoted austenite transformation during the reheating stage.
     (4) Isothermal growth behavior of ultra-fine austenite grains with average grain size 1~3μm in Nb-V-Ti steel was systematically discussed and corresponding model of growth kinetics was also established. True stress-true strain curve is inclined to softening type as austenite grain size decreases at 900~950℃, which means grain boundary behaviors gradually participate in coordinating the deformation process. Austenite grains (or grain clusters) become more sensitive to the distribution of carbon concentration, and then, such 'quasi two phase' (hardening and softening phases) in austenite is formed which further influence the hot-deformation behaviors of ultra-fine grained austenite and subsequent dynamic ferrite transformation significantly.
     (5) Deformation-induced ferrite transformation and dynamic austenite grain growth simultaneously exist in the early stage of deformation at temperature range of A_(d3)~A_(r3) around A_3.
     (6) Ferrite grain size remarkably decreases through refinement of austenite grain size. Also, lowering the deformation temperature and increasing the strain rate are both favorable for the refinement of final microstructures. Ferrite grains in size of 100~300nm can be obtained when samples are deformed at relatively low temperatures in two-phase region with high strain rate (10s~(-1)), while ferrite grains become a little larger (~500nm) if the strain rate is slowed down to 0.1s~(-1).
     (7) Ultra-fine grained C-Mn steel and Nb-V-Ti steel with ferrite grains size about 1μm and 100~300nm respectively were successfully prepared under laboratory conditions, and low strain hardening capacities were entirely found in those ambient tensile tests, which are partially attributed to initial grain boundary sliding/grain rotation besides the weak piling up of dislocations in ultra-fine grains.
引文
1. K. Nagai. Ultra-fine grained ferrite steel with dispersed cementite particles[J]. J. Mater. Process. Technol., 2001, 117: 329-332.
    
    2. H. Beladi, A. Zarei-Harizaki, G.L. Kelly et al. Formation of ultrafine grained microstructures in steel through strain induced transformation during single pass hot rolling[J]. Mater. Sci. Technol., 2004, 20: 213-220.
    
    3. R. Priestner, Y.M. Al-Horr and A.K. Ibraheem. Effect of strain on formation of ultrafine ferrite in surface of hot rolled microalloyed steel [J]. Mater. Sci. Technol., 2002, 18: 973-980.
    
    4. X.J. Zhang, P.D. Hodgson and P.F. Thomson. The effect of through-thickness strain distribution on the static recrystallization of hot rolled austenitic stainless steel strip[J]. J. Mater. Process. Technol., 1996, 60:615-619.
    
    5. 翁宇庆.钢铁结构材料的组织细化[J].钢铁,2003,38(5):1-9.
    
    6. M. Umemoto. Nanocrystallization of steels by severe plastic deformation[J]. Mater. Trans., 2003, 44(10): 1900-1911.
    
    7. X. Zhao, T.F. Jing, Y.W. Gao et al Annealing behavior of nano-layered steel produced by heavy cold-rolling of lath martensite[J]. Mater. Sci. Eng. A, 2005, 397: 117-121.
    
    8. N. Tsuji, R. Ueji and Y. Minamino. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process[J]. Scripta Mater., 2002,47: 69-76.
    
    9. V.V. Sagaradze, V.E. Danilchenko, V.A. Shabashov et al. The structure and properties of Fe-Ni alloys with a nanocrystalline austenite formed under different conditions of γ-α-γ transformations [J]. Mater. Sci. Eng. A, 2002, 337: 146-159.
    
    10. D.H. Shin, K.T. Park. Ultra-fine grained steels processed by equal channel angular pressing[J]. Mater. Sci. Eng. A, 2005, 410-411: 299-302.
    
    11. N. Tsuchida, H. Masuda, Y. Harada et al. Effect of ferrite grain size on tensile deformation behavior of a ferrite-cementite low carbon steel[J]. Mater. Sci. Eng. A, 2008, 488: 446-452.
    
    12. H. Beladi, G.L. Kelly and P.D. Hodgson. Ultrafine grained structure formation in steels using dynamic strain induced transformation processing[J]. Int. Mater. Rev., 2007, 52(1): 14-28.
    
    13. T. Yokota, M.C. Garcia, H.K.D.H. Bhadeshia. Formation of nanostructured steels by phase transformation[J]. Scr. Mater., 2004, 51(8): 767-770.
    
    14. J. Han, Z.Y. Wang, L.Z. Jiang. Properties of a 304 austenitic stainless steel hot strip by TMCP[J]. J. Iron and Steel, Int., 2007, 14(5): 282-287.
    
    15. D. Wu, Z. Li, H.S. Lü. Effect of controlled cooling after hot rolling on mechanical properties of hot rolled TRIP steel[J]. J. Iron and Steel, Int., 2008, 15(2): 65-70.
    
