高锰钢变形机制及热轧工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足汽车工业对安全性、经济性、环保以及表面质量的要求,钢铁工业正在不断的改进创新。在21世纪,大多数汽车钢的研究主要集中在开发新型UHSS来满足超轻钢汽车车身(ULSAB)计划。这些钢种包括双相钢、相变诱发塑性(TRIP)钢、孪晶诱导塑性(TWIP)钢和硼钢。
     TRIP(Transformation Induced Plasticity)钢又称相变诱发塑性钢,TRIP钢板具有高的强度、延展性和冲压成形能力,用作汽车钢板可减轻车重、降低油耗,同时有较强的能量吸收能力,能够抵御撞击时的塑性变形,显著地提高了汽车的安全等级,具有明显的优越性。
     TWIP(Twins Induced Plasticity)钢是通常是指锰含量为15%-30%的高锰钢,TWIP效应又称孪生诱发塑性效应,是指超高锰钢中因为机械孪晶的形成而具有的不寻常的塑性。TWIP钢由于具有高的加工硬化率、高的延展性、高的强度等一系列优良的机械性能,因此在未来的汽车工业生产中具有广阔的发展和应用前景。
     本文以锰含量为18.8%和23.8%的两种高锰奥氏体钢作为研究对象,研究了不同锰含量的高锰钢在不同变形量时的组织和变形机制,以及热轧高锰钢的组织和力学性能,并分析了两种钢的拉伸应变硬化行为。为大规模工业生产、应用提供了理论基础与实验依据。
     本文的实验内容包括:
     (1)通过光学显微镜、透射电镜以及X射线衍射分析了18.8Mn和23.8Mn实验钢在室温下,应变速率为1×10-3/s时不同变形量的显微组织和变形机制。18.8Mn实验钢塑性变形初期为位错滑移和TRIP效应;变形中期主要以TWIP效应为主;变形后期主要发生TRIP效应,在整个变形过程中都伴随着TRIP效应发生。23.8Mn实验钢变形机制主要是TWIP效应。
     (2)通过对两种实验钢的真应力真应变曲线分析,微观组织的观察以及X射线衍射对不同变形量时相组成的测定,探讨了拉伸硬化阶段曲线所遵循的规律。对18.8Mn钢的变形分为四个阶段:1)弹性变形阶段;2)塑性变形的线性阶段;3)塑性变形的非线性阶段;4)马氏体开始屈服阶段。对23.8Mn钢变形分为三个阶段:1)弹性变形阶段;2)塑性变形的线性阶段;3)塑性变形的非线性阶段。
     (3)研究了锰含量为18.8%的热轧实验钢的力学性能与组织组成,其抗拉强度达930MPa以上,延伸率达41%以上,强塑积达36GPa%以上。同时对锰在奥氏体钢中的强化机制进行了分析。锰元素的固溶强化并不是高锰奥氏体钢最主要的强化机制,应力诱发的相变强化及TWIP效应才是关键的强化机制。
To meet the needs of vehicles such as safety, efficiency, environmental, responsibility and good surface quality, the steel industry is constantly make progress. By the 21st century, most projects of automobile steels have been focused on developing new kinds of UHSS and new style steels to meet the needs of the plan of ultra light steel auto body (ULSAB). These steels include dual-phase steel, (TRIP) steel, transformation induced plasticity (TWIP) steel and Boron steel.
     Transformation Induced Plasticity (TRIP) steels exhibit a superior combination of strength and ductility compared to precipitation hardened steels and solution hardened steels. TRIP steels meet these requirements that the weight decrease for fuel efficiency as well as the safety is continuing to be major concerns in automobile manufacturing. The large scale production of TRIP steel sheets has become a fact with production technology improvement and development, and the application prospect will be wider.
     TWIP steel is mainly manganese steel with Mn mass contents of 15%~30%, TWIP is twinning induced plasticity effect, and it can induce unusal plasticity because of the mechanical twinning in ultra high manganese austenitic steel. TWIP steels exhibit some special mechanical properties, such as high work-hardening, large elongation and high tensile strength. The improvement and application will be wider in the vehicle industry in the future.