    16. F.R. Xiao, B. Liao, Y.Y. Shan et al. Challenge of mechanical properties of an acicular ferrite pipeline steel[J]. Mater. Sci. Eng. A, 2006,431: 41-52.
    
    17. A.A. Gazder, W.Q. Cao, E.V. Pereloma et al. An EBSD investigation of interstitial-free steel subjected to equal-channel angular extrusion[J]. Mater. Sci. Eng. A, 2008, 497: 341-352.
    
    18. C.X. Huang, G. Yang, Y.L. Gao et al. Influence of processing temperature on the microstructures and tensile properties of 304L stainless steel by ECAP[J]. Mater. Sci. Eng. A, 2008,485: 643-650.
    
    19. S.V. Dobatkin, O.V. Rybal'chenko, G.I. Raab. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating[J]. Mater. Sci. Eng. A, 2007, 463:41-45.
    
    20. S. Tamimi, M. Ketabchi, N. Parvin. Microstructural evolution and mechanical properties of accumulative roll bonded interstitial free steel[J]. Mater. Design, 2008, 30(7): 2556-2562.
    
    21. N. Tsuji, Y. Saito, H. Utsunomiya et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process[J]. Scr. Mater., 1999, 40(7): 795-800.
    
    22. R.Z. Valiev, Y.V. Ivanisenko, E.F. Rauch et al. Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation[J]. Acta Mater., 1996, 44(12): 4705-4712.
    
    23. P. Heilmann, W.A.T. Clark, D.A. Rigney. Orientation determination of subsurface cells generated by sliding[J].Acta Metall, 1983,31(8): 1293-1305.
    
    24. M. Umemoto, B. Huang, K. Tsuchiya et al. Formation of nanocrystalline structure in steels by ball drop test[J]. Scr. Mater., 2002, 46(5): 383-388.
    
    25.张凌义,杨钢,黄崇湘,陈为亮,王立民.ECAP制备马氏体耐热钢[J].金属学报,2008,44(4):409-413. 409-413.
    
    26. D.H. Shin, I. Kim, J. Kim et al.. Microstructure Development During Equal-channel Angular Pressing of Titanium [J]. Acta Mater., 2003, 51(4): 983-996.
    
    27. B.C. Kim, Y.S. Kim, K.T. Park, D.H. Shin and G.T. Park. Manufacture of ultrafme-grained low carbon steel involves using ECAP [P]. Korea, KR2002061670-A; KR415346-B.
    
    28. K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin. Thermal stability and mechanical properties of ultrafine grained low carbon steel [J]. Mater. Sci. Eng. A, 2000, 293(1-2): 165-172.
    