     In this article, two different content high manganese austenite steels(18.8Mn and 23.8Mn) are studied. The relation between Mn contents and deformation microstructure and mechanical properties of samples have been studied, the microstructure and mechanical properties of the hot rolling steel and the tensile strain hardening behaviours of the steel have been studied. These are many conclusions can offer gist of theory and experiment for commercial run.
     The contents of this article include following items:
     (1) By the optical microscope, transmission electron microscopy (TEM) and X ray diffraction, the steel of the relationship between deforming amount and microstructure have been studied of the steel that take tensile strain experiment of room-temperature with the strain rate of 10-3/s. The microstructures of the samples at different deforming amount were analyzed, the result indicates that when there exist both TRIP effect and TWIP effect in steel during tensile strain experiment, the dislocation and TRIP happens earlier;the TWIP happens in the medium-term;the TRIP happens in the last. The 23.8 Mn experimental steel exist both TRIP effect. And TWIP effect, but the TWIP effect becomes the main deformation mechanism of the steel.
     (2) The induration stage of the tensile strain curve have been studied by the true stress and true strain curves.of the two kinds of steels and the optical microscope, transmission electron microscopy (TEM) and X ray analysis discussed, and analysis what law have followed. The 18.8Mn experimental steel deformation could be divided into four different stages:1) elastic deformation phase;2) the linear plastic deformation stage;3) the nonlinear of deformation of the plasticity stage.4) the beginning of the martensite yield stage. And the 23.8% deformation could be divided into three different stages:1) elastic deformation phase;2) the linear plastic deformation stage;3) the nonlinear of deformation of the plasticity stage.
     (3) The hot rolling process of the 18.8Mn experimental steel, and the microstructures and the mechanical property of the samples have been studied. the ultimate tensile strength is 930MPa, the elongation of the steels is 41%.And the strengthening effect of the Mn among the austenitic steel have been studied. The studied indicated that the solution strengthening is not the main mechanism in the high Mn austenitic steel, and the twinning induced plasticity effect is the important mechanism.
引文
1张梅.高强度和超高强度相变塑性钢的开发和研究[D],上海大学博士学位论文,2007.4.
    2史文.含钒低碳低硅相变诱发塑性钢的组织和性能的研究[D],上海大学博士学位论文,2006.12.
    3 B.C. De Cooman, Structure-properties relationship in TRIP steels containing carbide-free bainite[J], Current opinion in solid state and materials science,2004,(8):285-303.
    4王轶娜,黎倩,何燕霖等.高强度高塑性TWIP钢的组织和性能[J],热处理2006,21(3):25-30
    5王四根,花礼先,王绪.硅锰系相变诱发塑性钢的热处理工艺研究[J],金属热处理,1995,(6):14-17.
    6赵金福.一种新型高强度钢—低合金TRIP钢[J],材料工程,1992,(1):160-162.
    7 V.F.Zackay, E.R.Parker, D.Fahr and R.Bush. The enhancement of ductility in high strength steels[J], Trans. Am. Soc. Met.,1967, (60):252.
    8 O.Matsumura, Y.Sakuma and H.Takechi. Retained Austenite in 0.4C-Si-1.3Mn Steel Sheet Intercritically Heated and Austempered[J],ISIJ International, Vol.27,1987, No.9,570-579.
    9 O.Matsumura, Y.Sakuma and H.Takechi. TRIP and its Kinetics Aspects in Austempered 0.4C-1.SSi-0.8Mn Steel[J], Scripta Metallurgica Vol.21,1987, 1301-1306.
    10 O.Matsumura, Y.Sakuma and H.Takechi. Enhancement of Elongation by Retained Austenite in Intercritically Annealed 0.4C-1.SSi-0.8Mn Steel[J], Transaction of the ISIJ, Vol.32,1992,No.9.1014-1020.