    29. Y. Saito, N. Tsuji, H. Utsunomiya et al. Ultrafine grained bulk aluminum produced by accumulative roll-bonding(ARB) process[J].Scr.Mater.,1998,39(9):1221-1227.
    30.N.Tsuji,T.Maki.Enhanced Structural Refinement by Combining Phase Transformation and Plastic Deformation in Steels[J].Scr.Mater.,2009,60(12):1044-1049.
    31.C.S.Yoo,Y.M.Park,Y.S.Jung et al.Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel[J].Scr.Mater.,2008,59:71-74.
    32.Y.K.Lee,C.S.Choi.Effects of thermal cycling on the kinetics of the gamma→epsilon martensitic transformation in an Fe-17 wt pct Mn alloy[J].Metall.Trans.A,2000,31(11):2735-2738.
    33.H.Kitahara,N.Tsuji,Y.Minamino.Martensite transformation from ultrafine grained austenite in Fe-28.5at.%Ni[J].Mater.Sci.Eng.A,2006,438-440:233-236.
    34.S.J.Jones,H.K.D.H.Bhadeshia.Kinetics of the simultaneous decomposition of austenite into several transformation products[J].Acta Mater.,1997,45(7):2911-2920.
    35.R.L.Bondar,S.S.Hansen.Effects of Widmanst(a|¨)tten ferrite on the mechanical properties of a 0.2 pct C-0.7 pct Mn steel[J].Metall.Mater.Trans.A,1994,25(4):763-773.
    36.安运铮.热处理工艺学[M],北京:机械工业出版社,1982,3-5.
    37.D.A.波特,K.E.伊斯特林.金属和合金中的相变[M],北京:冶金工业出版社,1988,275-280.
    38.林慧国,傅代直.钢的奥氏体转变曲线[M],北京:机械工业出版社,1988,151-152.
    39.崔忠圻,刘北兴.金属学与热处理原理[M],哈尔滨:哈尔滨工业大学出版社,2001,175-176.
    40.徐洲,赵连诚.金属固态相变原理[M],北京:科学出版社,2004,21-25.
    41.约翰J.伯克,沃克.威斯编,王燕文,张永昌译.超细晶粒金属[M],北京:国防工业出版社,1982,56-60
    42.M.Torkizane,N.Matsumura,K.Tsuzaki et al.Recrystallization and formation of austenite in deformed lath martensitic structure of low carbon steel[J],Metall.Trans.A,1982,13(8):1979-1987.
    43.陈思联,董瀚,翁宇庆等.合金结构钢的组织超细化及其性能研究[A],北京科技大学编,新一代钢铁材料重大基础研究论文集[C],2000:281-286.
    44.大内千秋.超微细组织の创造と技术课题[J],CAMP-ISIJ,1999,12(6):1116-1119.
    45.杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒尺寸的控制[J],金属学报,2000,10(10):1050-1054.
    46.V.V.Sagaradze.An ultra-fine grain structure formed as a result of cyclic γ→α→γ transformations[J],Nanostructured Materials,1997,9(1-8):201-204.
    47.H.Hu and B.B.Rath.On the time exponent in isothermal grain growth[J],Metall.Tras.,1970,1(11):3181.
    48.P.A.Beck,J.C.Kremer and L.J.Demer.Grain growth in high purity aluminum[J],Physical Review, 1947,71(8):555.
    49.Sangho UHM,Joonoh MOON,Changhee LEE et al..Prediction Model for the Austenite Grain Size in the Coarse Grained Heat Affected Zone of Fe-C-Mn Steels:Considering the Effect of Initial Grain Size on Isothermal Growth Behavior[J],ISIJ Int.,2004,44(7):1230-1237.
    50.S.Denis.Mathematical Model Coupling Phase Transformations and Temperature Evolutions in Steels [J],ISIJ Int.,1992,32(3):316-325.
    51.E.Anelli.Application of Mathematical Modelling to Hot Rolling and Controlled Cooling of Wire Rods and Bars[J],ISIJ Int.,1992,32(3):440-449.
    52.S.Jiao,J.Penning,F.Leysen et al..The Modeling of the Grain Growth in a Continuous Reheating Process of a Low Carbon Si-Mn Bearing TRIP Steel[J],ISIJ Int.,2000,40(10):1035-1040.
    53.H.Sekine,T.Maruyama,H.Kageyama,Y.Kawashima.In:A.J.DeArdo,G.A.Ratz,P.J.Wray eds.Themomechanical Processing of Microalloyed Austenite[M],Warrendale:TMS-AIME,1982:141.
    54.H.Sekine and T.Maruyama.Seitetsu Kenkyu,1976,289:119-120.
    55.杜林秀,熊明鲜,姚圣杰等.利用相变机理进行低碳钢的亚微米化[J],金属学报,2007,43(1):59-63.
    56.张克勤.奥氏体晶粒尺寸对45V非调质钢组织和性能的影响[J],燕山大学学报,2000,24(2):145-147.
    57.汪日志,雷廷权,谭舒平.锅炉用ASTMA299钢动态再结晶及形变促发A→F转变的研究[J],钢铁,1992,27(8):50-55.