    11 De Cooman B.C.. Structure-properties relationship in TRIP steels containing carbide-free bainite[J]. Current Opinion in Solid State and Materials Science,2004, 8(3-4):285-303.
    12 Mahieu J., Claessens S.. De Cooman B.C.Galvanizability of highstrength steels for automotive applications[J], Metallurgical and Materials Transactions A 2001, 32A:2905-2907.
    13 Mintz B. The influence of aluminum on the strength and impact properties of steel[A],De Cooman B C Int. Conf. on TRIP-Aided High Strength Ferrous Alloys [C], Aachen,Germany:WMG,2002:379-382.
    14 HanzakiZA, HodgsonPD, YueS. Retained Austenite Character risticsin Thermo-Mechanically Processed Si-Mn Transformation Induced Plasticity Steels [J],Metall. Trans,1997,28A(11):2405-2411.
    15 SakumaY, Mattock DK, KraussG.. Intercriticatly Annealed And Isothermally Transformed 0.15Pct Steets Containing 1.2 Pct Si,1.5 Pct Mn and 4 Pct Ni:Part[J], MetallTrans,1992,23A(4):1233-1241.
    16 SugitomoK, KobayashiM, ShirsawaH. Effects of Second Phase Morphology on Retained Austenite Morphology and Tensile Properties in a TRIP-AidedDual-Phase Steel Sheet[J], ISIJ Inter,1993,33(7):775-782.
    17 HanzakiAZ, HodgsonPD, YueS..Ferrite. Formation Characteristics in Si-Mn TRIP Steels [J], ISIJ Inter,1997,37(6):583-589.
    18 HanzakiAZ, HodgsonPD, YueS.The State of the Retained Austenite after Thermo-Mechanical Processing A TRIP Steel [A],34thMWSP Conf Proc[C]. ISS-AIME,1993, XXX:507-514.
    19韦习成,李麟,符仁任.TRIP钢显微组织与性能关系的评述[J],钢铁研究学报,2001,(10):71-76.
    20史文,李麟,符仁任.两相区退火对不同硅含量TRIP钢残留奥氏体和力学性能的影响[J],金属热处理,2003,28(3):10-14.
    21周媛,李麟,史文等.SiMn系TRIP钢两相区等温处理的组织转变模拟.材料热处理学报[J],2002,23(1):15-20.
    22李壮,王洪顺,李景春等.低碳硅锰系结构钢中相变诱发塑性的研究[J],沈阳航空工业学院学报,1999,16(4):14-18.
    23邹宏辉,符仁饪,李麟.SiMn系TRIP钢显微组织研究[J],机械工程材料,2002,26(3):12-14.
    24李壮,王铁利,李在先,王国栋.新型TRIP钢热处理工艺初探[J],钢铁,2001,36(1):52-55.
    25戴起勋,王安东.低温奥氏体钢的层错能[J],钢铁研究学,2002,14(4):34-38.
    26 Hirth,J P, Lothe,J..Theory of Dislocation[M],2nd ed. New York:.John Wiley and Sons Inc,1982.
    27戴起勋,王安东.低温奥氏体的层错能[J],钢铁研究学报,2002.4(14):34-37.
    28 Delehouzee L, Deruyttere A. The stack fault density in solid solutions based on copper, silver, nickel, aluminium and lead[J],Acta Metall,1967, (15):727-734.
    29万见峰,陈世朴,徐祖耀.Fe-Mn-Si基形状记忆合金中FCC相的电子结构与稳定性[J],中国科学,2003,5(33):385-392.
    30徐祖耀.铁基形状记忆合金[J],上海金属,1993,2(15):1-10.
    31 R. E. Schramm, R. P. Reed. Stacking fault energies of seven commercial austenitic stainless steels [J].Metall Trans. A,1975,(17):1345.
    32李智超袁晓光.高锰钢强化机理综述[J],阜新矿业学院学报(自然科学版)1993,1(12):43-47.
    33 A.G.盖伊.物理冶金学原理[M],北京:机械工业出版社,1981.
    34严玲,唐荻.不同加工工艺对高强高塑性TWIP钢组织与性能的影响热加工工艺[J],2005.(8)15-17.
    35苏德达,李家俊著.钢的高温金相学[M],天津大学出版社,2007.
    36钱苗根.金属学[M],上海:上海科学技术出版社,1980.
    37黄宝旭,王晓东等.TWIP钢研究的现状与展望[J],热处理,2005,(14):4-6.
    38 G. Fromm eyer.. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purpose [J]. ISIJ International,2003,(43):438.
    39熊荣刚,张梅等.TWIP钢的拉伸应变硬化行为[J],钢铁,2007,11(42):61-64.
    40许路萍,邵光杰,李麟等.汽车轻量化用金属材料及其发展动态[J],上海金属2002,24(3):1-7.
    41李东宇.TRIP钢的工艺控制与性能研究[J],鞍山科技大学,2006.(3):17-22.
    42方鸿生,王家军,杨志纲等.贝氏体相变[M],北京:科学出版社,1999,153-165.
    43 S.Allain, J. P. Chateau, O.Bouaziz.A. Physical model of the twinning-induced plasticity effect in a high manganese austenitic steel[J], Materials Science and Engineering,2004, A 387-389:143-147.
    44 O. GraE ssel, L. KruE ger, G. Frommeyer,L. W.Meyer. High strength Fe-Mn-(Al,Si)TRIP/TWIP steels development-properties-application[J], International Journal of Plasticity,2000,(16):1391-1409.
    45唐代明.TRIP钢中合金元素的作用和处理工艺的研究进展[J],钢铁研究学报,2008.1(20):1-5.
    46景财年,王作成.TRIP-相变诱发塑性钢的研究进展[J],特殊钢,2004,25(4):1-5.
    47米振莉等.高强度高塑性TWIP钢的开发研究[J],钢铁,2005,(1):140.
    48关小军,周家娟,王作成.一种新型汽车用钢——相变诱发塑性钢[J],特殊钢,2004,(4):27-31.
    49杨合湘,赵阳华.从需求看我国钢铁工业发展规模[J],宏观经济研究,2004,(3):34-37.
    50唐荻,米振莉,陈雨来.国外新型汽车用钢的技术要求及研究开发现状[J],钢铁,2005,6(1):1-6.
    51郑玉春.我国钢铁工业所面临形势分析[J],冶金信息导刊.2004,(1):4-8.
    52郭凤梅.浅谈钢铁行业的发展趋势[J],武钢技术,2003,41(5):38-41.
    53张寿荣.我国钢铁工业发展的潜在危机[J],冶金经济与管理,2004,(1):14-19.
    54张德琛.钢铁工业运行中的问题和2004年展望[J],中国经贸导刊,2004,(5):16.
    55赵广东,康海军,吕忠萍.冷轧薄板成形性能研究的内容和方法[J],本钢技术,2006,(3):17-21.
    56李树棠.金属X射线衍射与电子显微分析技术[M],冶金工业出版社,1980.
    57付瑞东,郑炀曾等.氮强化高锰奥氏体低温钢的拉伸应变硬化行为[J],材料研究学报,2005,19(4):No.2.
    58 M.O.Speidel, P.J.Uggowitzer. ASM[J]. International,1993,(135):23-32.
    59 S.Kubota, Y.Xia, Y.Tomota. ISIJ[J]. International,1998,(38):474.
    60 D.C.Ludwigson. Metal[J]. Trans,1971,(2):29-25.
    61苏荣浩.高锰钢奥氏体结构研究[J],兵工学报,1987,(1):37-44.
    62程晓农,戴起勋.奥氏体钢层错能与e马氏体相变[J],钢铁研究学报,2003,15(2):55-59.
    63王建华,任立军.高锰钢加工硬化机理研究[J],煤矿机械,2003,(1):50-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700