    58.R.Bengchea,B.Lopen and I.Gutierren.Microstructural Evolution during the Austenite-to-Ferrite Transformation from Deformed Austenite[J],Metall.Mater.Trans.A,1998,22:417-426.
    59.M.Gomez,S.F.Medina,G.Caruana.Modelling of Phase Transformation Kinetics by Correction of Dilatometry Results for a Ferritic Nb-microalloyed Steel[J],ISIJ Int.,2003,43(8):1228-1237.
    60.赵洪壮.调质钢相变动力学的研究[D],沈阳:东北在学,2006.
    61.S.E.Offerman,N.H.van Dijk,J.Sietsma et al.Reply to discussion by Aaronson et al.to "Grain nucleation and growth during phase transformations" by S.E.Offerman et al.,Science,298,1003(November 1,2002)[J],Scr.Mater.,2004,51:937-941.
    62.姚圣杰,杜林秀,刘相华,王国栋.一种带状细晶铁素体的成因及其影响因素[J],轧钢,2007,24(5):7-9.
    63.田村今男等著,王国栋,刘振宇,熊尚武译.高强度低合金钢的控制轧制与控制冷却[M],北京:冶金工业出版社,1992,104-108.
    64.S.C.Hong,C.S.Yoon,K.J.Lee et al.TEM observation of strain rate dependent dynamic recrystallization of ferrite in low carbon steel[J],3rd International Symposium on Ultrafine Grained Materials,Charlotte,2004,641-646.
    65.L.F.Li,W.Y.Yang and Z.Q.Sun.Dynamic recrystallization of ferrite in a low-carbon steel[J],Metall.Mater.Trans.A,2006,37(3):609-619.
    66.S.V.S.Narayana Murty,S.Torizuka,K.Nagai et al.Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel[J],Scr.Mater.,2005,53(6):763-768.
    67.K.S.Kumar,S.Suresh,M.F.Chisholm et al.Deformation of electrodeposited nanocrystalline nickel [J],Acta Mater.,2003,51(2):387-405.
    68.N.Wang,Z.R.Wang,K.T.Aust et al.Room temperature creep behavior of nanocrystalline nickel produced by an eletrodeposition technique[J],Mater.Sci.Eng.A,1997,237(2):150-158.
    69.K.Kajihara,Y.Yoshizawa and T.Sakuma.The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping[J],Acta Metall.Mater.,1995,43(3):1235-1242.
    70.J.Warren,L.M.Hsiung and H.N.G Wadley.High temperature deformation behavior of physical vapor deposited Ti-6A1-4V[J],Acta Metall.Mater.,1995,43(7):2773-2787.
    71.田村今男等 著,王国栋,刘振宇,熊尚武 译.高强度低合金钢的控制轧制与控制冷却[M],北京:冶金工业出版社,1992,264.
    72.T.Yokota,C.Garcia Mateo and H.K.D.H.Bhadeshia.Formation of nanostructured steels by phase transformation[J],Scr.Mater.,2004,51(8):767-770.
    73.H.K.D.H.Bhadeshia.Bulk nanocrystalline steel[J],Ironmaking and Steelmaking,2005,32(5):405-410.
    74.R.W.Siegel,G.E.Fougere.Mechanical properties of nanophase metals[J],Nanostruct.Mater.,1995,6(1-4) 205-219.
    75.L.Lu,S.X.Li,K.Lu.An abnormal strain rate effect on tensile behavior in nanocrystalline copper[J],Scr.Mater.,2001,45(10):1163-1169.
    76.J.Schiotz,F.D.Di Tolla,K.W.Jacobsen.Softening of nanocrystalline metals at very small grains[J],Nature,1998,391(6667):561-563.
    77.D.Wolf,V.Yamakov,S.R.Hillpot,A.Mukherjee,H.Gleiter.Deformation of nanocrystalline materials by molecular-dynamics simulation:relationship to experiments[J],Acta Mater.,2005,53(1):1-40.
    78.H.Van Swygenhoven,P.M.Derlet,A.G.Froseth.Nucleation and propagation of dislocations in nanocrystalline fcc metals[J],Acta Mater.,2006,54(7):1975-1983.
    79.M.L.Wang,A.D.Shan.Effect of strain rate on the tensile behavior of ultra-fine grained pure aluminum[J],J Alloys Comp.,2008,455(1-2):10-14.
    80.H.Gleiter.Nanocrystalline Materials[J],Prog.Mater.Sci.,1989,33(4):223-315.
    81.吴艳青,施惠基,牛莉莎.超塑性变形晶界效应研究综述[J],力学进展,2005,35(4):525-540.
    82.K.E.Amin,A.K.Mukherjee,J.E.Dom.A universal law for high-temperature diffusion controlled transient creep[J],J Mech.Phy.Solids,1970,18(6):413-426.
    83.A.Ahmadieh,A.K.Mukherjee.Stress-temperature-time correlation for high temperature creep curves [J],Mater.Sci.Eng.,1975,21:115-124.
    84.T.G.Langdon.The physics of superplastic deformation[J],Mater.Sci.Eng.A,1991,137:1-11.
    85.M.Lagos.Elastic instability of grain boundaries and the Physical origin of superplasticity[J],Phy.Rev.Lett.,2000,85(11):2332-2335.
    86.O.A.Kaibyshev,A.I.Pshenichniuk,V.V.Astanin.Super-plasticity resulting from cooperative grain boundary sliding[J],Acta Mater.,1998,46(14):4911-4916.
    87.M.Sakai,H.Muto.A novel deformation process in an aggregate:a candidate for superplastic deformation[J],Scr.Mater.,1998,38(6):909-915.
    88.H.Muto,M.Sakai.A novel deformation mechanism for superplastic deformation[J],Key Eng.Mater.,1999,166(4):103-108.
    89.H.Muto,M.Sakai.Deformation-induced surface corrugation of superplastic ceramics[J],J Mater.Res.,2001,16:1879-1882.
    90.刘东升,王国栋,刘相华等.奥氏体变形对低碳Mn-B-Nb-Ti钢连续冷却相变的影响[J],金属学报,1999,35(8):816-822.
    91.李星逸,刘文昌,郑场曾.热变形条件对一种Cr-Mn-Mo-B钢连续冷却贝氏体转变的影响[J],钢铁,1998,33(4):40-43.
    92.张克勤.原奥氏体晶粒度对45V非调质钢连续冷却转变的影响[J],金属热处理,2000,8:8-11.
    93.杨王玥,胡安民,孙祖庆.低碳钢奥氏体晶粒控制对应变强化相变的影响[J],金属学报,2000,36(10):1055-1060.
    94.熊明鲜.利用变形和相变制备纳米晶体低碳钢的研究[D],沈阳:东北大学,2006.
    95.M.Tokizane,K.Ameyama,K.Takao.Ultra-fine austenite grain steel produced by thermomechanical processing[J],Scr.Metall.,1988,22(5):697-701.
    96.薛云,于昆.变形对低合金钢珠光体奥氏体相变的影响[J],热加工工艺,2007,36(12):40-41.
    97.刘国勋.金属学原理[M],北京:冶金工业出版社,1983,281-282.
    98.崔忠圻,刘北兴.金属学与热处理原理[M],哈尔滨:哈尔滨工业大学出版社,1998,177-179.
    99.Jie Huang,Zhou Xu.Evolution mechanism of grain refinement based on dynamic recrystallization in
    multiaxially forged austenite[J],Mater.Lett.,2006,60(15):1854-1858.
    100.崔忠圻.金属学与热处理[M],北京:机械工业出版社,2005,240-241.
    101.王季陶.非平衡定态相图-人造金刚石的低压气相生长热力学[M],北京:科学出版社,2000,26.
    102.Ilaria Salvatori,Christophe Mesplont,Dirk Ponge,et al.European Project on Ultrafine Grained Steels Objectives and Results[J].International Symposium on Ultrafine Grained Structures,Shenyang,2005:76-79.
    103.Andrew SMITH,Andrew HOWE.Ultra-fine Ferrite-carbide Steel Developments in Corus[J],International Symposium on Ultrafine Grained Structures,Shenyang,2005:103-107.
    104.Rongjie SONG,Dirk PONG,Dierk RAABE.The Formation of Ultrafine Grained Microstructure by Large Strain Warm Deformation and Annealing in a C-Mn Steel[J],International Symposium on Ultrafine Grained Structures,Shenyang,2005:145-149.
    105.杜林秀,姚圣杰,熊明鲜等.低碳钢奥氏体晶粒超细化[J],东北大学学报,2007,28(11):1575-1578.
    106.戚正风.金属热处理原理[M],北京:机械工业出版社,1987,40-45.
    107.雷廷权,赵连城.钢的组织转变译文集(续集)[M].北京:机械工业出版社,1985,1-15,47-56.
    108.K.J.Irvine,F.B.Pickering,T.Gladman.Grain-refined C-Mn steels[J],J.Iron Steel Inst.,1967,205:161-182.
    109.G.I.Rees,J.Perdrix.The effect of Niobium in solid on the transformation kinetic of Bainite[J],Mater.Sci.Eng.A,1995,194(2):179-186.
    110.E.J.Palmiere,C.I.Garcia,A.J.Deardo.Compositional and microstructural changes which attend reheating and grain coarsening in steel containing Niobium[J],Metall.Mater.Trans.A,1994,25(2):277-286.
    111.李智.低碳贝氏体型非调质钢的控轧控冷[D],沈阳:东北大学,2000.
    112.齐俊杰,黄运华,张跃.微合金化钢[M],北京:冶金工业出版社,2006,77-78.
    113.Han Dong,Xinjun Sun.Deformation induced ferrite transformation in low carbon steels[J],Current Opinion in Solid state & Materials Science,2005,9:269-276.
    114.J.K.Choi,D.H.Seo,J.S.Lee,et al.Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel[J],ISIJ Int.,2003,43(5):746-754.
    115. B. Mintz, J.J. Jonas. Infulence of strain rate on production of deformation induced ferrite and hot ductility of steels[J], Mater. Sci. Technol., 1994, 10: 721-727.
    
    116. R.Kaspar, J.S.Distl, O.Pawelski. Extreme austenite grain refinement due to dynamic recrystallization [J], Steel Res., 1988, 59(9): 421-425.
    
    117. P.D.Hodgson, M.R.Hickson, R.K.Gibbs. Ultrafine ferrite in low carbon steel [J], Scr. Mater., 1999, 40(10): 1179-1184.
    
    118. H.Mabuchi, T.Hasegawa, T.Ishikawa. Metallurgical features of steel plates with ultra fine grains in surface layers and their formation mechanism [J], ISIJ Int., 1999, 39(5): 477-485.
    
    119. Z.M.Yang, R.Z.Wang. Formation of ultra-fine grain structure of plain low carbon steel through deformation induced ferrite transformation [J], ISIJ Int., 2003, 43(5): 761-766.
    
    120. J.K.Choi, D.H.Seo, J.S.Lee, K.K.Um and W.Y. Choo. Formation of ultrafine ferrite by strain-induced dynamic transformation in plain low carbon steel [J], ISIJ Int., 2003, 43(5): 746-754.
    
    121.M.R.Hickson, P.J.Hurley, R.K.Gibbs, GL.Kelly, P.D.Hodgson. The production of ultrafine ferrite in low-carbon steel by strain-induced transformation [J], Metall. Mater. Trans. A, 2002, 33(4): 1019-1026.
    
    122. S.C.Hong, S.H.Lim, K.J.Lee, D.H.Shin and K.S.Lee. Effect of undercooling of austenite on strain induced ferrite transformation behavior [J], ISIJ Int., 2003, 43(3): 394-399.
    
    123. Lotfi Chabbi, Wolfgang Lehnert. Controlled hot forming of heat treatment steel grades in the intercritical (y-a) region [J], J. Mater. Proc. Technol., 2000, 106: 13-22.
    
    124. A.Najafi-Zadeh, J.J.Jonas, S.Yue. Grain refinement by dynamic recrystallization during the simulated warm-rolling of interstitial free steels [J], Metall. Trans. A, 1992, 23(9): 2607-2617.
    
    125. N.Tsuji, Y.Matsubara and Y.Saito. Dynamic recrystallization of ferrite in interstitial free steel [J], Scr. Mater., 1997, 37(4): 477-484.
    
    126. S.V.S. Narayana Murty, S.Torizuka, K.Nagai et al. Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel [J], Scr. Mater., 2005, 53(6): 763-768.
    
    127. J.Baczynski, J.J.Jonas. Torsion textures produced by dynamic recrystallization in alpha-iron and two interstitial-free steels [J], Metall.Trans.A, 1998,29(2): 447-462.
    
    128. Y.Q. Weng. Microstructure refinement of structural steel in China [J], ISIJ Int., 2003, 43(11): 1675-1682.
    
    129. R.Song, D.Ponge, D.Raabe, R.KasPar. Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing [J], Acta Mater., 2005, 53(3):845-858.
    130.B.Eghbali.Microstructure development in a low carbon Ti-microalloyed steel during deformation within the ferrite region[J],Mater.Sci.Eng.A,2008,480:84-88.
    131.R.Song,D.Ponge,R.Kaspar,D.Raabe,Z.Metallkd.Grain boundary characterization and grain size measurement in an ultrarine-grained steel[J],ZEITSCHRIFT FUR METALLKUNDE,2004,95(6):513-517.
    132.R.Song,D.Ponge and D.Raabe.Improvement of the work hardening rate of ultrafine grained steels through second phase particles[J],Scr.Mater.,2005,52(11):1075-1080.
    133.R.Song,D.Ponge,R.Kaspar.The microstructure and mechanical properties of ultrafine grained plain C-Mn steels[J],Steel Res.,2004,75(1):33-37.
    134.R.Song,D.Ponge,D.Raabe.Mechanical properties of an ultrafine grained C-Mn steel processed by warm deformation and annealing[J],Acta Mater.,2005,53(18):4881-4892.
    135.R.Song,D.Ponge,D.Raabe.Influence of Mn content on the microstructure and mechanical properties of ultrafine grained C-Mn steels[J],ISIJ Int.,2005,45(11):1721-1726.
    136.J.Moon,J.Lee,C.Lee.Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel[J],Mater.Sci.Eng.A,2007,459:40-46.
    137.S.Renata,A.Henryk,A.Anna.Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel[J],Mater.Character.,2006,56(4-5):340-347.
    138.许昌淦,田永革.15cr2Ni10MoCo14钢奥氏体晶粒长大和高温氧化动力学[J],特殊钢,1995,16(6):19-22.
    139.Y.Takayama,N.Furushio and T.Tozawa.A significant method for estimation of the grain size of polycrystalline materials[J],Mater.Trans.JIM,1991,32(3):214-221.
    140.R.A.Vandermeer and H.Hu.On the grain growth exponent of pure iron[J],Acta Metall.Mater.,1994,42(9):3071-3075.
    141.J.E.Burke.Some factors affecting the rate of grain growth in metals[J],Trans.AIME,1949,180:73-91.
    142.C.S.Smith.Grains,phases,and interfaces:An interpretation of microstructure[J],Trans.AIME,1948,175:15-51.
    143.R.A.Brandes and G.B.Brook.Smithells Metals Reference Book,7~(th) ed.,Oxford:Butterworths-Heinemann Ltd.,1992,1-13.
    144.P.A.Manohar,D.P.Dunne,T.Chandra and C.R.Killmore.Grain growth predictions in microalloyed steels[J],ISIJ Int.,1996,36(2):194-200.
    145.B.Feng,T.Chandra and D.P.Dunne.Effect of alloy nitride particle size distribution on austenite grain coarsening in Ti and Ti-Nb bearing HSLA steels[J],Mater.Forum,1989,13(2),139-143.
    146.T.Gladman and F.B.Pickering.Grain coarsening of austenite[J],J.Iron Steel Inst.,1967,205(6):653-664.
    147.M.Hillert,On the thory of normal and abnormal grain growth[J],Acta Metall.,1965,13(3):227-238.
    148.H.Van Swygenhoven and P.M.Derlet.Grain-boundary sliding in nanocrystalline fcc metals[J],Phy.Rev.B,2001,64(22):1-9.
    149.M.Y.Gutkin,I.A.Ovid'ko,N.V.Skiba.Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials[J],2003,51(14):4059-4071.
    150.Y.J.Wei,L.Anand.Grain-boundary sliding and separation in polycrystalline metals:application to nanocrystalline fcc metals[J],J Mech.Phy.Solids,2004,52:2587-2616.
    151.L.X.Du,C.B.Zhang,H.Ding et al.Determination of upper limit temperature of strain-induced transformation of low carbon steel[J],ISIJ Int.,2002,42(10):1119-1124.
    152.B.Mintz,J.Lewis,J.J.Jonas.Importance of deformation induced ferrite and factors which control its formation[J],Mater.Sci.Techno.,1997,13(5):379-388.
    153.杜林秀,丁桦,张彩碚等.低碳钢热加工过程中的组织变化[J],新一代钢铁材料研讨会,中国金属学会,北京,2001,307.
    154.H.Yada,C.M.Li,H.Yamagata.Dynamic γ→α transformation during hot deformation in Iron-Nickel-Carbon alloys[J],ISIJ Int.,2000,40(2):200-206.
    155.S.C.Hong,K.S.Lee.Influence of deformation induced ferrite transformation on grain refinement of dual phase steel[J],Mater.Sci.Eng.A,2002,323(1-2):148-159.
    156.杨平,傅云义,崔凤娥等.Q235碳素钢应变强化相变的基本特点及影响因素[J],金属学报,2001,37(6):601.
    157.P.J.Hurley,P.D.Hodgson.Effect of process variables on formation of dynamic strain induced ultrafine ferrite during hot torsion testing[J],Mater.Sci.Tech.,2001,17(11):1360-1367.
    158.孙新军.微合金钢变形诱导铁素体相变的研究[博士后出站报告],北京:钢铁研究总院,2003.
    159.梁小凯,孙新军,刘清友,董瀚.超细晶钢在不同温度下塑性变形机制研究[J],2004,39(11):52-56.
    160.黄乾尧,李汉康 等编著.高温合金[M],北京:冶金工业出版社,2000,pp.32.
    161.张俊善,材料的高温变形与断裂[M],北京:科学出版社,2007,pp.165.
    162.M.F.Ashby,Boundary defects and atomic aspects of boundary sliding and diffusional creep[J],Surface Sci.,1972,31(5),498-542.
    163.M.G.Zelin,R.W.James,A.K.Mukherjee.Coupling of co-operative grain boundary sliding and co-operative grain boundary migration[J],J.Mater.Sci.Lett.,1993,12(2),176-178.
    164.M.F.Ashby,R.A.Verrall.Diffusion accommodated flow and superplasticity[J],Acta Metall.,1973,21(2):149-163.
    165.R.L.Coble.A Model for'Boundary Diffusion Controlled Creep in Polycrystalline Materials[J],J.Appl.Phys.,1963,34(6):1679-1682.
    166.V.V.Astanin,O.A.Kaibyshev,S.N.Faizova.Cooperative grain boundary sliding under superplastic flow[J],Scr.Metall.Mater.,1991,25(11):2663-2668.
    167.V.V.Astanin,O.A.Kaibyshev,S.N.Faizova.The role of deformation localization in superplastic flow[J],Acta Metall.Mater.,1994,42:2617-2622.
    168.姚圣杰,杜林秀,刘相华,王国栋.超细晶奥氏体两相区大变形及形变后瞬态组织分析[J],材料研究学报,2008,22(6):572-576.
    169.Shengjie Yao,Linxiu Du,Xianghua Liu and Guodong Wang.A new attempt to obtain bulk nanocrystalline steel[J],J.Mater.Sci.Technol,2009,25(1):81-84.
    170.齐俊杰,杨王玥,孙祖庆等.低碳钢过冷奥氏体形变过程超细铁素体的形成[J],金属学报,2002,38(9):897-902.
    171.H.C.Choi,T.K.Ha,H.C.Shin,Y.W.Chang.The formation kinetics of deformation twin and deformation induced ε-martensite in an austenitic Fe-C-Mn steel[J],Scr.Mater.,1999,40(10):1171.
    172.S.H.Hong,Y.S.Han.The effects of deformation twins and strain-induced ε-martensite on mechanical properties of an Fe-32Mn-12Cr-0.4C cryogenic alloy[J],Scri.Metall.Mater.,1995,32(9):1489-1494.
    173.米振莉,唐荻,严玲,郭锦.高强度高塑性TWIP钢的开发研究[J],钢铁,2005,40(1):58-60.
    174.J.R.Spingarn,W.D.Nix.Diffusion creep and diffusionally accommodated grain rearrangement[J],Acta Metall.,1978,26(9):1389-1398.
    175.R.C.Gifkins.Grain boundary sliding and its accommodation during creep and superplasticity[J],Metall.Trans.A,1976,7(8):1225-1232.
    176.雷毅,刘志义,李海.低碳钢中添加ZrO_2粒子获得超细晶粒的研究[J],兵器材料科学与工程,2004,27(2):3-6.
    177.H.Beladi,G.L.Kelly and P.D.Hodgson.Ultrafine grained structure formation in steels using dynamic strain induced transformation processing[J],Int.Mater.Rev.,2007,52(1):15-28.
    178.王长丽,张凯锋.纳米Ni和Ni/SiCp纳米复合材料的超塑性[J],材料研究学报,2005,19(6):657-661.
    179.王磊.材料的力学性能[M],沈阳:东北大学出版社,2005,50-51.
    180.Z.G.Liu,H.J.Fecht,M.Umemoto.Microstructural evolution and nanocrystal formation during deformation of Fe-C alloys[J],Mater.Sci.Eng.A,2004,375-377(15),839-843.
    181.B.Bay,N.Hansen,D.A.Hughes and D.Kuhlmann.Evolution of fcc deformation structures in polyslip[J],Acta Metall.Mater.,1992,40(2):205-219.
    182.T.F.Jing,Y.W.Gao,X.L.Ren,G.Y.Qiao,F.R.Xiao,J.Zhao and D.Q.Yu.Proc of the China-Russia Seminar on NEPTUC 2001,Qinhuangdao,Yanshan University,2001,7:206-211.
    183.M.Y.Liu,B.Shi,C.Wang et al.Normal Hall-Petch behavior of mild steel with submicron grains[J],Mater.Lett.,2003,57:2798-2802.
    184.谷臣清,陈文革,付萍.板条马氏体晶宽纳米化及其力学行为[J],材料热处理学报,2003,24(2):46-50.
    185.D.Jia,K.T.Ramesh,E.Ma.Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron[J],Acta Mater.,2003,51:3495-3509.
    186.R.Ueji,N.Tsuji,Y.Minamino and Y.Koizumi.Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure[J],Sci.Technol.Adv.Mater.,2004,5:153-162.
    187.J.T.Busby,M.C.Hash,G.S.Was.The relationship between hardness and yield stress in irradiated austenitic and ferritic steels[J],J.nuclear mater.,2005,336(2-3):267-278.
    188.A.E.Tekkaya.Improved relationship between Vickers hardness and yield stress for cold formed materials[J],Steel Res.,2001,72(8):304-310.
    189.C.Y.Yu,P.W.Kao,C.P.Chang.Transition of tensile deformation behaviors in ultrafine-grained aluminum[J],Acta Mater.,2005,53:4019-4028.
    190.N.Tsuji,Y.Ito,Y.Saito,Y.Minamino.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J],Scr.Mater.,2002,47:893-899.
    191.N.Tsuchida,H.Masuda,Y.Harada et al.Effect of ferrite grain size on tensile deformation behavior of a ferrite-eementite low carbon steel[J],Mater.Sci.Eng.A,2008,488:446-452.
    192.D.Rasouli,Sh.Khameneh Asl,A.Akbarzadeh,G.H.Daneshi.Optimization of mechanical properties of a micro alloyed steel[J],Mater.Design,2009,30(6):2167-2172.
    193.R.Song,D.Ponge,D.Raabe et al.Overview of processing,microstructure and mechanical properties of ultrafine grained bcc steels[J],Mater.Sci.Eng.A,2006,441(1-2):1-17.
    194.N.R.Tao,K.Lu.Dynamic Plastic Deformation(DPD):A Novel Technique for Synthesizing Bulk Nanostructured Metals[J],J.Mater.Sci.Technol.,2007,23(6):771-774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700